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Comments on “Zeros of Discretized
Continuous Systems Expressed in the

Euler Operator—An Asymptotic Analysis”

Steven R. Weller

Abstract—In a recent paper, an asymptotic analysis was used to address
the zero structure of discretized continuous-time systems expressed in
the Euler (or forward difference) operator. Unfortunately, the analysis
is flawed, so that Theorem 1 is true as stated only when the continuous-
time relative degree is equal to two. In this paper, we indicate how the
analysis may be rectified.

Index Terms—Discrete-time systems, poles and zeros.

I. INTRODUCTION

In a recent paper,1 the zeros of discretized continuous-time systems
expressed in terms of the Euler (or forward difference) operator
� = (z � 1)=T are addressed. The key idea1 is that by considering
the sampling periodT as a perturbation parameter, the zero dynamics
of the resulting discrete-time system expressed in the delta operator
(the time-domain equivalent of the Euler operator [1]) are singularly
perturbed, even though the matrices in the discrete-time state-space
model are regular perturbations of their continuous-time counterparts.
Theorem 1 of the above-mentioned paper states that the singularly
perturbed zero dynamics leads to a separation of time scales in
which the component of the zero dynamics associated with the fast
time scale corresponds to the zeros introduced by the sampling
process, the so-called sampling zeros (or discretization zeros [2]).
Furthermore, it is argued the sampling zeros of discrete-time models
expressed in the delta operator become infinite in the fast sampling
limit.

Unfortunately, the analysis is flawed, with errors at several key
points in the development. In particular, the asymptotic formula for
the location of the sampling zeros of delta operator-based discrete-
time systems presented in Theorem 11 is consistent with the results
of [3] and [1] only when the continuous-time relative degree equals
two. In this paper, we show how the analysis may be rectified.

Preliminaries: A function f(T ) = O(T ) if limT!0 f(T )=T =
K; where0 < K <1, andf(T ) = o(T ) if limT!0 f(T )=T = 0:
The set of eigenvalues of a matrixX is denoted by�(X).

II. DISCRETE-TIME SYSTEMS IN THE DELTA OPERATOR

The paper considers linear, single-input single-output (SISO), and
minimal systems of the form

_x =Acx + bcu

y = cx; x 2 Rn; u; y 2 R: (1)
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Attention is restricted to systems whose relative degree � 2,
since continuous-time systems having relative degree one do not give
rise to sampling zeros. System (1) is transformed by an appropriate
change of coordinates (see (3) of the paper) into the Byrnes–Isidori
normal form [4] in which the relative degree (or infinite zero)
structure of the system is represented by a chain of integrators, and
the finite zeros are given by the eigenvalues of the companion matrix
Q� 2 R

(n�)�(n�) appearing in the lower right sub-block of the
normal form state matrix.

With q the forward shift operator andT the sampling period, the
discrete-time zero-order hold (ZOH) representation of the continuous-
time system (1) can be written in terms of the� operator (�

�
= (q �

1)=T ) as follows:

�x[k] =A�x[k] + b�u[k]

y[k] = cx[k] (2)

where the matricesA� and b� are regular perturbations of their
continuous-time counterparts; see the above-mentioned paper for
details. If the state similarity transformation[�T �T ]T = Lx is
applied to (2), whereL is defined in (6),1 the resulting discrete-time
state-space model is

�
�
�

=LA�L
�1 �

�
+ Lb�u[k]

y[k] = [1 0 � � � 0 ]
�
�

: (3)

In this model, the state matrixLA�L
�1 is equal, to within O(T ),

to the state matrix of the continuous-time system expressed in normal
form. Using the definitions ofA� andb�, together with the properties
of Markov parameters of a relative degree system, it is possible to
obtain the following asymptotic approximation toLb�, in which the
leading order term in each row has been retained:

Lb� =

cb�

cA�b�

cA2
�b�
...

cA�1
� b�

Hb�

=

c(I + Tb�1)bc

cAc(I + Tb�1)
2bc

cA2
c(I + Tb�1)

3bc
...

cA�1
c (I + Tb�1)

bc

H(I + Tb�1)bc

(4)

=

T �1�0() + O(T )

T �2�1() + O(T �1)

T �3�2() + O(T �2)
...

T��2() + O(T 2)

��1() + O(T )

T

2
HAcbc + O(T 2)

: (5)

The terms�0(); � � � ; ��1() play a key role in the formula for
the asymptotic location of the sampling zeros of (2), as presented in
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Theorem 3.1. While it is straightforward to show that

�0() =
1

!
cA

�1
c bc (6)

obtaining closed-form expressions for�1(); �2(); � � � ; ��1()
requires the evaluation of terms in the expansion of integer powers
of I+Tb�1. This is not, in general, a straightforward task, sinceb�1 is
itself a power series inT . By careful examination of the terms in the
each row ofLb� associated withcA�1

c bc, the first nonzero Markov
parameter, it is possible to show that�1(); � � � ; �4() are given
by the following expressions, which contain numerous terms absent
from the original presentation:

�1() =

�1

i=1

1

i!( � i)!
cA

�1
c bc

=
2 � 2

!
cA

�1
c bc (7)

�2() =

�1

i=1

2�i � 2

i!( � i)!
cA

�1
c bc

=
3 � 3 � 2 + 3

!
cA

�1
c bc (8)

�3() =

�1

i=1

3�i � 3 � 2�i + 3

i!( � i)!
cA

�1
c bc

=
4 � 4 � 3 + 6 � 2 � 4

!
cA

�1
c bc (9)

�4() =

�1

i=1

4�i � 4 � 3�i + 6 � 2�i � 4

i!( � i)!
cA

�1
c bc

=
5 � 5 � 4 + 10 � 3 � 10 � 2 + 5

!
cA

�1
c bc: (10)

Expressions (6)–(10) are sufficient to deal with continuous-time
systems having relative degree � 5 and therefore cover the
majority of practical situations. To generate the higher order terms
�5(); �6(); � � � necessary for dealing with > 5, we can use
the binomial theorem to expand the powers ofI + Tb�1 in (4), in
conjunction with the following recursive procedure for evaluating
specified terms in integral powers of power series; see, for example
([5, p. 14])

1

k=0

akT
k

n

=

1

k=0

ckT
k (11)

where

c0 = a
n
0 (12)

cm =(ma0)
�1

m

k=1

(kn�m+ k)akcm�k; for m � 1: (13)

Thus from (4) and (5)

�i() = cA
i
c

i+1

j=0

i+ 1
j

(Tb�1)
j

�i�1
bc;

i = 0; 1; � � � ;  � 1 (14)

where (Tb�1)
j

k
denotes the coefficient ofT k in the expansion of

(Tb�1)
j and can be calculated using (11)–(13).

III. REVISITING THE MAIN RESULT OF THE ORIGINAL PAPER

For (3), neglecting the higher order terms inLA�L
�1 andLb�,

the state feedback law

u = �
1

�0()T �1
�2 (15)

zeros the outputy for all time. Note that the particular form of the
control law (15) differs from that presented originally. On the zero
dynamics subspaceV defined by

V = fx : y = cx = 0g (16)

= f(0; �
T
; �

T )T : � 2 R�1
; � 2 Rn�g (17)

the dynamics of the(�; �) variables under the state feedback law
(15) are given by (18), as shown at the bottom of the page.

Remark 3.1: At the corresponding point of the analysis presented
in the paper,1 the claim is made that forT 6= 0, ZOH-equivalent
representations of continuous-time systems expressed in the delta
operator have relative degree one, regardless of the relative degree
of the underlying continuous-time system; see [1, p. 97] for a
counterexample to this claim.

The following is a corrected version of Theorem 1.
Theorem 3.1: Consider a continuous-time system of the form (1)

and its ZOH equivalent representation (2) expressed in the delta
operator. Then if system (1) has relative degree � 2, system (2)
hasn � 1 zeros which, according to their asymptotic behavior as
T ! 0, belong to two groups.

�

�1

�2
...

��2

��1

�

=

�
�1()

�0()T
1 0 � � � 0 0

�
�2()

�0()T 2
0 1 0 0

...
...

. . .
...

�
��2()

�0()T �2
1 0

�
��1()

�0()T �1
+ r2 r3 r4 � � � r s

p2 �
HAcbc

2�0()T �2
p3 p4 � � � p Q�

�1

�2
...

��2

��1

�

(18)
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1) The  � 1 sampling zeros tend asymptotically to the set
T�1�(W1), where

W1 =

�

�1()

�0()
1 0 � � � 0

�
�2()

�0()
0 1 0

...
. . .

�
��2()

�0()
1

�
��1()

�0()
0 � � � � � � 0

2 R
(�1)�(�1):

(19)
2) The remainingn �  zeros tend to the finite zeros of the

continuous-time system (1).

Proof: Following the same line of reasoning as in the paper,1

the dynamics of the(�; �) variables on the subspaceV are cast into
a standard singular perturbation form. This can be accomplished by
rescaling the(�; �) variables in (18) as follows:

z
�

=
M1 M2

M3 M4

�
�

where M1 = diag[1; T; T 2; � � � ; T �2], M2; and M3 are zero
matrices of appropriate sizes, andM4 = I(n�)�(n�). Note that
the choice ofM1 here differs from that used in the original paper. It
follows that the zero dynamics satisfy

�
Tz
�

=
W1 0

pTM�1
1 Q�

z
�

+ O(T ) (20)

where

pT = p2 �
H Acbc

2�0()T �2
p3 � � � p :

In (20),W1 is given by (19), andQ� is the companion matrix whose
eigenvalues are the finite zeros of the continuous-time system (1).
Equation (20) is in the standard two time-scale form [6], and since
the eigenvalues of the matrix on the right-hand side are asymptotically
given by�(W1)[�(Q�), the dynamics of the(�; �) variables on the
subspaceV are those ofdiag[T�1W1 Q�] and the result follows.

Remark 3.2: Since � = (q � 1)=T , it would follow that the
sampling zeros tend to�1 asymptotically if it could be established
that the sampling zeros of discrete-time models expressed in the
shift operator tend asymptotically to negative real values. While such
behavior has been conjectured by Hagiwaraet al. [2, p. 1333], it
remains to be shown.

Remark 3.3: The quantification of discrete-time zeros in
Theorem 3.1 is much less direct than simply using the change of
variables� = (q � 1)=T in conjunction with known results for
the limiting zeros of shift operator models; see, for example, [2],
[3], and [7]. Nevertheless, the method proposed1 has the distinct
advantage of using a state-space framework. As a consequence, it is
possible to use Theorem 3.1 as the basis for studying the mapping
of finite and infinite zeros of a large class of multivariable systems
under ZOH sampling [8].
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Authors’ Reply

A. Tesfaye and M. Tomizuka

We thank S. Weller for his interest in our paper, detecting an error,
and providing a correction to it. Our initial mistake occurred as we
sought to rewrite the expressions for each row ofLb� in the set of
equations preceding (7) so as to obtain an asymptotic approximation
to Lb� without sacrificing its structure. In going from the initially
correct expression to the asymptotic approximation mistakes were
made and terms were lost which propagated to the main result of
our paper expressed in the form of Theorem 1. Weller, by using a
corrected expression forLb� and following the same analysis method
used in our paper, obtains the correct result. As pointed out by Weller,
the location of discrete-time zeros in the fast sampling limit still
remains unproved.

Finally, we appreciate his view that the important contribution of
our paper “. . . is the method rather than the result.” The methodology
has the distinct advantage of using a state-space framework which
provides a good basis for the study of finite and infinite zeros of
multivariable control systems.
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