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Abstract

This paper examines the problem of system identification from frequency response
data. Recent approaches to this problem, known collectively as ‘Estimation in H.’,
involve deterministic descriptions of noise corruptions to the data. In order to pro-
vide ‘worst—case’ convergence with respect to these deterministic noise descriptions,
non-linear in the data algorithms are required. In contrast, this paper examines
‘worst—case’ estimation in H,, when the disturbances are subject to mild stochastic
assumptions and linear in the data algorithms are employed. Issues of convergence,
error bounds, and model order selection are considered.
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1 Introduction

The bulk of system identification theory addresses the problem of estimating system models
on the basis of observed time domain data [18, 32]. However, in many cases the available
data involves measurements of a systems frequency response [31, 19]. Indeed, using fre-
quency domain measurements together with filters to remove harmonics is an effective way
to deal with static non-linearities which would otherwise obscure the estimation of an
underlying linear system.

Estimation from frequency domain data has also been intensively studied as a means
for providing a combination of an estimated model together with error bounds which are
suitable for subsequent H,, robust control design. This latter line of work has become
known as ‘Estimation in H,’. It was pioneered by Parker and Bitmead [27] and later
taken up by Helmicki, Jacobsen and Nett [11, 12, 13, 14, 16], Gu and Khargonekar [8, 9],
Partington [29, 20, 28] and others. Two main themes are important in this latter literature:

1. Stochastic disturbance descriptions are considered too restrictive or require too much
prior information to be specified and hence should be replaced by descriptions that
involve assumptions only on the amplitude of any disturbances.

*This work was supported by the Australian Research Council and the Centre for Industrial Control
Science. The author can be contacted at email:brett@ee.newcastle.edu.au or FAX: 461 49 21 69 93
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2. Under these ‘bounded error’ descriptions simple linear algorithms are ‘worst case’
divergent. This motivates the design of various non-linear algorithms that avoid the
divergence.

Motivated by these themes, the purpose of this paper is to examine the consequences and
complexity of stochastic noise assumptions in an ‘Estimation in H,’ setting. Contrary
to point 1 above, it is found that under very mild stochastic assumptions (which do not
involve knowing any probability density functions) linear algorithms do not suffer the di-
vergence problems of point 2, except for rare events of probability zero (they converge
with probability one). As well (as will be detailed in §3) the stochastic assumptions em-
ployed do not involve significantly more prior information than deterministic assumptions
involve. If one accepts that ' a stochastic description can to some extent also characterise
disturbance sequences satisfying deterministic ‘bounded-magnitude’ assumptions (see for
example [25, 34]), then this analysis sheds light on the nature of the ‘worst—case’ distur-
bance required to provoke divergence in a linear algorithm. Namely, it exists but belongs
to a set of measure zero.

To be more explicit, this paper shows that under mild stochastic assumptions and under
certain conditions on how quickly the model order grows relative to the data length, then
linear algorithms are robustly consistent? with probability one. The paper also derives
probabilistic error bounds relating the true and estimated frequency responses. Because
these error bounds account for undermodelling, they depend upon the model order. This
leads to a new criterion for optimal model order selection by a strategy of maximising the
probability that the worst—case error bound applies. As well, because of the probabilistic
nature of the error bound, it is possible to gauge the conservativeness in the bound. If the
purpose of the estimated model is for subsequent robust controller design, this allows for a
tradeoff between safety and performance to be evaluated. Together, these results provide
a stochastic approach to providing models suitable for robust control system design from
observed frequency response data corrupted by random disturbances.

It should be emphasised at the outset that this paper is not adversarial to ‘estimation
in H,’ ideas. Rather it is meant as a contribution to the better understanding of the
performance of certain least-squares frequency domain estimation algorithms in a worst—
case sense. In particular, the point of the paper is to show that (via a stochastic analysis)
linear algorithms (as opposed to non-linear two—step ones) enjoy a worst—case performance
better than might be expected from a purely deterministic analysis. This suggests that
given their simplicity, linear algorithms may be a worthy candidate if one requires models
for robust control design. This idea appears to have originally been put forward in [9] on
the basis of empirical evidence; this paper can be considered as a theoretical contribution
to the substantiation of this viewpoint.

'since any bounded magnitude sequence can be a realisation of a sequence of random variables with
distribution functions of compact support.

2What is meant by ‘robustly strongly consistent’ will be defined later. It is a term borrowed from the
‘estimation in H,’ literature.
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2 Identification from Frequency Response Data

The line of research known as ‘Estimation in H,,’ aims at using frequency response data
to find both a model in H, and a hard bound on the error in this model. With rare
exceptions [30, 21, 6, 10, 4, 3|, the model structures used in this work are finite impulse
response (FIR). As mentioned in the introduction, this line of research was begun by Parker
and Bitmead [27, 26] in 1987. The multitude of papers [11, 12, 13, 14, 16, 15, 17, 29, 20,
28, 8, 9] following have concentrated mainly on improving the asymptotic in model order
properties of Parker and Bitmead’s ideas through the use of windowing functions and two—
step algorithms, although there are other approaches [10, 3]. The problem attacked by
Parker and Bitmead has been stated in canonical form by Helmicki, Jacobson and Nett
in [11]:

e Assume the true system transfer function evaluated at 2!, Gr(z),is analytic on the
domain D, = {z € C: |z| < p}, p > 1 and is bounded in magnitude by M on D,.
That is, assume G € Hyo(D,, M) £ S.

e Assume the availability of n measurements of the frequency response of Gt at the n

roots of unity. These measurements { fo,---, f, 1} are corrupted as follows
jwsk A 2w
fi=Gr(e? )+ w2 —, (1)
where
| <e. 2)

That is, the corruption is by the components of some element v € /..

The problem then is to derive an estimate G(z) such that G € Hy(D;) and

lim sup HGT_éH =0 (3)
e 7SS h

in which case the algorithm providing G is termed ‘robustly consistent’ [16, 8]. Note
that compared to stochastic estimation theory [18, 32], this definition of convergence is
somewhat unusual since it involves an assumption of the magnitude of the noise disturbance
going to zero. The purpose of §3 following will be to illustrate that in a stochastic setting,
convergence can still be achieved without this assumption of the noise magnitude ¢ tending
to zero.

The original estimation approach of Parker and Bitmead is as follows. Select the model
to be of the form

Gz)= > G (4)
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and try to make its frequency response the same as the measurements:

d(n)—1
S Gee o = f m=0,--n— 1. (5)
k=0

Parker and Bitmead only consider the case of the model order chosen as d(n) = n. If the
choice of the model order is d(n) < n, then the equations (5) are over-determined and a
natural choice for gy would be one that minimised the total squared error in (5). This
solution is most easily seen by vectorising:

arjz‘ = [lg\Oa e alg\d(n)—l] ) (6)
[ 1 1 1 1 ]
1 e_jws e_j2w8 e e_j(d(n)_l)wS
A — 1 e—quJs e—j4ws e e_jz(d(")_l)“’s (7)
1 emitn=Dws  g=i2n—Nws .. p=i(n—1)dn)~1)ws
FT = [f()a"'afnfl]a (8)
so that (5) becomes
A0, =F (9)

with solution minimising the squared error as:

~

0, = (A:A,) " AXF = lA;F. (10)
n

In the case analysed by Parker and Bitmead (d(n) = n) they note that in the mathematics
literature the solution is then known as Lagrange interpolation. In any case using (10)
gives

n—1
1 .
gm: - E fkejmkwsa m=0,,d(n)—1 (11)
n k=0

That is, the model co—efficients are found by taking the inverse DFT of the frequency
measurements.

By assuming the deterministic bounded noise corruption of (1), Parker and Bitmead
then arrive at the following ‘worst—case’ bound on the estimation error

ey
€n (8) = Ssup
GT€eSs
[Vlloo <e

K 2
‘GT—Gngﬁﬂ(H;lnn) (12)

where K € R* and R € (1,p) are Gr(z) dependent constants and (12) is only proved
true by Parker in [26] when n is some power of 2; that is 3m € Z such that n = 2™. The
first term in the bound 3 (12) is due to the undermodelling in representing Gr(z) with

3In subsequent work by other authors it has been established that this term is given by %.
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an nth order model. The second term in the bound (12) is due to the corruption in the
measurements by the noise sequence {vy}.

In post Parker and Bitmead work on the subject, great import has been placed on the
fact that the ‘noise’ term in (12) grows with model order n so that (3) is not satisfied.
The aim has been to provide ‘robustly convergent’ algorithms for which (3) holds for any
Gr € S. In [11] it was conjectured that no such algorithm existed which was linear in the
data, and in [29] Partington proved this was so.

The first workers to derive a robustly convergent algorithm where Helmicki, Jacobson
and Nett in [12, 16]. They avoided divergent behavior by using a low order (namely linear),
interpolating polynomial between the frequency response measurement in order to impose
a smoothness constraint on the estimate. A problem with this solution is that the spline
interpolant usually will not have a frequency response that corresponds to the evaluation
on the unit circle of some G € Hy. In this case, the FIR model obtained is non—causal.
This was overcome in [12, 16] by obtaining the final estimate G(z) as the element in H,
closest in Ly, norm to the L., system

N
Gn(z) = Z kg2 (13)
k=—N

with gy given by (11), the model order d(n) fixed at d(n) = n, and {7} a user—chosen
windowing sequence. It is at this H,, approximation stage that the algorithm becomes non—
linear in the observation data. The resultant estimation scheme that Helmicki, Jacobson
and Nett invented can be represented in the following two-stage format

Data — L — H. (14)
———— ——
Reconstruction of Nonlinear Step

function as Fourier Series Nehari extension

Until recently [10, 3], the majority of the ‘robustly convergent’ schemes that have been
developed can be represented in this two stage way and differ only in the choice of the
windowing sequence {7x} used in (13) which is the first step of (14) .

Given the added complexity required to arrive at robustly convergent estimation schemes,
a question which must naturally arise is the necessity of the added computational burden
and analytical difficulties. For example, even though linear schemes are worst case diver-
gent, how likely is this worst case? Are there many disturbance sequences {v;} that can
lead to divergence, or are such sequences very rare?

One way to approach this problem is to break the set of possible disturbances into
subsets, one of which is the subset that leads to the worst—case error being achieved. The
significance of the worst case disturbance can then be judged by measuring the size of this
latter subset relative to the size of the whole set of disturbances. In the next section it
is shown that for the simple linear scheme (4),(11) then for a very large set of possible
disturbances, which is normalised to have size one, the subset of disturbances inducing
worst—case divergence has size zero.
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This method of analysis is, of course, that of employing the tools of probability theory
to embed the disturbance descriptions within a stochastic framework. The point of the pre-
vious paragraph was to emphasise that such a framework can be given a very deterministic
interpretation if the subjective idea of randomness is considered inappropriate.

3 Stochastic Analysis

The key issue in the deterministic ‘worst—case’ convergence analysis of H, schemes in the
literature [16, 8, 29] is the bounded noise assumption (2). This deterministic description
is meant to be such as to pre-suppose as little as possible about the disturbance process.

The rationale for this is commonly argued [8, 11, 12, 14| along lines that stochastic
descriptions are unwelcome because they require too much prior structure to be added
to the problem assumptions; for example, knowledge of a probability density function.
The purpose of this section is to examine this issue. What really is the amount of extra
structure required for a stochastic description to be a realistic and tractable model for
the disturbance, and what price is paid by not imposing it when it is valid? In fact, the
argument here is that the extra structural impositions are minor, and if they are satisfied,
then the worst case divergence occurs only for very rare disturbance sequences.

In support of this argument, convergence analysis is performed under a stochastic model
that supposes three features of the disturbance process {v;}; zero mean, stationarity 4, and
boundedness of spectral density (or bounded second moment).

These stochastic assumptions are meant to be very unrestrictive. No knowledge of a
probability density function is required. It is believed that almost any reasonable distur-
bance sequence {v;} could be well modelled as a realisation from such a process. For
example, assuming a bounded spectral density is, via the Paley-Wiener theorem, really
assuming that {v4} is not a rank deficient process. That is, it is an assumption that there
is no purely deterministic law that could describe a component of the measurement errors.
If such structure did exist in the disturbance, it would make more sense to estimate it than
include it as an unknown. The assumption of zero mean—ness is also mild since again,
if this were not the case, it would make more sense add an extra scalar variable to the
problem so as to estimate the mean. Finally, the bounded noise assumption (2) already
implies bounded second moment, since if P denotes the measure on the probability space
Q that vy is defined on, and if E{-} denotes expectation over Q with respect to P then

aﬁéE{|yk\2}=/\yk|2dpgg2/dp=52.
Q Q

Of course, in passing, if one does know the probability density associated with v, then this
bound can be refined. For example, if P induces a uniform density on R then obviously
o2 =¢%/3.

Given these justifications for the stochastic assumptions, the following convergence
result is available.

4This assumption can be dropped later.
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Theorem 3.1. Suppose {vy} is a realisation of a zero mean stationary stochastic process
with bounded spectral density. Then the linear algorithm given by (4) and (11) is robustly
strongly consistent:

sup )‘GT—@“ %0 asn— oo (15)
Gr€eS oo
provided that
d2
lim ﬂ =0. (16)
n—oo 1
Proof. See appendix A. O

This theorem may be compared with theorem 6.1 of [28] where the special case of Gaussian
disturbances, independence for {4} and independence of the real and imaginary parts of
{vx} are assumed. A similar result is obtained for the first L., approximation stage of 2
step robustly convergent algorithms.

Aside from this discussion, the key point of theorem 3.1 is that it establishes that even
when the disturbance sequence {vy} does not go to zero, the worst case estimation error
still goes to zero for a very large class of disturbance sequences. In fact, this class can be
enlarged.

Corollary 3.1. Theorem 3.1 remains true with the stationarity condition dropped provided
{vk} is such that the n X n covariance matriz R, given by [Rulmr = E{vm¥k};m,k =
0,1,---,m — 1 can have its maximum eigenvalue upper—bounded by a finite number that is
independent of n.

Proof. This is not so much a corollary, as a result with almost identical proof. Examina-
tion of the proof of theorem 3.1 in appendix A shows that the only use of the stationarity
condition is to bound the maximum eigenvalue of the covariance matrix R, by the maxi-
mum of the spectral density in order to arrive at (B.2). If {1} is not stationary, then it is
still possible that R, has its maximum eigenvalue bounded by some finite n-independent
number p, in which case since R,, is symmetric and positive definite, Rayleigh’s principle
leaves (B.2) invariant from the stationary noise case, and the rest of the proof goes through
unchanged. O

This corollary significantly expands the set of possible disturbance sequences for which
robust strong consistency holds. Nevertheless, the stationary case has been formulated in
theorem 3.1 as the main result because prescribing conditions on a spectral density is more
intuitive than prescribing conditions on the eigenvalues of a covariance matrix. However,
this can be simplified as well. For example, if {14} is non—stationary but satisfies

K
1+ [n—m|+o

[E{vnTm} | < ;60> 0,k < 00

then Lemma A.4 gives that some finite bound on the eigenvalues exists and hence robust
strong consistency occurs. As a side comment, it may arise that restrictions on the growth
of model order are deemed undesirable. If this is the case, then (provided the assumption of
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deterministic noise bound ¢ — 0 is considered appropriate) perhaps the use of a non-linear
scheme [8, 9, 16] is more suitable.

As already mentioned, in [29] Partington has proven that there exist functions in C(T),
such that linear algorithms based on data corrupted by samples from these functions are
not robustly convergent. Theorem 3.1 and Corollary 3.1 do not contradict this result.
They merely highlight that, with appropriate choice of model order d(n), then there are
not many functions in C'(T) to pick from in order to exhibit divergence. For example, it
could be conjectured that samples of almost any element of C(T) could be well modelled as
being a particular realisation of a stationary stochastic process of bounded second moment.

Given this convergence result, further questions pose themselves. What is the rate of
convergence with increasing data? Is it possible to bound the error in the estimate to a
prescribed degree of confidence, and in a way that accounts for undermodelling? How does
this error depend on the chosen model order? An answer to these questions (which is valid
for finite data) is provided by the following theorem.

Theorem 3.2. Suppose {vy} is a realisation of a zero mean stationary stochastic process
with associated spectral density f(\) bounded as f(\) < p < oo. Then for the linear
algorithm given by (4) and (11)

Proof. See Appendix B. O

P {\é(e*jw) ~ Gp(e )

Note that this theorem also allows us to conclude that the convergence in (15) occurs in
probability provided that
lim M = 0. (18)
n—oo n
This condition is weaker than (16), but concomitantly it implies a weaker mode of conver-
gence. Note as well, that as per the relationship between theorem 3.1 and Corollary 3.1,
the stationarity condition can also be dropped in theorem 3.2 if u is replaced by an n
independent upper bound on the covariance matrix of the {v;} process.

Aside from the added convergence in probability result, the main use of theorem 3.2
is in providing error bounds on estimated models. An acceptable error bound k can be
specified, and then depending depending on the number n of measurements, the model
order d(n), the noise size u and the true system class (M, p), a probability of the estimated
model having error less than this bound can be calculated. If this probability does not
provide sufficient confidence in the model, then theorem 3.2 can be used to calculate the
number of extra frequency measurements that will have to be made to remedy this.

The expression in theorem 3.2 therefore makes it possible to gauge the conservativeness
of any hard bound on estimation error that is applied. If the purpose of the estimated
model is for subsequent robust controller design, this allows for a tradeoff between safety
and performance to be evaluated. For example, note that the bound in (17) may be greater
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than 1. This indicates great conservativeness in the error bound k, and suggests that a
smaller error bound may be sensibly taken without unduly courting disaster in any robust
control designs based on the identified model.

It could be argued that the quantification in theorem 3.2 is nebulous since it involves
knowledge of i, a bound on a spectral density, which would be difficult to define in practice.
However, in line with the worst case thinking of ‘Estimation in H,,’ literature, this can be
circumvented by assuming that {vy} is in fact white noise, so that x becomes the variance
o2, and it is reasonable to expect that knowledge of this quantity could be provided since
it is easily related to the average magnitude of the error.

The reason why this approach is in line with ‘worst—case’ thinking is that disturbance
realisations {1y } of non-smooth (uncorrelated) character are the ones producing the worst—
case error. More explicitly, the reason that noise term in (12) grows with n in the worst
case is that with no smoothness assumption on {vx}; the measured responses can differ
in magnitude by € no matter how closely together the measuring frequencies are spaced.
Divergence then occurs since any smooth function interpolating these arbitrarily non—
smooth measurements must have ‘overshoot’ between the interpolating points, and this
can grow to be arbitrarily large.

3.1 Model Order Selection

The final application of theorem 3.2 is to the model order selection problem. Although
a fundamental issue in stochastic estimation theory [18], it does not seem to have been
addressed by current thinking in the ‘Identification in H,,’ literature.

The problem to be addressed is this. For given noise corruption and data length n, what
is the best model order d(n) to choose? Stochastic estimation theory addresses this issue
by recognising that there is a bias versus variance tradeoff in the choice of model order; as
the model order grows the bias error due to undermodelling drops but the variability in the
estimates due to noise increases. The analogue in H, estimation would be to choose the
model order giving the smallest worst—case bound. In our stochastic setting, it is possible
to choose a model order that minimises the probability of the worst—case bound given in
theorem 3.2 being violated.

As an example, for the particular case of n = 100 frequency measurements being taken,
a noise corruption of magnitude £ = 0.1 being present, the true system Gr being in the
class parameterised by M = 1, p = 1.4, and error bounds of size k = 0.1 being required, the
probability given by theorem 3.2 of satisfying this x = 0.1 bound is plotted against model
order d(n) in the left hand diagram of figure 1. As can be seen, for this case the optimal
model order to choose to minimise the probability of exceeding the x = 0.1 error bound is
d = 18, in which case the bounds are 94% confidence bounds. The resulting estimates for
the cases of d(n) = 100 and d(n) = 18 are shown in the right hand plot of figure 1. The
utility of using theorem 3.2 is apparent here in the marked difference in the quality of the
estimates

The optimal model order d(n) can also be calculated directly without resort to plotting
via the following simple Lemma.
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Probabilistic Error Bound versus model order True and Estimated Nyquist Plots
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Figure 1: Left figure shows example of how probabilistic error bound is minimised for model
order d(n) < n. Right figures show estimates (dashed lines) and true systems (solid lines)
represented as Nyquist plots for the cases of model orders d(n) = 100 (top) and d(n) = 18
(bottom) - the latter is the optimal model order as shown by the left plot.

Lemma 3.1. The probabilistic bound in theorem 3.2 is minimised by d(n) chosen as the
integer nearest

Kn+ /K% —4puKn(2—p)| 1
n

d(n) =1 2 s (19)

where K 2M2p*(p" — 2)In p (20)
(p—1)*(pm —1)*

Proof. See appendix C. 0

Although this section has concentrated on minimising errors via the choice of model order
for an FIR model structure, one could also be led to try to minimise errors by changing
the model structure. At the same time, perusal of the proofs in this paper and in the
‘Estimation in H,,’ literature in general shows that the orthogonality properties of the
{e’“"} ‘basis functions’ used in an FIR structure are of great utility in analysis. Therefore,
if the basis functions are changed to obtain a new model structure, it is desirable for this
orthogonality to be maintained. In [24] this is done in such a way that prior information
about likely pole locations for the true system can be encoded in the ‘basis functions’
chosen; the FIR structure becomes a special case when the poles are chosen at the origin.
In [33, 23] the use of these new basis functions is examined in the same context as the work
in this paper. A significant improvement in estimation accuracy is shown to be possible.
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As a concluding comment, note that in the context of stochastic analysis of frequency
domain estimation a natural mode of analysis that has not been pursued in this paper is to
examine the asymptotic distributional properties of the estimates. This has been pursued
in [5, 33] by employing the work of Brillinger [2].

4 Conclusion

This paper has examined the performance of the scheme of least-squares estimation of
FIR model structures from frequency domain data. This technique happens to be the first
step of a large class of two—stage and non-linear in the data algorithms that are known
under the title of ‘Estimation in H,’. In this latter work much concern is placed on the
‘worst—case’ divergence of this first least—squares step. The purpose of this paper was
to investigate the nature of the disturbances that might lead to divergence. These were
shown to have measure zero within a large class of possible disturbances, namely those
that can be modelled as a stationary stochastic process of bounded spectrum. In fact, it
was also shown to be possible to relax the stationarity assumption while still maintaining
convergence.

The paper also established a new expression that allows the calculation of the proba-
bility that a given hard bound on the estimation error applies. Again, the validity of the
bound depends only on very mild assumptions on the disturbance process. The utility of
this probability expression is that it gives a criterion for model order selection by choos-
ing the model order that maximises the probability of error being smaller than a given
limit. Finally, in the context of using the estimated model for control design,the proba-
bility expression makes it possible to evaluate the tradeoff between conservativeness and
performance in a robust design.

A Proof of Theorem 3.1

Proof. From the proof of Lemma B.1
d(n)—1

Gle )= 3" Foedom
m=0

where
[ee] 1 n—1
fm = E Im+en + ﬁ § Vrejwsmr-
=0 r=0

So
Gle=i) = H, (w) + %Vn(w) (A1)
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where

d(n)—1 00

H,(w) & ) (gm+zgm+m) e~iem, (A.2)
m=0 =1
n—1

Vaw) £ > el (w),
r=0
d(n)—-1 9

ny A jw—rwm, 4 2T A3

,77' (CL)) 7;) € ) wS n ( )

Dealing first with the noise induced error V,,(w), note that via Abel’s partial summation

formula - e
ZDT’Y:L :Z (ZVIC) r}/r (,O) ,YT—}-l( +7n 1 Zl/'r
r=0

r=0

Therefore, setting 47(w) = 0 and denoting S, £ Y ;_, vk gives

max |V, (w)| < max [Sk| maX (Z |y (w q/fﬂ(w)\) )

wE[—m,m] 0<k<n we[—

so that via Lemma A.2 and by choosing an integer m such that 2™ < n < 2m+!

1 dmd(n)l 4 1)d(2™1) log 2
max —|Vy(w)| < M x Sy < m(m + 1d( ) log 1S,
we[—m,m]| N n 0<k<n 2m 0<lc<2m"‘1
so that
1 4 1)d(2™ 1) log 2
limsup max —|V( )| < limsup mm + 1)d( )log max |Sgl|. (A4)
n—oo WE[-mW N m—o0 2m 0<k<2m+l

However, if f(\) is the spectral density associated with {4}, then denoting p = max, f(\)
and using the same method as employed to derive (B.2),

n 2

> w

k=m+1

E < u(n —m)

so that Lemma A.1 may be applied with u; = 1 and any « > 1. Therefore, for any £ > 0,
a > 1, there exists K < oo such that

0o om K 00 m2d2(2m—|—1)
P < ma(27")
7;) {oggiaz}n(wﬂ 5] > 6(47r log2)(m + 1)d(2m+1)} = g2 Z 2(2—a)m

Since « may be arbitrarily close to 1, this latter sum is convergent for d(n) = o(y/n) so
that under the conditions of the theorem, by the Borel-Cantelli Lemma and (A.4)

1 a.s.
max —|V,(w)] =0 asn — oo.
we[—m,m| N
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This takes care of the convergence of the ‘variance’ term. For the ‘bias’ term note that by
(A.2)

o0 d(n)fl [¢)
Hn(w) = GT(e_J“’) — Z gme_me + Z ng+en€_‘7wm.
m=d(n) m=0 (=1
So from (A.1)
max |G(e™) = Gr(e™)| < | YD Gmiem|+| D gm|+ max —[V,(w)],
wE[—w,w] m=0 (=1 m:d(n) we[_ﬂaﬂ—]n
O R | ©
< — — 4+ — + max —|V,(w)|,
=0 Pmez—;/’"e m—zd(n) g Tl )

Lemma A.1. Let {Xy} be arbitrary random variables (not necessarily independent or
identically distributed). Suppose that there exists a set of non—-negative numbers {uy} such
that for some a > 1

m 2 m o
k=n k=n

Then for any € > 0, there exists K < oo that is independent of n such that

K n—1 @
> < — .

Proof. See theorem 12.2 of [1] or (under more general conditions) theorem 3.1 of [22]. O

-1

DX

Lemma A.2. Using the notation of (A.3),

n—1

max ]Z Y (w) = Y1 (w)] < 4wd(n)logn. (A.5)
r=0

we€[—m,m

Proof. By the mean value theorem and the definition (A.3) for 4" (w)

n—1 Ut n—1 d d(n)—1
DM@ =@ ST max | Y e T@Om), (A6)
r=0

2nr 2
r=0 %S@< n m=0
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Now, since 7/*(w) has period 27 and since (A.6) involves a sum over a 27 range, then (A.6)
is invariant to the particular choice of w (the ordering of the terms in the sum are affected,
but not the terms themselves). Therefore, for simplicity w = 0 may as well be chosen, in
which case we note that

d(n)—1

, 1 .0 do 6 . db 6 . do
Z meifm| = Toin’? dsmicos?—i-](d—l)smism?—cosism?
1 do sin 4 sin 4 2d
< —7  d|cos — — jsin —| + =+ 2 < ——
2| sin 7| 2 2 sin & 2sin ¢ | sin 5|

so that since |sinf/2| > |0|/7 for @ € [—m, 7] then for r # 0

d(n)—1
=T o r+1

max
27r_r§0< 2w (r+1)
n n

When r = 0, note that since Zd(”) Ym=(d—1)(d—2)/2 < dn/(r+1) the bound applies
for all » <n — 1 so that substituting it into (A.6) gives

n—1 n—1
1 by
max "w) — A" (w)] < 4md(n —— < A4nd(n = 47d(n) logn.
D7) )] S i) S g <dna) [ S = dnd) g
O
Lemma A.3.
n—1|£-1 2 o
e iwmrwdm| - — pp wy 2 (A.7)
n
r=0 |m=0
Proof.
n—1| -1 2 1o n—1 =1 0-1
e —j(w—rws)m ejw(k—m) Zejrws(m—k:) =n ejw(k—m)6<m _ k’) = nd.
r=0 |m=0 m=0 k=0 r=0 m=0 k=0
O

Lemma A.4. Let {a;;} be given. If 3, |ai;| < M for all j and Y, |aij| < N for all i then
| ZZaijxﬁj\ S V MNZ |.’EZ|2
jo i

Proof. Direct consequence of Corollary 2.3.2 in [7]. O
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B Proof of Theorem 3.2

Proof. By (4) and (11) and the proof of Lemma B.1

B(e )~ Gr(e %) = pu(w) + - Va(w)

where
00 . d(n)—-1 oo .
) 23 e Y S e
k=d(n) k=0 m=0

n—1 —

1
Vo(w) = Z Ur Z e iwmrws)m,
r=0 m=0

Then by Chebychev’s inequality

E {‘é(ej“’) — Gr(e )

>l€} <

)

= L (@ SEM@T). @

P{|G(e) - Gr(e ™)

K2
Now, denote by f(\) the spectral density associated with {v,}. By assumption, this density
is bounded as f(\) < u < co. Note that even though {v} is a complex valued sequence, its

spectral density is real by virtue of the fact that the covariance function R(7) = E {v7%_;}
is Hermitian and positive by virtue of Bochner’s theorem. In this case, using Lemma A.3

n—1
> )
r=0

n—1 n—1

2

E{Vaw)’} = E

IN
SIES

55
S

53
S

—

m&
R
2
>

o
>~

= p) 1 w)* = pnd(n). (B.2)

Substituting this and (B.7), (B.8) into (B.1) then gives the result. O
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Lemma B.1. Suppose {fi} is given by fr = Gr(e7“*) where k = 27 /n. Suppose V,,Gr
18 constructed by:

d(n)—1 n—1
~ ~ 1 .
VaGr= 3 fmd™, i 2= frelh (B.3)
m=0 r=0

Then provided Gr € Hoo(D,, M)

|G (2) = VaGr(2)]]

M dn) 1
<——P 147 .
* T pm(p—1) pr—1
Proof. Since Gr(z) € Ho(D,, M) it can be written as a Taylor series valid on z € D,

z) = Z g2’ (B.4)
=0

and by Cauchy’s estimate |gy| < Mp~¢. Substituting (B.4) into (B.3) gives:

1 n—1 1 oo n—1 (1)

~ L2 (k—

fe = E E gee It | eIkt = — E e E el .
n r=0 =0 n =0 r=0

But the complex roots of unity sum to zero so the right hand sum is zero unless k —¢ = mn
for m =0,1,2,---. Therefore

m=0
This gives
() d(n)—1
1Gr(2) = VaGr(2)ll, = max D gre TR — N fre IR (B.6)
" k=0 k=0

o0 d(n)fl o0
ST D S (RS ot
" k=0

k=0 m=1
[o's) d(n)—l o0
= max Z gke_J“’k— Z ng+mne—]wk ) (B7)
wE[—m,m] ked(n) P —
d(n)—1 oo
S Z ‘gk| + Z Z ‘gk-l—mn‘
k=d(n) k=0 m=1
0o 1 d(n)-1
<My Lewy ESL
k=d(n)
M d(n) _ 1
= " _ p (1 + L) . (B.8)
pi™(p—1) pr—1
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C Proof of Lemma 3.1

Proof. The bound to be minimised is

B,(d) & <L [1 + pd(n)i_l])z +u@-

pm(p—1) pr—1
Now
dBy(d) _ po 2M? (p"—2) (p"+p"—2) Inp )
dd n (p—1)* p242 (pn—1)° '
d*B,(d) _ 2M* (p"—2) (20" +p' —4) Inp ©2)
dd? (p—1)* p24=2 (p» — 1) '

The only sign-indefinite term in (C.2) is the numerator component

(0" =2)(2p" + p* = 4) = (0" = 2)" + (0" = 2)(p" + p* - 2).
However, since d is chosen to make dB,(d)/dd = 0, then by (C.1)

pp—=1)72p"2(p" = 1)

T_2)(pt+pt—-2)=C > 0.
(b =2)(" + " =2) =~ 23T,

Therefore, choosing d(n) to make the first derivative zero ensures that B, (d) is minimised
since at this point the second derivative is always positive. O
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