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Hysteresis Switching Adaptive Control 
of Linear Multivariable Systems 

S. R. Weller and G. C. Goodwin, Fellow, IEEE 

Abstract- This paper presents a model reference adaptive 
control scheme for deterministic continuous-time multivariable 
systems represented by square, strictly proper, minimum-phase 
transfer function matrices. A typical requirement of existing 
algorithms is to assume that the zero structure at infinity and 
the high-frequency gain matrix are fully (or at least partially) 
known. It is well known that these requirements may be very 
restrictive, since, in general, both the zero structure at infinity 
and the high-frequency gain matrix depend on plant parameters. 

In this paper we show that these restrictive assumptions may 
be considerably weakened using a hysteresis switching control 
strategy recently introduced by Morse et al. [ll]. The strategy 
entails running a finite number of parameter estimators in par- 
allel and using a switching algorithm to select between candidate 
estimators based on their associated prediction errors. Hysteresis 
in the switching algorithm precludes switching arbitrarily rapidly 
between estimators, and all switching ceases within a finite time. 

The results represent a significant step forward in understand- 
ing the minimal amount of prior knowledge necessary to design 
a stabilizing controller for a linear multivariable system. 

I. INTRODUCTION 
HE extension of results obtained for the model refer- T ence adaptive control of single-input single-output (SISO) 

plants to multi-input/multi-output (MIMO) plants has formed 
the basis for considerable research in recent years; see e.g., 
[I], [2], [3, ch. lo], [4]. One outcome of this research has 
been the introduction of the interactor matrix [5] (equivalently 
the Hermite normal form) as a natural tool for extending the 
notion of relative degree for scalar systems to multivariable 
systems. The high-frequency gain matrix then arises naturally 
from the definition of the interactor matrix as the multivariable 
analogue of the scalar high-frequency gain for SISO systems. 

Traditional approaches to adaptive control of SISO plants 
require knowledge of the plant relative degree and the sign 
of the high-frequency gain (to ensure that its estimate is 
guaranteed to be nonzero). Accordingly, the natural extension 
of these algorithms to the multivariable case requires knowl- 
edge of the interactor matrix and significant knowledge of the 
high-frequency gain matrix K (to ensure that its estimate is 
guaranteed to be nonsingular). A typical assumption is that a 
matrix S is known such that S K  is positive definite. 

In general, however, the interactor matrix contains real- 
valued quantities (as opposed to the integer-valued scalar 
relative degree), which are functions of the plant parameters. 
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It may thus be argued that a priori knowledge of the interactor 
matrix is equivalent to complete knowledge of the plant trans- 
fer function, an observation which has serious consequences 
if the demonstration of closed-loop stability is required under 
plant assumptions which are as weak as possible. Likewise, 
assuming K satisfies a positive-definiteness condition implies 
significant a priori information on plant structure, see, e.g., [ 11. 

In the SISO case, the assumption that the sign of the high- 
frequency gain must be known can be relaxed using controllers 
based on the Nussbaum gain, e.g. [6], [7]. Lozano-Leal et 
al. [8] have proposed a model reference adaptive control 
scheme that does not require knowledge of the high-frequency 
gain sign and which ensures boundedness of all signals and 
tracking error converging to zero in the absence of unmod- 
eled dynamics. The key to this result is a transformation 
on estimated parameters involving a form of hysteresis to 
avoid division by zero in the control law. An adaptive pole- 
placement control algorithm for possibly nonminimum phase 
systems, also avoiding singularities by modifying parameter 
estimates with a hysteresis transformation, is presented in [9]. 

In the MIMO case, de Mathelin and Bodson [lo] have 
recently shown how current MIMO model reference adap- 
tive control algorithms can be modified, once again using a 
hysteresis transformation on estimated parameters, assuming 
a priori knowledge of the Hermite normal form and only an 
upper bound on the norm of the high-frequency gain matrix. 

Returning to the SISO case, Morse et al. [ 111 have recently 
investigated a switching controller originally introduced to 
Middleton et al. [ 121. In [ 111, the key idea is that associated 
with a particular form of parameterized controller is a class 
of admissible process models, i.e., those models which the 
controller can adaptively control. The class of models is 
restricted in size by characteristics such as plant order, plant 
relative degree, and high-frequency gain sign. It is argued 
in [ 111 that one way to adaptively control a wider class of 
process models is to use an algorithm consisting of a finite 
family of controllers with an on-line switching algorithm 
capable of selecting between candidate controllers based on 
their associated prediction errors. 

While the presentation in this paper is necessarily detailed 
in parts, significant intuition into the approach taken can be 
gained by consideration of a simple SISO example. Suppose 
the plant to be controlled is described by the transfer function 
p ( s )  = k / ( s  + l), where k E R is the only unknown 
quantity associated with the plant. In particular, the sign of k is 
assumed unknown, but Ikl 2 kmin where kmin > 0 is known. 
Suppose now that two estimators incorporating projection are 

0018-9286/94$04.00 0 1994 IEEE 



WELLER AND GOODWIN ADAPTIVE CONTROL OF LINEAR MULTIVARIABLE SYSTEMS 1361 

constructed for the plant, with one estimator projecting 9 
estimate ICl into (-00, -IC,i,] and the other projecting IC2 

into [IC,;,, 00). It seems intuitiyely reasonable to compare the 
quality of the estimates IC1 and IC2 according to their associated 
prediction errors and then to use the best estimate in a certainty 
equivalence controller. This is the essence of the approach of 
this paper, where the switching mechanism is constructed with 
a hysteresis dead-zone to preclude unbounded “chattering” 
between alternative estimates. 

Two features of the algorithm are crucial to its success. 
Firstly, the similarity invariants take on a finite number of 
different values. This defines a finite partitioning of the class 
of admissible plant models, and thus the switching algorithm 
has a finite number of prediction errors to monitor. Secondly, 
the switching mechanism incorporates hysteresis to prevent 
switching arbitrarily rapidly between controllers. 

In the spirit of establishing closed-loop stability of multi- 
variable adaptive control algorithms under plant assumptions 
which are as weak as possible, the aim of this paper is to 
show how the work of Morse et al. [ l l ]  can be extended to 
the MIMO case. This extension is not immediate since, in the 
MIMO case, the interactor contains real-valued parameters, 
and furthermore, special steps are necessary to ensure non- 
singularity of the high-frequency gain matrix estimate. The 
novel aspects of the current paper therefore include 

i) A new multivariable model parameterization; 
ii) a technique which allows estimation of the real param- 

eter values in the interactor along with other system 
parameters; and 

iii) a new scheme by which an estimated matrix is kept 
nonsingular by considering a finite family of matrices. 

11. BACKGROUND 
In this section we review the background to the multi- 

variable model reference adaptive control (MRAC) problem 
by establishing some notation, considering the description of 
multi-input/multi-output plants, and reviewing the definition 
of the interactor matrix associated with a MIMO plant. 

For any fixed p E [l, 00) and f a (possibly vector) function 
of time, then 

and 

For p E [l, 001, we shall write f E Lp when l l f l l p  < 00. 

Often we shall be interested in the boundedness and square 
integrability of f over an interval other than [0, 00). In such 
cases we write 

and 

The relative degree of a rational function p ( s )  = n ( s ) / d ( s )  
is defined as dd(s) - dn(s), where dd(s) denotes the poly- 
nomial degree of d(s); p ( ~ )  is said to be proper (respectively, 
strictly proper) if dd(s) 2 d n ( s )  (respectively, dd(s)  > 
an(s)). Let Rmxm(s)  denote the set of m x m matrices whose 
elements are rational functions of s with real coefficients. 
P ( s )  E Rmxm(s)  is said to be strictly proper if all entries 
in P(s )  are strictly proper and nonsingular if the determinant 
of P ( s )  exists and is nonzero for almost all finite complex 
numbers s. Let Rmxm[s]  denote the set of m x m matrices 
whose elements are polynomials in s with real coefficients. 
W ( s )  E Rmxm[s]  is said to be unimodular if det W ( s )  =a 
nonzero constant, independent of s. 

A matrix II E R m x m  is called a permutation matrix if 
exactly one entry in each row and column is equal to one, and 
all other entries are zero. Right (left) multiplication of a matrix 
A E R m x m  by a permutation matrix II permutes the columns 
(rows) of A. If A E R m x m ,  then A[k] for IC E (1, 2 , . - .  ,m} 
denotes the leading principal submatrix of order IC of A, i.e., 
the submatrix of A consisting of the first IC rows and columns 
of A. 

A. Plant Description 
Let the plant be represented by a transfer function matrix 

P(s )  relating the Laplace transform of the m-vector of outputs 
y(s) to the Laplace transform of the m-vector of inputs u ( s )  
(with zero initial conditions) 

Y(S) = P(s)u(s).  (1) 

The rational transfer matrix P(s )  may be expressed as 
the ratio of two polynomial matrices. A pair of polynomial 
matrices (DL,  NL) is a left fraction of P ( s )  E Wmxm(s)  if 
[131 

N L ( S ) ,  D L ( S )  E Rmxm[S]; 

P(s )  = D L l ( S ) N L ( S ) .  

DL(s)  is nonsingular, i.e., detDL(s) # 0 for almost all 
s; and 

(DL, N L )  is called a left coprime fraction (lcf) of P(s )  if 
the greatest common left divisor of NL and DL is unimodular 
[14]. Similar definitions can be presented for right fractions 

With (DL, N L )  an lcf of P(s ) ,  the zeros of the polynomials 
detNL(s) (detDL(s)) are the zeros (poles) of the plant. The 
zeros so defined are also referred to as transmission zeros 
since they exhibit transmission-blocking properties similar to 
those known for scalar systems [15]. A plant with all of its 
transmission zeros in the open left-half of the complex plane 
is said to be minimum phase. 

For D L ( s )  E Wmxm[s ] ,  &;DL denotes the maximum 
polynomial degree in the ith row of DL(s ) .  The leading row 
coefficient matrix I?, of DL(s )  is defined as 

(I’,)ij = coefficient of the term of degree d r i D ~  in ( D ~ ) i j .  

The matrix D L ( s )  is said to be row reduced if r, is nonsin- 
gular, and when (DL, N L )  is an lcf of P(s )  with DL row 
reduced, the observability indices of P ( s )  are defined as 

( N R ,  DR) of P(s) .  

A 
ui = ariDL, i = 1, ‘ . . , m .  
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c(s) = 

The maximum of the observability indices is denoted by 
v,, and referred to as the observability index of P(s). The 
observability indices are related to the system order n by 

The interactor thus defined is nonunique; uniqueness may 
be obtained by fixing the polynomials A,(s) on the diagonal 
of [(s) to have the form 

. . . . . .  - 1  0 0 -  
h21(S) 1 0 

h31(S) h 3 2 ( S )  " -  (8) 
. .  

. .  . .  
-h , l (S)  hm2(s) . . . . . .  1- 

m 
A;(s) = ( S  + i = l , . . .  , m  ( 1  1 )  

for some fixed a > 0 and requiring that the polynomials 
h i j ( s )  be divisible by (s + a )  or else be zero. Since &(s) 
as in (1 1) are Hurwitz polynomials, it follows that [-' (s) is 
asymptotically stable, as will be required later. Notice that by 
choosing a = 0 in ( l l ) ,  [(s) coincides with the interactor 
introduced in [5]. Also, it is usual to call the matrix K in (7) 
the high-frequency gain matrix of the plant. 

The following lemma illustrates the effect of a reordering of 
the components in the input vector on the plant transfer matrix, 
the interactor matrix, and the high-frequency gain matrix. 
Lemma 2.2-The Effect of Reordering the Input Vector: Let 
the plant be represented in transfer matrix form by y(s) = 
P(s)u(s)  with P(s) proper and nonsingular, and let c(s), K 
be respectively the interactor matrix and high-frequency gain 
matrix associated with P ( s ) .  Suppose the components of U 

are reordered according to 

U = n- lu  

where II (and hence IT-') is an arbitrary permutation matrix. 
Then 

- A  i) y = P U  where P = PIT; and 
ii) lim,-m [P = K where K = KII is nonsingular. 

i) y = ~u =P(nn-')u = (PII)(II-'~) = Pu. 
ii) lim5+03[P = lim5+m[(PIT) = (lim5+m(P)II = 

Nonsingularity of K is immediate since K is simply a 
ono 

From this lemma we see that a reordering of the components 
of the input vector corresponds to a permutation of the 
columns of the plant transfer matrix and that the columns of 
the high-frequency gain matrix are permuted in an identical 
fashion. Furthermore, the interactor matrix is independent of 
the ordering of the components of the input vector. These 
observations will prove crucial in the subsequent development. 

- A  I -  

Proofi 

KII = K. 

column permutation of the nonsingular K .  

111. PLANT PARAMETERIZATION 

In this section we define the class of plant models for 
which the control algorithm to be proposed in Section VI is 
applicable. Furthermore, we show that each plant in this class 
has a nonminimal parameterization, structured in such a way 
that: 

i) specification of a model reference control law is straight- 

ii) it is possible to estimate unknown parameters with 
forward; 

standard estimation algorithms; and 
A(s) = diag[A,(s), . . . ,A,(s)]  (9) iii) it is straightforward to guarantee nonsingularity of the 

estimated high-frequency gain matrix. 
A,(s) = s~,+S~*_~S~,-'+...+S~, z = I , . . . , m  . (IO) 

The class of plants that we consider are those which satisfy 
Proofi See [17, pp. 2511 000 Assumption 2.1 and whose associated interactor matrices have 
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polynomial entries whose degrees have a known upper bound 
d. We denote this class of plants by C. 

Recall from Assumption 2.1 that n,,,, an upper bound on 
the plant order, is assumed known. It is possible to use this 
information to avoid explicitly requiring knowledge of d by 
selecting 

d = rima. (12) 

The justification of (12) is as follows. Using Theorem 4.1 [ 181, 
it can be deduced that the order of P ( s )  is equal to the number 
of transmission zeros of P ( s )  plus the sum of the infinite zero 
orders of P(s ) ,  of which the polynomial degree of ((s) is the 
largest [19]. 

Since the particular parameterization that we seek has the 
dual objective of describing the plant and facilitating the 
formulation of the model reference control law, we need to 
first specify the control objective. Normally in MRAC (e.g., 
[ l]), the reference model is specified in terms of the interactor 
matrix. Since we wish to relax the assumptions to include 
a class of interactor matrices, however, we will define a 
reference model compatible with the entire class. We thus 
define the reference model output y* by 

y* = M-'[r] (13) 

where the notation M-l[r] denotes the time-domain output 
of the operator with transfer function M - l ( s )  driven by the 
input r ( t ) .  In (13), T is an m-vector which is a bounded and 
piecewise continuous function of t ,  and M ( s )  E Rmxm(s) .  
We also require det (M(s)) # 0 for Re[s] 2 0, so that 
M- ' (s)  is an asymptotically stable transfer function matrix 
and that 

where [(s) is any interactor corresponding to some P(s )  E C. 
The class C can be partitioned into a finite set of subclasses, 

each of whose constituent plants have interactor matrices 
having common degrees n1, . . . , n, for the diagonal elements 
& ~ ( S ) ; . . , ( , , ( S )  . Note that in view of condition (14), 
tracking of the reference model (13) can be achieved with 
a proper feedback control law irrespective of the particular 
subclass the plant is drawn from. 

Our final strategy will be based upon the use of a separate 
parameterization for each of the above subclasses. The follow- 
ing lemma describes the parameterization for one such sub- 
class. 

Lemma 3.1-Plant Parameterization: Consider a plant 
P(s )  E C with high-frequency gain matrix K such that 
Id1], Kr2], . . - ,K["- ']  are nonsingular. Let v be an upper 
bound on the observability index of P(s) ,  and let d be an 
upper bound for the polynomial degree of ((s), the interactor 
matrix associated with P(s ) .  Then 

i) The plant input-output response can always be described 
by a nonminimal model of the form 

L-' A[y] = -Q ALP' [y] + RL-l [U] - 
- 9L-l[y] + W(AL)-'[y] 

+ S(AL)-' [U] (15) 

where 

L(s )  = diag[E(s)], with l ( s )  monic, Hurwitz and 
aZ(s) = d; 
A(s) = diag[(s + u)~~,...,(s + where 
n; > 0 are integers and a > 0; 
A(s) = diag [X(s)], with X(s) monic, Hurwitz and 

Q E RmX" is strictly lower triangular; 
R E RmX" is upper triangular with all diagonal 
elements nonz_ero; and 
9 ( s ) ,  W(s),  S(S) E wmxm [SI with g(s)  
strictly lower triangular, L@(s) 5 d, aw(s)  5 

ii) The representation (15) can be expressed in linear re- 

q s )  = v; 

- 

v, a&) 5 v - 1. 

gression form as 

L-l A[y] = eT+ (16) 

where 8 contains all unknown parameters, i.e., the 
entries i n  Q, R,- and the coefficient matrices of 
9 ( s ) ,  W ( s ) ,  and S(s), and II, contains proper filtered 
derivatives of U and y. 

- 

iii) The model reference control law 

A[y*] = -Q A[y*] + Ru - %[y*] 
+ T?rA-'[y] + SA-l[u] (17) 

results in an asymptotically stable closed-loop system 
and causes y to track y* driven by a bounded input T 

(modulo exponentially decaying terms). 
Proofi In this and subsequent proofs, all input-output 

identities are modulo exponentially decaying terms. 
i) Let (DL,  NL) be a left coprime fraction of P(s )  with 

DL row reduced; it is always possible to obtain such a 
representation, see e.g., [20]. By defining 

A(s)  = diag [X(s)] (18) 

with X(s) any monic, Hurwitz polynomial of degree v, 
the plant can be described in fractional form as 

n;r[y] = N[u] (19) 

r6i(s) A - l ( s ) D ~ ( s ) ,  (20) 

where 

Note that U(s) (respectively, #(s)) is guaranteed to be 
proper (respectively strictly proper) since 

dri NL < d r ; D ~ ,  i = l , . . .  , m  

if and only if P ( s )  strictly proper 

for (DL,  NL) an lcf of P ( s )  with DL row reduced, and 
dr; DL = v; with v 2 maxi v;. Define 

F(s )  = Frsr + . . . + Fls,  
W ( S )  = A - ~ ( S ) ( W ~ S ~  + . . . + W ~ S  + WO) 
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(36) 
via - A  S = Q-'S,,. 

(22) 

Uniqueness of F, W is achieved by taking F as the 
improper part of [a-' and WA?' as the proper part. 
Then from (19), 

Note that Q-l exists and is nonsingular by virtue of the 
unit diagonal form of Q, and that Q-l can be written as 

(37) 

< = F & l + W .  

Q - ~ = I + Q  

where Q is strictly lower triangular, so F G [ y ]  = Ff i [u ]  (23) 

and so from (22) (T + A + &A)[y] = w [ y ]  + R u  + S[u]. (38) 

Recall from (20), (21) that both &l and fi were expressed 
in terms of a matrix fraction with denominator A(s). 
Tracing this fact through subsequent steps, it can readily 

( E  - W [ Y I  = S[uI (24) 

where 

S e  FN. (25) be shown that w and also have this form, i.e., that 
- 

Thus W = A-'@, (39) 

[[VI = W[YI + SbI. (26) 

Observe that the interactor [ = EA can also be written as 

E(s)  = @(SI + A(s) (27) 

where @ ( s )  is a strictly lower triangular polynomial 

for polynomial matrices I@, S 
k ( s )  = w u s v  + . . . + w1s + @,, 

S ( s )  = SV-1SY-1 + . ' .  + s,s + s, 
(41) 

(42) 

matrix with polynomial degree at most d, and A(s) is 
as in (9), (11) for some fixed a > 0. Substituting (27) 
into (26) 

(Q + A)[Y1 = W[YI + S b I .  (28) where W u , . . . , W o ,  Su-l,...,S~ E R"'" and so 

Since S = (< - W ) P  = ( I  - W<-')<P, it follows that 
lims-+m S = lims+oo [ P  = K and hence S is proper 
but not strictly proper and can be expanded as 

S ( s )  = K + S,,(s) (29) 

where K is the high-frequency gain matrix associated 
with P ( s )  and S,,(s) is strictly proper. Substituting (29) 
into (28) gives 

(30) 

By assumption, K[l], Id2], . . . , K["-l] are nonsingular, 
a necessary and sufficient condition for K to be factored 
uniquely using an LU decomposition [21, Theorem 3.11 
as 

(Q + A)[YI = W[YI + ( K  + Ssp)[uI. 

K = Q R  (31) 

where Q is lower unit triangular and R is upper trian- 
gular. Moreover, since K is nonsingular by definition, 
det (K) = det (Q) det (R) = det (R) # 0, so all diagonal 
entries of R are nonzero. Substituting (3 1) into (30) gives 

(32) (@ + A)[YI = W[yl + (QR + Ssp)[ul 

(T+ A + QA)[y] = A-'@[y] + RU + A-lS[u]. (43) 

Finally, introduce L ( s )  = diag[Z(s)] where Z(s) is a 
monic, Hunvitz polynomial such that aZ(s) = d, with d 
an upper bound on the polynomial degree of all elements 
of <(s). Operating on both sides of (43) by L-l(s)  and 
rearranging terms gives the result. - 

ii) Define matrices Gd,. . . ,9, E R"'" such that 
- 
@ ( s )  = T d S d  + . . . + 31s + To. (44) 

Using this and the definition of @ ( s ) ,  S ( s )  in (41), 
(42), it follows that L-l A[y] can be expressed in linear 
regression form as 

L-l A[y] = OT$ 

where the parameter matrix OT is defined by 
- - 

BT -0, R, - @ d , .  .. , -@,, 

kv, . . . , w,, s v - l ,  . . . , so] (45) 
[ 

and the regressor vector is 
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iii) Operating on both sides of (17) by L-'(s)  (where 
L- l (s )  is defined in the proof of i)) and subtracting 
the result from (15) yields 

L-'(A + QA + G)[y - y*] = 0 

where the indicated matrix transfer function is minimum 
phase since det(A + QA + 3) = det(Q-l[(s)) = 
( s  + a)al+...+n, . Noting that d/dt(y - y*) E Lm, 
limt400 (y - y*) = 0 follows from application of 
Lemma B.4. 000 

Equation (15) gives a nonminimal representation of the plant 
input-output relationship in which each transfer function is 
proper. The particular form used in (15) has been designed 
with a view to three subsequent requirements, namely: 

i) straightforward estimation of all real-valued parameters 
including those in the interactor matrix; 

ii) direct evaluation of the model reference feedback control 
law in terms of the parameters; and 

iii) provision of a simple mechanism to ensure that the esti- 
mated high-frequency gain matrix remains nonsingular 
for all time. 

The form of the model (15) is important because it incor- 
porates a filtered output. This particular structure is pivotal in 
dealing with the real-valued quantities in the interactor matrix. 
The use of output filtering in this way is, as far as we know, 
new and may have applications in other areas of adaptive 
control [22] .  

Within each subclass of C for which the first (m- 1) leading 
principal submatrices of K are nonsingular, a parameterization 
of the form of (15) is valid. If we knew to which particular 
subclass of C the plant belonged, then certainty equivalence 
MRAC would be straightforward; an estimate of 6' could be 
generated by a normalized gradient estimation algorithm based 
on (16) 

where 
A e = L-' A[y] - eT@ 

and the resulting estimates substituted appropriately into (17) 
to give the certainty equivalence feedback law 

A[y*] = -Q A[y*] + Ru - 'Y[y*] 

+ 6'12-'[y] + S ~ l - ~ [ u ]  (49) 

where the notation Q:tc. denotes a matrix obtained from the 
appropriate entry in 6'. 

Since we do not assume a priori knowledge of the subclass, 
our strategy is to run a finite family of estimators and then to 
use a switching algorithm to select one of them for use in 
the certainty equivalence controller. The details are given in 
Section V. 

Finally, we recall the restriction in Lemma 3.1 that the first 
(m - 1) leading principal submatrices of K are nonsingular. 
In the following section we show that this restriction can be 

considerably weakened by considering all possible permuta- 
tions of the elements of the plant input vector, at least one of 
which ensures the nonsingularity of K[I ] ,  Id2], . . . , 

IV. A FAMILY OF ESTIMATORS 

The essence of our strategy is to run one estimator for each 
subclass of C. From Section 11, we see that there are m x d 
such disjoint subclasses since each diagonal element of the 
interactor can have degree ranging from 1 to d. 

In the plant parameterization presented in Lemma 3.1, 
the assumption was made that the first (m - 1) leading 
principal submatrices of K were nonsingular, a necessary and 
sufficient condition for the existence and uniqueness of an LU 
factorization of K. We now wish to remove this requirement 
on the nonsingularity of ~ [ 1 ] ,  

Recall from Lemma 2.2 that reordering the components of 
the plant input vector is equivalent to permuting the columns 
in the transfer matrix of the plant and leads to a high-frequency 
gain matrix which is a column permuted version of the original 
K. Using a minor modification of [23, Lemma 3.5.61, it 
follows from the nonsingularity of K that for at least one 
permutation of inputs, the corresponding high-frequency gain 
matrix is such that Id2], . . . , are nonsingular. 
Thus for each subclass of C we need to consider all m! 
permutations of plant inputs to be assured that at least one 
permutation corresponds to a plant with high-frequency gain 
matrix satisfying the conditions of Lemma 3.1. 

Finally, from (49) we see that to explici!ly evaluate the 
control input, it is necessary to ensure that R is nonsingular 
for all time. In view of the upper triangular structure of R, 
it is sufficient to constrain the diagonal entries of R to be 
bounded away from zero. We shall assume knowledge of a 
lower bound for the magnitude of the diagonal entries of R 
(denoted rii) arising from the LU factorization K = Q R  and 
denote this bound by rmin > 0. Since this bound must be valid 
for any column permutation of K such that an LU factorization 
of K exists, knowledge of a tight bound would appear to 
imply significant Q priori information regarding K. In practice, 
however, it suffices to choose rmin to be vanishingly small, and 
in this case the assumption of a priori knowledge of a suitable 
rmin is barely more restrictive than assuming knowledge of a 
lower bound on IIKII. 

For simplicity of presentation, we shall say that T;; is 
"positive" when ri; 2 rmin and "negative" when rii 5 -Tmin. 
Each r;i has one of two possible signs and hence there are a 
total of 2m possible sign combinations. Our strategy will be 
to run a different estimator for each of these 2" possibilities 
and to constrain the corresponding estimates on the diagonal 
of R to be positive or negative as appropriate. 

In summary, we will run md x m! x 2m parameter estimators 
in parallel with one another, each of which has 

i) a particular set of orders for the diagonal entries of [(s) 

ii) a particular permutation of plant inputs; and 
iii) a particular selection of signs for the diagonal elements 

. . . , ~ [ m - l ] .  

i.e., A,(s), . . . ,A,(s);  

of R. 
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Naturally, if additional prior information is available then 
the number of estimators can be reduced. The above estimators 
fo? a class V containing md x m! x 2m elements. We denote 
by 6; the parameter estimates produced by the ith member of 
2). Each estimator has the general form given in (47), with the 
addition of a projection mechanism to constrain the diagonal 
entries of R to have the appropriate sign and to ensure Q and 
G ~ ,  i = 0 , .  . . , d have entries on and above the main 
diagonal. 

to particular stmc- 
tural information associated with Q, R and 6, we also wish 
to bound all parameter estimates. Thus we introduce the 
following assumption. 

Assumption 4.  I :  The parameter matrix 6 in the plant param- 
eterization (16) lies within a known bounded, convex region. 

All parameters are projected into this region. Because of 
the trivial nature of these constraints, these projections are 
straightforward to implement, and since they correspond to 
convex constraints they do not effect the estimator properties 
when the model structure is correct (see e.g. [16]). Since each 
estimator integrates prediction errors, projection of parameter 
estimates into the bounded convex region of Assumption 4.1 
ensures that all parameter estimates remain finite. Any im- 
plementation of the proposed control algorithm would always 

within a general framework of switching systems proposed by 
Morse et al. [ 1 11, we utilize the Hysteresis Switching Lemma 
of [ 1 11 to deduce properities which are crucial in establishing 
the global convergence result of Section VI. For completeness, 
the key properties of the hysteresis switching mechanism of 
[ 111 are reviewed in Appendix A. 

Given the family V of estimators defined in the Previous 
section, it seems intuitively reasonable to run each estimator 
simultaneously, with a feedback control law of the form (49) 
utilizing the estimates produced by the estimator exhibiting the 
least value of a cumulative performance measure. Switching 
between candidate estimators occurs as the relative prediction 
capabilities of the estimators change over time. Actually, a 
hysteresis dead-zone is built into the switching mechanism 
so that switching occurs only when a threshold of differen- 
tial performance is exceeded; this precludes arbitrarily rapid 
switching. 

By careful choice of the performance measure, we guarantee 
the boundedness of this measure at all times for at least 
one estimator in D. As will be demonstrated shortly by the 
application of the Hysteresis Switching Lemma, this property, 
together with the nature of the switching mechanism, also 
ensures that switching ceases within a finite period of time. 

Recall that the ith estimator in class D produces estimates 

addition to these projections 

require projection into a (possibly very large) set. 
Let O ; ,  e";, respectively, denote the parameter error and 

normalized prediction error associated with the ith estimator 
in V, respectively, i.e., 

(50) 
- A -  6i = 0; - 6 ,  

We then have the following result regarding the properties of 
the family of estimators V which hold independently of the 
precise nature of the control law. 

Lemma 4.1: There exists at least one estimator (say the kth) 
from the class V having the properties 

i) i k ,  k k ,  e"k E L,[O, T ) ;  and 
ii) e"k and k k  E L ~ [ o ,  T I .  

Proofi The construction of the class V ensures that one 
of the elements (together with the associated projection) cor- 
responds to the true system structure, with the true parameter 
values lying inside the constraint region. The result is known 
to be true [ 161 for this case. non 

V. A HYSTERESIS SWITCHING ALGORITHM 

where 

ei = L-' ~ [ y ]  - iT+ (53) 

from which the following normalized prediction error is de- 
fined 

Associated with each estimator, we now define test functions 

(56) 
. A  
c i  = 11.1;11;. 

As shown in Lemma B. 1, the certainty equivalence control 
law (B.l) associated with each estimator can be expressed in 
state-space form as 

xc = k0zc + k1y + kzu + k3T,  (57) 

In the previous section, we described a finite family V of 
parameter estimators, at least one of which is guaranteed to ei = k7(8i)xc + kS(8i)y. (59) 
have the properties Outlined in Lemma 4.1. Note that by construction, all of the controllers defined above 
problems remain. Firstly, we do not know apriori which of the 
estimators has the desirable properties, and secondly, at any 
given time Only One Of the estimators can be combined with the 
certainty equivalence controller described in Section 111. In this 
section, a switching control scheme is proposed which resolves 

have shared dynamics described by (57), where, according 
to Lemma B.l, the state variables contained in 2c consist of 
(proper) filtered versions of T ,  U, and y. Finally, recall that the 
state vector of the plant satisfies 

these problems. By showing that the proposed scheme fits xp = A P z p  + BPu. (60) 
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Let the control input be selected according to 

A A where a( t )  E B = (1, 2 , .  .. , p}  for = md x m! x 2m 
indicates the estimator chosen by the hysteresis switching 
mechanism (A.3), (A.4) at any particular time t. Then we have 
an overall adaptive control system of the form (A.1)-(A.4) 
where the dynamics of the state vector 

z = [ z p ,  81,  & , . - . , e p ,  C i ,  C 2 , . . . , C p ]  (62) 

are given by (60), (B.3), (52) and (56). 
Given the test functions Si defined by (55), we next verify 

that Assumptions A.l and A.2 of Appendix A are satisfied. To 
verify Assumption A.l we argue as follows: fix s E S, where S 
is the class of piecewise constant functions s: W+ + B, and let 
[0, T,) denote the maximal interval of existence for s assuming 
U = U,. From (56), Ci 2 0 for all i E B, so Ci is monotone 
nondecreasing on this interval. Since sup,,-[o, t )  IlS;(T)112 is 
also monotone nondecreasing, Si for all i E B have well- 
defined limits as t + T,, so Assumption A.l is satisfied. 
Assumption A.2 is satisfied as a direct result of Lemma 4.1 
i.e., there exists at least one correct plant parameterization. 

Now let U = uo, and let [0, T) denote the largest interval 
of existence of z and a. With Assumptions A.l and A.2 sat- 
isfied, we may invoke Lemma A.2 (The Hysteresis Switching 
Lemma) to conclude that there exists a finite time T* < T 
beyond which no further switching occurs. Furthermore, the 
test function Si. associated with the ultimate value i* = a(T*) 
of the switching input, is bounded on [0, T) .  The following 
lemma uses the boundedness of the test function Si. to deduce 
several key properties of the ultimately chosen estimator. 

Lemma 5. I-Properties of the Ultimately Selected Estimator: 
The following properties are true for the ultimately selected 
estimator: 

i) I%*, Cj* E L,[O, T ) ;  and 
ii) ~ i * ,  8i. E L ~ [ o ,  T I .  

Proof: 
i) immediate from the definition of Si. and the bounded- 

ness of 6;. on [0, T) as guaranteed by the Hysteresis 
Switching Lemma. 

ii) For t E [0, T), integration of (56) gives 

from which & E &[O, T) follows immediately since 
Ci* E LMIOl T). Also, since 

e,. 11, (1 + $T$)1/2 

it follows that e i *  E L,[O, T) since +/(l + 11,T$)1/2 
[7[7[7 

In the next section we will exploit the above properties in 
conjunction with the certainty equivalence control law to prove 
global convergence of the adaptive control algorithm. 

and &* E L,[O, 2'). 

VI. THE MAIN RESULT 

With the above properties in hand we can now establish the 
following key result. 

Theorem 6.1: Consider the class D of estimators, a refer- 
ence model y* = M-l[r]  driven by a bounded, piecewise 
continuous input T ,  the test functions 6; defined in (55), (56), 
and the hysteresis switching adaptive control scheme proposed 
in Section V. Then for any plant in class C and arbitrary 

i) switching occurs a finite number of times, and there exists 
a time T* < 00 beyond which no further switching 
occurs; 

ii) the combined state of the plant and the ultimately chosen 
controller are bounded on [0, 00); and 

iii) the tracking error y - y* E L,  and y - y* + 0 as 
t + 00. 

( z ( O ) ,  c ( O ) ) *  

Proof: 
i) As argued in Section V, the overall system has the form 

of (A.l)-(A.4), where fi. gi, and di V i  E 23 are at least 
locally Lipschitz in z and piecewise continuous in t ,  and 
the test functions Si satisfy Assumptions A.l and A.2. 
Hence by Lemma A.l, switching occurs a finite number 
of times over any finite interval of time. Furthermore, 
by Lemma A.2 (the hysteresis Switching Lemma), there 
exists a time T* < 00 beyond which a is constant i.e., 
no further switching occurs. 

ii) The proof of this result is somewhat lengthy, so we 
outline here the key steps before presenting the proof 
in detail. First we prove the crucial result that after 
switching has ceased, the closed-loop connection of the 
plant and the (ultimately chosen) controller results in 
a state-space system which, for every fixed estimate 
of the parameter matrix, is detectable in e, the filtered 
prediction error driving the parameter estimator. Thus, 
in some sense, instabilities in the closed-loop system 
are observable through e. 

Secondly, we argue that this closed-loop system can 
be considered as an exponentially stable system driven 
by two inputs, one of which is in L2 and the other in L,; 
hence the system state is bounded on [T* , T). Thirdly, 
we note that on [0, T*),  boundedness of the combined 
state of the plant and any of the certainty equivalence 
controllers follows readily. Finally, we prove that the 
boundedness of parameter estimates following from pro- 
jection ensures all state variables of the overall system 
are bounded or growing at most linearly; hence the 
maximal interval of existence of the state is [0, CO). 

Consider the interval [T*, T) representing the pe- 
riod after switching has ceased. Then by Lemma B.2, 
the closed-loop system consisting of the plant and the 
controller is of the form 

ipc = A(6i*)zpc + B(Bi*)r, (63) 
e p  = C(Bi.)zpc (64) 

A where xpc = [x:, .FIT represents the combined state 
of the plant and controller (see (4) and Lemma B.1 
respectively ) . 
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Now for fixed e,*, the state-space system (63), (64) 
is of the form presented in Lemma B.5, from which the 
system is detectable in e,*, i.e., for T 0, e i * ( t )  = 0 
V t  2 0 + xpc(t) -+ 0 for all nonzero initial states 

The detectability of (63), (64) guarantees the existence 
of an (output injection) matrix M(. ) ,  a continuously 
differentiable function of its argument, such that A @ )  + 
M(g)C(g)  is an asymptotically stable matrix for each 
fixed e. Note that M need not be computed; it need 
only exist. 

XPC(0). 

From (63), (64), 

xp, = A(8;*)xpc - M(dp)[e;* - C(e;*)xpC] + B ( ~ ; * ) T ,  

(65) 
= [A(8 ;* )  + M(8p)C(e;*)]xpc - M(e;*)e;* + B ( e i * ) ~ .  

one involving e";. and the other T. M(ei*)Ep/ ( l  + 
+T+)1/2 E L ~ [ o ,  T )  since ~ i *  E L ~ [ o ,  T )  (see Lemma 
5.1) and M is a continuous function of a bounded 
argument. Similarly, B(B;*)r E Lm[O, T )  since B is a 
continuous function of a bounded argument and r E L,  
by assumption. It follows from the exponential stability 
of (72) that 

(73) 

Consider now the interval [0, T*) during which switch- 
ing occurs. At any given time, the closed-loop intercon- 
nection of the plant (4), (5) with a certainty equivalence 
controller of the form described in Lemma B.l leads to 
a state-space system with dynamics satisfying 

kpC = A(d,)xpc + B(S;)T 

(66) for some i E B. The boundedness of the elements of 
A and B ensures that the state variables in xpc grow 
at most exponentially on [0, T*),  which together with 
(73), implies 

(74) 

Recall the normalized gradient estimator 

(67) 

Thus 

from which 

Substituting (68) into (66) gives 

X p c  = [A(e ,*)  + M(e;*)C(ei*)]~~, 
e,*] + B(J;*)r. (69) 

Recognizing that the regression vector + can be ex- 
pressed as a linear function of xpc i.e., that 

1T 
Si*' = L(&*)Xp, (70) 

for some linear function L,  we can write (69) as 

xp, = [A(# ,*)  + M(gi*)(C(J;*) - L(B;*))]xpc 

Now, the matrix 

A(e;*)  + M(8i*)(C(8;*) - L(Bi*)) (72) 

is exponentially stable on [T*, T ) .  This fact can be 
established in a similar fashion to [12, Lemma 6.21, and 
depends on A + M C  being a continuously differentiable 
stability matrix, the boundedness of 8,. on [T*, T ) ,  and 
the fact that 6;.  E Lz[O, T )  (see Lemma 5.1). 

We now recognize (71) as a system which is ex- 
ponentially stable on [T*, T )  driven by two terms: 

Note that as yet, it has not been established that T = 00; 

to do so, recall that [0, T )  is the maximal interval of 
existence of the solution (2, a) ,  where is the state of 
the overall system (62). From (74), xp, x, E L,[O, T ) ,  
while the projection of all estimates 8; trivially ensures 
6, E L,[O, T )  Vz E B. Also, <;* E L,[O, T )  from 
Lemma 5.1. All that remains to be established is the 
maximal interval of existence of the terms <, associated 
with all estimators with the exception of the ultimately 
selected estimator. 

With this in mind, define E A B\{i*} as the integers 
representing the ultimately nonselected estimators. Note 
that 

+ E L,[O, T )  (75) 

since + can be written as a linear combination of 
the elements of xpc and xpc E L,[O, T). Also, the 
projection of estimates 6; into a bounded, convex region 
ensures 

e; = e, - e E L,[O, T )  

and since 
m 

e .  - 'l e; 
- (1 + +T+)1 /2  

we have 

e; E L,[O, T )  V i  E E. (76) 

By definition, (; = l lE;ll; ,  and so for all t E [0, T )  and 
all i E E 
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Hence 5; Vi  E a grow at most linearly on [0, T ) .  
Thus every component of the entire system state (62) is 
bounded or growing at most linearly on (0, T ) .  Since by 
assumption [0, T )  is the maximal interval of existence 
of the system state, it follows that T = 00 and hence 
xp, x, are bounded on [0, m). 

iii) Recall the plant parameterization developed in Lemma 
3.1 

L-lA[y] = -QAL-'[y] + RL-'[u] - TL-l[y], 
+ @(AL)-'[y] + S ( A L ) - l [ ~ ] ,  (77) 

= eTqh (78) 

and the certainty equivalence control law proposed at 
the conclusion of Section 111. 

A[y*] = -Q A[y*] + A[u] - 5[y*]  

+ +A-' [y] + SA-' [U], (79) 
= &p, (80) 

Using (48) and by defining 

fi L - l p ]  (83) 

it follows that 

L-' ~ [ y l  = O T ~ c  + eTg - BTgc + e ,  

= L-l[eT4,] + e'L-'[q5C] - L-l[eT4,] 
T -1 + 8 L - e T ~ - 1 [ 4 c ~  + e, 

+ iT~-'[41 - P L - ~ [ ~ ~ I  + e. 

= L-'A[y*] + (eTL-l[&] - L-1[6T4c]) 

(84) 

Using (77)-(80), (82) it can be shown that 

0 L 

and so from (84), we have on [T*, m) 

^T -1 [4] - eTL-'[4c] = -L-l(QA + G)[y - y*] 

L - ~ ( A  + Qa + G)[y - y * ~  = E (85)  

where E = 0; L-'[4,.] - L-l[@ 4.1 + e p  is defined on 

Using the Swapping Lemma [24], we make precise 
the notion that the difference between e,?: L-1[4c] and 
L-' [e$ 4,] is small when 8;. changes slowly. In partic- 
ular, using the results of Lemma B.6, we have (ignoring 
exponentially decaying terms) 

e?L-l[$,] - L-1[8F4c] =  CL^^^^ * Hii.)' 

A -  

IT*, m). 

(86) 

where (CL ,  BL ,  A L )  comprises a minimal realization 
of L-l(s)  (i.e., L- l ( s )  = C L ( s l  - AL)-~BL), and 
H E L,. Since 6;.  E Lz[O, m) and ei* = (1 + 
$T$)l/z&* where e;* E Lz[O, m), it follows that 
E E Lz[T*, m). By defining z (s )  = diag[t(s)] where 
t ( s )  is a monic, Hunvitz polynomial such that &(s) = 

md, fJ-'(A + QA + G)-l is proper and stable for 
each frozen e;*. Moreover, since 8;. E Lz[O, co), the 
stability is exponential [ 121 thus Lz inputs yield L2 
outputs, and 

-- 1 
L (A + QA + $)-'[cl = E-l[y - y*] E Lz[T*, CO) 

(87) 
where E ( s )  2 L(s)E(s). 

Now, y = Cpxp and xp E L,, so y E L,. Also, 
y* = M-l[r], where M - l ( s )  is a strictly proper, 
asymptotically stable transfer function matrix and where 
T is piecewise continuous and bounded. Thus y* E L,  
(and dy*/dt E L,) and hence 

Y-Y*ELcc (88) 

from which 

E-'[y - y*] E L, (89) 

and y - y* E Lz[O, T* ) ,  k l [ y  - y*] E Lz[O, T* )  for 
finite T*. Thus from (87) 

(90) 

Also, since y - y* E L,  and SL-' is proper, 
d/dtL-l[y - y*] = (sL-')[y - y*] E L,. This, 
together with (89), (90) gives 

P [ y  - y*] E Lz. 

Next, 

!!? = cpxp 
dt 

= Cp(APxp + BPu). 

Now, xp E L,, and for any given 7 E [0, m) 

U(.) = k4(ei)xc(7) + k5(ei)y(7) + k6(8i)T(7) 
where k4, kg,  k6 are continuous functions of bounded 
B i ,  and xc, y, T E L,. Thus U E L,, which implies 
dyldt E L,. As noted previously, dy*/dt E L,, from 
which 

(92) 

Since E-'( . )  is proper and minimum phase, we can 
invoke Lemma B.4 to conclude from (92), (89) and 
(91) that 

d z(Y - Y*) E Lee. 

lim (y - y*) = O 
t-+m 

as required. ono 
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VII. DISCUSSION AND CONCLUSIONS 
This paper has shown that a considerable weakening of 

the assumptions required to establish global convergence of 
a model reference adaptive control algorithm for multi-input 
multi-output linear systems is possible. The following assump- 
tions are made: 

i) the plant is minimum phase; 
ii) an upper bound n,, on the plant order is known; 
iii) a lower bound rmin > 0 is known for the magnitude 

of the diagonal entries of R arising from the LU fac- 
torization of the high-frequency gain matrix K = QR 
(whenever column permutations of the plant transfer 
matrix are such that this factorization exists); and 

iv) a bounded convex set is known within which the plant 
parameters lie. 

In practice, assumptions iii) and iv) are very weak, com- 
paring favorably with previous work on the model reference 
adaptive control of linear multi-inpurlmulti-output systems 
which required detailed knowledge of both the interactor 
matrix and the high-frequency gain matrix. There are several 
key arguments used in this paper to weaken the standard 
assumptions regarding a priori plant knowledge: 

i) a plant parameterization is developed such that real- 
valued system parameters associated with non-trivial 
high-frequency behavior (i.e., a nondiagonal interactor 
matrix) can be estimated using standard methods. The 
only remaining unknown quantities in the interactor are 
a set of m positive integers for which an upper bound 
d is known; 

ii) the use of an LU factorization of the high-frequency 
gain matrix K = QR permits a plant parameterization 
in terms of triangular matrices Q, R, in which R;; # 0. 
In much the same way that the high-frequency gain of 
a SISO system is either positive or negative (and never 
identically zero), this factorization of K is such that 
the invertibility of K is assured by parameter estim!te 
projections which guarantee R;; # 0. Since each Rii, 
i = 1, . . . , m can be either positive or negative, the true 
plant corresponds to one of 2m possibilities; and 

iii) to guarantee the existence of an LU factorization of 
K, the first (m - 1) leading principal submatrices of 
K are required to be nonsingular. Permutations of the 
components of the plant input vector have the effect of 
permuting the columns of K ,  and at least one of the 
m! input permutations leads to a high-frequency gain 
matrix for which an LU factorization exists. 

Consideration of these three points leads to a class 2) of 
md x 2” x m! estimators; each estimator corresponds to 
one possible combination of orders of the diagonal entries 
of <(s), signs for the diagonal entries of R, and permutation 
of the input vector. At least one of these estimators possesses 
desirable properties independently of the precise nature of the 
control law, but the restrictive nature of the a priori plant 
information prevents us from identifying which estimator (or 
estimators) in 2) exhibits these desirable properties. 

Utilizing the class of estimators for model reference adap- 
tive control requires two further ingredients: the Hysteresis 

Switching Lemma [l l]  and the notion of tunability [25]. By 
running every estimator in V simultaneously, that estimator 
exhibiting the best cumulative performance measure at any 
given time (modulo a hysteresis threshold) can be used in a 
certainty equivalence controller. An application of the Hys- 
teresis Switching Lemma then ensures that switching between 
candidate estimators ceases within a finite time, provided at 
least one estimator in 2) exhibits a performance measure which 
is bounded for all time. 

Once switching has ceased, the closed-loop connection of 
the plant and the ultimately chosen controller is tunable in that, 
for every fixed estimate of the parameter matrix, the closed- 
loop system is detectable in e, the filtered prediction error 
driving the parameter estimator. Tunability of the closed-loop 
system depends crucially on the minimum phase property of 
the plant and guarantees the existence of an output injection 
matrix from which relatively standard arguments ensure the 
boundedness of the states of the plant and ultimately chosen 
controller, together with boundedness of the tracking error and 
its asymptotic convergence to zero. 

Note that at no time it is claimed that the switching mecha- 
nism eventually settles on one of the “correct” estimators i.e., 
one of the estimators that would be chosen if additional a priori 
structural information regarding ((s) or K were available. It 
is conceivable, in theory at least, that the combination of a 
pathological initial condition and a nonpersistently exciting 
reference (e.g., T 0)  could lead to the “wrong” estimator 
being ultimately chosen. In practice, however, the presence of 
disturbances would render such a situation unlikely. 

There are several costs associated with weakening as- 
sumptions on the knowledge of the interactor matrix and 
high-frequency gain matrix. First, the reference model must 
be of sufficiently high degree (i.e., sufficiently slow) that for 
any plant within the class C of admissible plants, tracking 
of the reference model is achievable by a differentiator-free 
controller; see (14). Second, the transient behavior of the 
closed-loop system may be very poor. Finally, the weakening 
of assumptions is accompanied by a potentially dramatic 
increase in the computational power required for an imple- 
mentation. Consider a two-input-two-output plant whose order 
is at most five: md x m! x 2m = 2 x 5 x 2 x 22 = 80 
estimators are required, each of which estimates a parameter 
matrix containing m2(3nmax + 4) = 76 scalar parameters. 

As a consequence of these observations, the potential ap- 
plicability of the proposed algorithm in its current form is 
probably limited. While it is relevant to note that the idea of 
“multiple models” in adaptive control has been found to be 
of practical interest [26], [27], the main result of this paper is 
primarily of system theoretical interest in that it represents 
a step forward in the understanding of the minimal prior 
knowledge necessary to design a stabilizing controller for a 
broad class of linear systems. 

APPENDIX A 
REVIEW OF HYSTERESIS SWITCHING MECHANISM 

Let fl, . . . , fp be a family of p functions 

fz: RN x R, 4 RN, 2 E B 
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A A where R+ = [0, CO) and where B = {l, . . .  l p }  for some 
positive integer p. We aim to study the behavior of the 
dynamical system 

i = f,(x, t ) ,  x(0) = xo (A.1) 

where a is a switching input taking values in B. Define test 
functions 

where gi: WN x R+ x R, -+ R+, di: WN x R+ -+ R+. 

Algorithm Definition 

Let p: R$ + B denote the function whose value at z = 
[ z l l  . . . , zplT is the least integer i E B for which zi 5 zj  for 
all j E B. Let h be a real positive number called a hysteresis 
constant, and define a transition function 4: B x R$ + B 
such that 

Thus 4(i, z )  is equal to i if the ith element of z is within 
h of being the smallest element of z ;  if this is not so, 4(i ,  z )  
gives the index into z of this smallest element, returning the 
least integer if this minimum is not unique. 

The function a in (A.l) is defined recursively along a 
solution to (A.l) by 

~ ( t )  = $ ( F ( t ) ,  S ( t ) ) ,  F ( 0 )  = i o  (A.4) 

were 6 = [SI, . . . , 6pIT, io is an initial condition in B, and 
a-( t )  = limT+t- a ( ~ ) .  

Thus starting in state i o  at t = 0-, a remains in this 
state until a time is reached such that for some j E B, 
Si, > Sj + h, in which case a switches to state p ( S ) ,  where 
p ( 6 )  = argminiGa (Si). 

The following lemma describes some of the properties of 
the system (A.l)-(A.4) assuming each f i ,  gi, and di satisfy 
some smoothness conditions. 

Lemma A.1 [ I l l :  Consider the system (A. l)-(A.4), and 
assume fi, gi, and di for each i E B are at least locally 
Lipschitz in x and piecewise continuous in t .  Then 

i) a(0) is well defined; 
ii) there exists an interval [0, T )  of maximal length on 

which there is a unique pair (x, a) with x continuous 
and a piecewise constant which satisfies (A. 1)-(A.4); 
and 

iii) on each strictly proper subinterval [0, 7) c [0, T ) ,  a 
can switch at most a finite number of times. 

Let S denote the class of piecewise constant functions 
s: R+ -+ B. For each s E S, T, is the length of the maximal 
interval of existence for the equations 

x = f s ( t ) b ,  t ) ,  4 0 )  = %o ('4.5) 

and xs(t) is the corresponding solution. The following as- 
sumptions ensure the the test functions defined in (A.2) are 
appropriate for the intended purpose. 

Assumption A.1: For each s E S and each j E B, the test 
function 

has a well-defined limit (which may be infinite) as t -+ T,. 

such that for each s E S, the test function 
Assumption A.2: There exists at least one integer p E B 

) &(t) = gp xs(t), t l  SUP dp(Zs(T), .) ( .rE[O, t) 

is bounded on [0, T,). 
With these assumptions, we can prove the following lemma. 
Lemma A.2 [Ill-Hysteresis Switching Lemma: For fixed 

initial state (xo, io), let (x, a) denote the unique solution 
to (A.l)-(A.4), and suppose [0, T )  is the largest interval on 
which this solution is defined. If Assumptions A.l and A.2 
hold, there is a time T* < T beyond which a is constant i.e., 
no more switching occurs. Moreover, Sa(T* ), the test function 
associated with the ultimate state of the switching input, is 
bounded on [0, T ) .  

APPENDIX B 
USEFUL RESULTS 

Lemma B. I-State-Space Representation of Control Law and 
Prediction Error: The certainty equivalence control law 

U = (h+ SA-')-'(A + GA + ~ ) M - ' [ T ]  

- ( A  + SA-')-'&K'[y] (B.l) 

together with the error used to drive the gradient estimator 

e = L-' A[y] - e*+ (B.2) 

can be expressed in state-space form as 

ic = kox, + kly + k 2 ~  + k 3 ~  03.3) 

U = k4(6)xc + ks(8)y + k s ( 6 ) T ,  

e = 1c7(6)x, + ks(6)y 

03.4) 

(B.5) 

where IC4 (.), . . . , kg (.) are continuous functions of 6. 
Proofi From (B.l) and the definition of the regression 

vector + in(46), it is clear that if U and e are to be expressed 
as linear functions of the state vector x, as in (B.4) and (BS), 
then x, must contain the appropriate filtered versions of T ,  U ,  

and y. By choosing 

x, = [(sd-'m-'[r])T,. . . , ( S M T - ' [ T ] ) T 1  ( K 1 [ T ] ) T ,  
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whereM(s) A M(s)M,'andM(s) = M d s d + . * . + M l s +  
M O ,  ko,.  , k3 in (B.3) can be chosen independently of 0 to 
generate the necessary signals. With the particular choice of 
x, above, one simple implementation involves choosing ko 
to be block diagonal, with each block in controller canonical 
form. 000 

Lemma B.2: State-Space Representation of Closed-Loop Sys- 
tem: The feedback interconnection of the plant 

(B.6) xp = Apxp + Bpu, 

Y = c p x p  03.7) 

with the controller (B.3)-(B.5) gives a closed-loop system 

ipc = A(8)xpc  + B(8)r, (B.8) 

where 

Proofi Let U denote the set of nonobservable states, i.e., 

x(0)  E U * y ( t )  = 0 vt 2 0. 

By assumption, y ( t )  = 0 Vt  2 0 + x ( t )  + 0. But y ( t )  = 0 
Vt 2 0 x(0)  = xo for some x o  E U. Thus x(0)  = $0 

for some 10 E U + x ( t )  + 0. Hence all nonobservable 
states, when used as initial conditions in (B.14), lead to state 
responses which decay to the origin; i.e., (B.14), (B.15) is 
detectable. ono 

The following result appears in [28]. 
Lemma B.4-Output-Input Convergence to Zero: Let y = 

P[u] where P is a proper, minimum phase, rational, square 
matrix transfer function. If ti, y E L, and limt,, y = 0 
then U E L,  and limt-, U = 0. 

Proofi For notational convenience throughout this proof, 
we shall use the single symbol k to denote an arbitrarily 
large positive constant. Since i E L,, U is regular (see, e.g., 
[13, pp.701). The boundedness of y, together with the MIMO 
extension of [13, Lemma 3.6.21 implies U E L,. 

Define L(s)  = diag [Z(s)] (the same size as P ( s ) )  with Z(s) 
a monic, Hurwitz polynomial, and aZ(s) = d, where d is the 
maximum relative degree of all entries in P-'(s). Then 

since (PL)-l  is proper and stable and limt,,y = 0 by 
assumption. If d = 0, the result is proved; we therefore assume 
d 2 1 hereafter. 

k3 + kzks(8) (B.12) 

c(8) = [k8(8)cp k7(8)]. 

Proof: 

x p  = A p x p  + B p [ k 4 ( 8 ) x ,  + k s ( d ) ] y  + k6(8)~], 

Since U, U E L,, it is readily established (see, e.g., [29, 
(B.13) pp. 2391) that 

d j  -L-'[u] is continuous V j  = 1,. . . , d, 
d t j  

e = kT(8)xc + k8(8)Cpxp, 
= [ k s ( e ) c p  k7(e)1 k] * 000 

Lemma B.3-Checking Detectability of a State-Space Sys- 
tem: Consider the linear time-invariant state-space system 

k ( t )  = A x ( t )  + Bu(t), (B.14) 

Since 1imt-+, L-l[u] = 0, V6 > 0 3T > 0 such that V t  > T 

I z - ' [ u ; ] ~  < 6, vi = 1 , . - . , m  

where m is the dimension of P. Since (d/dt)l-l[ui] is 
differentiable (and hence continuous), we can use the Mean 
Value Theorem to say that for any finite At 

d 
z-l[u;]Jt+at - l- l[UzIJ,  = At- dt z-'[uz1Jt;, 

V i  = 1 , .  . . , m (B.16) 

for some t,t E (t, t + At). Since (d/dt)Z-l[u;] is continuous, 
its value over [t, t + At] cannot differ from its value at tf by 
more than k At, where (recalling ( d 2 / d t 2 ) L - ' [ u ]  E L,) 

y ( t )  = CZ(t). ( ~ . 1 5 )  

0, y(t) = O V t  2 O + x ( t )  + O for all nonzero 

Thus V i  = l , - - - , m  and T E [t, t + At] 

If, for u(t) 
initial conditions x(O), then (B.14), (B.15) is detectable. 
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Using (B.16), for all i = l , . . ' , m  and t > T 

2s 
<at 

where the last step follows since for all i = 1, . . .  , m  and 
t > T ,  IZ-l[ui]I < S. So for all t > T 

Operating on the control law (49) by L-' we have 

L-l'A[y*] = -6L-l  A[y*] + RL-lu - GL-l[y*] 

+ k(AL)-'[y] + S(AL)- l [n]  (B.21) 

and so from (B.20), (B.21) we have 

Now choose At = S1l2; then for all t > T 

1 ;l-'[Ui] I 5 2s1l2 + 
= ICs1/2. 

By similar reasoning, V t  > T 

... . m. 

Since 

and sdl- ' (s)  is proper but not strictly proper, we have by the 
converse of [13, Lemma 3.6.11 (see comments just before [13, 
Lemma 3.6.21) 

IUi(t)l 5 166(1/2)d + I€(t)l 
where E (  t )  is exponentially decaying. Consequently limt+, U 

Lemma B.5-Detectability of the Closed-Loop System: 
= 0 as required. ono 

Consider the state-space system 

E,, = A(6)xp ,  + B ( ~ ) T ,  (B. 17) 

e = C(B)x,, (B.18) 

representing the closed-loop connection of the plant (B.6), 
(B.7) with a certainty equivalence controller of the form 
(B .3)-(B.5) where 

(B.19) 

and e is defined in (48). Then for any fixed e, the system 
(B.17), (B.18) is detectable. 

Proof: Detectability of (B.17), (B.18) will follow from 
the application of Lemma B.3 i.e., by showing that with T = 0, 
e ( t )  = 0 V t  2 0 + xpc(t)  -+ 0 for arbitrary nonzero zpc(0) .  
Note from Lemma B.l and Lemma B.2 that xpc consists of 
stable filtered versions of T ,  y, and U .  From Lemma 3.1 and 
(48L 

L-' A[y] = -6L-l  A[y] + ~ L - ' [ u ]  - $L-l[y] 

A T T T  
X P C  = [x, xc 1 

+ k(AL)- '[y] + S(AL)-'[u] + e. (B.20) 

Using Lemma B.l, 

U(.) = 164(ei)xc(7) + k ( e i ) y ( T )  + 166(4i)T(7), 'T E [0, m) 

where 164, 165, k6 are continuous functions of bounded 8i, and 
x,, y, T E L,. Thus U E L,, and since the plant P ( s )  
is strictly proper, $ E L,. Similarly, since T E L ,  and 
the reference model M - l ( s )  is strictly proper, y* E L,, 
from which d / d t ( y  - y*) E L,. SinceL-'(A + QA + 9) 
is minimum phase, and e 0 by assumption, application of 
Lemma B.4 yields limt,, (y - y*) = 0. But T 0 and 
y* = M-l[r]  from which y -+ 0. It thus follows that for 
arbitrary nonzero xpc(0), all terms in xp, x, consisting of 
stable filtered y tend to zero when both T and e are zero V t  2 0. 

To complete the proof, we require that all the terms in xp, x, 
consisting of stable filtered U tend to zero as t + CO. To 
achieve this, we use Lemma B.4. Note that y = P[u] where P 
is a proper, rational, minimum phase transfer function matrix, 
y ( t )  0 and from 

(k+ SA-')[u] = (A + QA + $)M-'[T] - kA- ' [y]  

clearly ti E L,. Thus the conditions of Lemma B.4 are 
satisfied, from which U E L, and limt+,u = 0. It readily 
follows that all terms in xp and xc consisting of stable filtered 
U also tend to zero, and detectability of (B. 17), (B. 18) follows 

ono 
( CL , 

BL, A L )  be a minimal realization of L-'(s)  defined in the 
statement of Lemma 3.1. Then for & defined in (81) we have 
(ignoring exponentially decaying terms) 

from application of Lemma B.3. 
Lemma B.6Multivariable Swapping Lemma: Let 

where H E L,. 

state-space form as 
Proof: Note that $J, = L-'[$,] can be expressed in 

from which 

(B.23) 
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Similarly, introducing G via 

G = ALG + BL4:e 

enables L-1[e^T4c] to be expressed as 

L-l[eT4,] = G’CT 

(B.24) 

(B.25) 

Now, 

thus 

d 
d t  = A L ( H ~ ^  - G )  + ~ e ^  

from which 

H e  - G = eALt * H 6  + c ( t )  

where e ( t )  contains exponentially decaying terms since AL is 
stable. From (B.22), (B.24) 

To show H E L,, note that since AL is stable, it follows 
from (B.22) that if q5c E L,  then H is the state of an 
asymptotically stable system driven by a bounded input and 
hence H E L,; it remains to be shown that q5c E L,. 

Consider in turn each of the terms in +c defined in (81). 
A[y*] = AM-’[T] E L, since AM-l is proper (recall 
[ = 9 + A  and lim,,,[M-l < 00) and T E L,; U E L,  
since U is a continuous function of bounded argument (see 

using the same reasoning as for A[y*] since d is the maximum 
degree of all elements in c(s). Also, s”A-’[y], . . . , A-l[y] E 
L, since y E L, (recall y = Cpxp and xp E L,) 
and all the indicated filters are proper and stable. Finally, 
s’I-~A-’[u], . . . ,A-~[u] E L, since U E L, and all the 
indicated filters are strictly proper and stable. Thus 4c E L, 
from which H E L, follows immediately from (B.22). 

U00 

discussion preceding (92)). The terms sd[y*], . . , y* E L,  
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