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Comments on “Zeros of Discretized Attention is restricted to systems whose relative degree 2,
Continuous Systems Expressed in the since continuous-time systems having relative degree one do not give
Euler Operator—An Asymptotic Analysis” rise to sampling zeros. System (1) is transformed by an appropriate
change of coordinates (see (3) of the paper) into the Byrnes—Isidori
Steven R. Weller normal form [4] in which the relative degree (or infinite zero)

structure of the system is represented by a chain of integrators, and
) ) the finite zeros are given by the eigenvalues of the companion matrix
Abstract—n a recent paper, an asymptotic analysis was used to address R x(n =) ing in the | iah b-block of th
the zero structure of discretized continuous-time systems expressed in @y € appearing in the lower right sub-block of the
the Euler (or forward difference) operator. Unfortunately, the analysis normal form state matrix.

is flawed, so that Theorem 1 is true as stated only when the continuous-  \yjith ¢ the forward shift operator anfl the sampling period, the
time relative degree is equal to two. In this paper, we indicate how the '

analysis may be rectified. discrete-time zero-order hold (ZOH) representation of the continuous-
time system (1) can be written in terms of theperator § 2 (g —

Index Terms—Discrete-time systems, poles and zeros.
1)/T) as follows:

|. INTRODUCTION s[k] = Ase[k] + bsulk]

In a recent paperthe zeros of discretized continuous-time systems Bl = colk 2
expressed in terms of the Euler (or forward difference) operator ylk] = calk] )
e = (z — 1)/T are addressed. The key ideis that by considering
the sampling period” as a perturbation parameter, the zero dynamigghere the matricesds; and bs are regular perturbations of their
of the resulting discrete-time system expressed in the delta operatontinuous-time counterparts; see the above-mentioned paper for
(the time-domain equivalent of the Euler operator [1]) are singularlfetails. If the state similarity transformatiog”»”]” = Lz is
perturbed, even though the matrices in the discrete-time state-spagglied to (2), wherd. is defined in (6}, the resulting discrete-time
model are regular perturbations of their continuous-time counterpagtsate_space model is
Theorem 1 of the above-mentioned paper states that the singularly
perturbed zero dynamics leads to a separation of time scales in
which the component of the zero dynamics associated with the fast 5 F}
time scale corresponds to the zeros introduced by the sampling
process, the so-called sampling zeros (or discretization zeros [2]). ylkl =1 0 --- 0] {C} ()
Furthermore, it is argued the sampling zeros of discrete-time models n
expressed in the delta operator become infinite in the fast sampling
limit. In this model, the state matrikAsL~" is equal, to within @T),

Unfortunately, the analysis is flawed, with errors at several kay the state matrix of the continuous-time system expressed in normal
points in the development. In particular, the asymptotic formula fggrm, Using the definitions ofts andbs, together with the properties
the location of the sampling zeros of delta operator-based discreiey;arkov parameters of a relative degreesystem, it is possible to
time systems presented in Theorefid consistent with the results ?btain the following asymptotic approximation fobs, in which the

of [3] and [1] only when the continuous-time relative degree equa]s di der t . h has b tained:
two. In this paper, we show how the analysis may be rectified. eading order term in each row has been retained:

Preliminaries: A function f(T) = O(T) if limy—o f(T)/T =

— LA m + Lbsulk]

K, where0 < K < oc, and f(T') = o(T) if limy—_o f(T)/T = 0. [ cbs ] [ eI+Tobe ]
The set of eigenvalues of a matri is denoted by\(X). cAgbs cA (I 4+ Tb7)b.
b cA3bs cAZ(I + ThT) b 4
Il. DISCRETETIME SYSTEMS IN THE DELTA OPERATOR b : - : @
The paper considers linear, single-input single-output (SISO), and ()‘,4;’*1116 CATTHI +T07) 7D,
minimal systems of the form | Hbs L H(I+ T,
[T rag(5) + O(T7) T
T =A.x +bu p— o(7) o 7(“_1
y = cx, reR", u, y € R. (1) ‘O”(/H— ( .)
T7Pas(y) +O(T77%)
A . . = 5 (5)
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Theorem 3.1. While it is straightforward to show that where
ao(7) = i,cAg’*le 6)  0=a0 12)
,7,- m
Cm = (mag) ! Z(kn —m+ k)akCm—rk, form >1. (13)
obtaining closed-form expressions faf (v), as(7), <=+, ay—1(7) k=1

requires the evaluation of terms in the expansion of integer powers
of I+Tb%. This is not, in general, a straightforward task, sihtés Thus from (4) and (5)
itself a power series iff". By careful examination of the terms in the

each row ofLbs associated witle4? b, the first nonzero Markov RSy it - ,
parameter, it is possible to show that (). ---. as(7) are given i(y) =cde ZO j [( 1) L,i,l o
by the following expressions, which contain numerous terms absent T

. S i=0,1,--+,v-1 (14)
from the original presentation:

a—t where [(Tbi‘)"]k denotes the coefficient &F* in the expansion of
o () = Z # cAY b (Th%)? and can be calculated using (11)—(13).
/ — il(y —o)!
27 =2 A1 7
T Ty e D ™ lll. REVISITING THE MAIN RESULT OF THE ORIGINAL PAPER

1=l gv—i_ g . For (3), neglecting the higher order terms ims L' and Lbs,
ax(V) =D sy |eAI T b the state feedback law
= il(y —i)!

1

3" -3-2"43 .,
== “42 bc 8 vf=——-"
7! ¢ ® “ ap(y) T 1! G (15)
I .
37 3.7 4 3)
as(y) = (Z My =) )CAZ "be zeros the outpuy for all time. Note that the particular form of the
=1 o om control law (15) differs from that presented originally. On the zero
A 434627 -4y (@) dynamics subspac¥ defined by
! ¢
Tl g g g L9V g ey = oy —
aa() = (Z 4 4 3’ - +.6' 2 4)6‘43,1bc V={u: v= cr =0} (16)
= oy =) ={0. ") TeRT Ly ERTTY (17

57 =5-4"410-3"-10-27 4+ 564.,,,_11) (10)

7! cr the dynamics of thé(, ) variables under the state feedback law
) o ) _ _ (15) are given by (18), as shown at the bottom of the page.
Expressions (6)-(10) are sufficient to deal with continuous-time Remark 3.1: At the corresponding point of the analysis presented

systems having relative degree < 5 and therefore cover the in the papetf, the claim is made that fof’ # 0, ZOH-equivalent

majority of practical situations. To generate the higher order termspresentations of continuous-time systems expressed in the delta

as(7¥), as(y), --- necessary for dealing with > 35, we can use operator have relative degree one, regardless of the relative degree

the binomial theorem to expand the powerslof Thy in (4), in of the underlying continuous-time system; see [1, p. 97] for a
conjunction with the following recursive procedure for evaluatingounterexample to this claim.
specified terms in integral powers of power series; see, for exampleThe following is a corrected version of Theorem 1.

([5, p. 14]) Theorem 3.1: Consider a continuous-time system of the form (1)
and its ZOH equivalent representation (2) expressed in the delta
oo n oo operator. Then if system (1) has relative degree 2, system (2)
(Z aka> => ar” (11) hasn — 1 zeros which, according to their asymptotic behavior as
k=0 k=0 T — 0, belong to two groups.
F w0 .
_ ao ()T 0 0 0 _
M ¢ L (n S
- __20)) 0 1 0 01| =
G ao(y)T? Co
Gy _ (}'7;2(7) 1 0 qu—z
5= = o () T7—2 — 18
- a0(7) Z (18)
ay—1(7) N _
cko(v)T"’*l +7re r3 74 T S
L » L
o HAb . ey 0
P2 Bag(proe P P ]G]
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1) The v — 1 sampling zeros tend asymptotically to the set[2]

T~ '\(W1), where

o ) 1 0 0
_e2ln) gy 0
W, = n’(.)(')) e RODxG=1),
_ ay—2(7) 1
ao(7)
_O"V—_M 0 v vor 0
L ao(y) . (19)

2) The remainingn —
continuous-time system (1).
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(8]

~ zeros tend to the finite zeros of the

Proof: Following the same line of reasoning as in the pdper,

the dynamics of thé¢l, ) variables on the subspadeare cast into
a standard singular perturbation form. This can be accomplished by

rescaling the(¢, ) variables in (18) as follows:

z _ M 1

M- 9 C
My ||n

where M; =

follows that the zero dynamics satisfy

T- W, 0=
5 = ., +O(T 20
[U} [leﬁ @an} (1) (20)
where
. H Ab.
V=l g o

diag[l, T, T?, ---, T7"2], M2, and M; are zero
matrices of appropriate sizes, add; = I(,,_)x(.—). Note that
the choice ofM, here differs from that used in the original paper.

Authors’ Reply

A. Tesfaye and M. Tomizuka

We thank S. Weller for his interest in our paper, detecting an error,
and providing a correction to it. Our initial mistake occurred as we
sought to rewrite the expressions for each rowZéb in the set of
equations preceding (7) so as to obtain an asymptotic approximation
I{O Lbé without sacrificing its structure. In going from the initially
correct expression to the asymptotic approximation mistakes were
made and terms were lost which propagated to the main result of
our paper expressed in the form of Theorem 1. Weller, by using a
corrected expression fdrbé and following the same analysis method
used in our paper, obtains the correct result. As pointed out by Weller,
the location of discrete-time zeros in the fast sampling limit still
remains unproved.

Finally, we appreciate his view that the important contribution of
our paper ‘.. is the method rather than the result.” The methodology
has the distinct advantage of using a state-space framework which

In (20), W, is given by (19), and), is the companion matrix whose provides a good basis for the study of finite and infinite zeros of
eigenvalues are the finite zeros of the continuous-time system (Hultivariable control systems.

Equation (20) is in the standard two time-scale form [6], and since

the eigenvalues of the matrix on the right-hand side are asymptotically

given by A\(W1)UA(Q,), the dynamics of thé(, 1) variables on the

subspace’ are those ofliag[T~'W; Q,] and the result follows]
Remark 3.2:Since 6 = (¢ — 1)/T, it would follow that the

sampling zeros tend te cc asymptotically if it could be established
that the sampling zeros of discrete-time models expressed in the
shift operator tend asymptotically to negative real values. While such

behavior has been conjectured by Hagiwataal. [2, p. 1333], it
remains to be shown.
Remark 3.3: The quantification of discrete-time zeros

in

Theorem 3.1 is much less direct than simply using the change of

variables§ = (¢ — 1)/T in conjunction with known results for

the limiting zeros of shift operator models; see, for example, [2],

[3], and [7]. Nevertheless, the method propdsduhs the distinct

advantage of using a state-space framework. As a consequence, it is
possible to use Theorem 3.1 as the basis for studying the mapping
of finite and infinite zeros of a large class of multivariable systems

under ZOH sampling [8].
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