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ABSTRACT

This dissertation presents some new approaches to addressing the main issues en-
countered by practitioners in the implementation of linear model predictive control
(MPC), namely, stability, feasibility, complexity and the size of the region of attrac-
tion. When stability guaranteeing techniques are applied nominal feasibility is also
guaranteed. The most common technique for guaranteeing stability is to apply a
special weighting to the terminal state of the MPC formulation and to constrain
the state to a terminal region where certain properties hold. However, the com-
bination of terminal state constraints and the complexity of the MPC algorithm
result in regions of attraction that are relatively small. Small regions of attraction
are a major problem for practitioners.

The main approaches used to address this issue are either via the reduction of
complexity or the enlargement of the terminal region. Although the ultimate goal
is to enlarge the region of attraction, none of these techniques explicitly consider
the upper bound of this region. Ideally the goal is to achieve the largest possible
region of attraction which for constrained systems is the null controllable set.

For the case of systems with a single unstable pole or a single non-minimum
phase zero their null controllable sets are defined by simple bounds which can
be thought of as implicit constraints. We show in this thesis that adding implicit
constraints to MPC can produce maximally controllable systems, that is, systems
whose region of attraction is the null controllable set.

For higher dimensional open-loop unstable systems with more than one real
unstable mode, the null controllable sets belong to a class of polytopes called
zonotopes. In this thesis, the properties of these highly structured polytopes are
used to implement a new variant of MPC, which we term reduced parameterisa-
tion MPC (RP MPC). The proposed new strategy dynamically determines a set of
contractive positively invariant sets that require only a small number of parame-
ters for the optimisation problem posed by MPC.

The worst case complexity of the RP MPC strategy is polylogarithmic with res-
pect to the prediction horizon. This outperforms the most efficient on-line im-
plementations of MPC which have a worst case complexity that is linear in the
horizon. Hence, the reduced complexity allows the resulting closed-loop system
to have a region of attraction approaching the null controllable set and thus the
goal of maximal controllability.

Xi






Introduction

The focus of this thesis revolves around the linear variant of an advanced control
technique known as model predictive control (MPC).

MPC is a discrete-time, model based, optimal control strategy. In brief, a linear
model of the process is used to determine a control sequence that is optimal with
respect to a chosen cost function and satisfying a set of constraints, that takes the
process from some initial state to a desired target state or target set. Once the op-
timal control sequence is determined, the first control in the sequence is applied
to the process. This procedure is repeated at the next control time interval using
updated measurements from the process.

The origins of optimal control theory can be traced back to the work of Kalman
(1960) in the form of linear quadratic Gaussian (LQG) control, and although used
extensively to solve control problems in many areas, the process industry did not
adopt this technique. Some of the more significant reasons cited for this, inclu-
ded LQG’s inability to handle constraints, process non-linearities, model uncer-
tainty, specific performance criteria and various cultural issues (e.g., education).
Industry however implemented their own version of optimal control beginning
with an algorithm by Richalet, Rault, Testud, and Papon (1978) named dynamic
matrix control (DMC) and also referred to as identify and command (IDCOM) (Qin
and Badgwell, 2003). Due to industry’s rapid adoption of IDCOM, many resear-
chers began to analyse the fundamental properties of this control strategy, pro-
viding rigorous mathematical results in the areas of stability, feasibility, optima-
lity and complexity. Contributors in the area of stability include Muske and Raw-
lings (1993), Camacho (1993), de Oliviera and Biegler (1994), Scokaert, Mayne, and
Rawlings (1999), Mayne, Rawlings, Rao, and Scokaert (2000). Results in the area
of feasibility include Ricker, Subrahmanian, and Sim (1988), Zheng and Morari
(1995), Scokaert and Rawlings (1999) and Vada, Slupphaug, Johansen, and Foss
(2001). Contributions to the reduction of complexity can be found through a num-
ber of different approaches. For example, explicit solutions to MPC are presen-
ted in Bemporad, Morari, Dua, and Pistikopoulos (2000), Seron, De Dond, and
Goodwin (2000), Tendel and Johansen (2002) and Johansen, Petersen, and Slup-
phaug (2002), increased terminal regions appear in De Dond, Seron, Goodwin, and
Mayne (2002) and Limon, Alamo, and Camacho (2003), sub-optimal solutions in
Henriksson and Akesson (2004), and simplifications to solving quadratic program-
ming problems appear in Rao, Wright, and Rawlings (1998) and Cannon, Liao, and



2 1. Introduction

Kouvaritakis (2006). Many of these significant contributions, amongst others, have
been collected in various reviews, for example, Garcia, Prett, and Morari (1989),
Morari and Lee (1997), Rawlings (1998), Mayne et al. (2000) and several compre-
hensive books specifically on MPC, for example, Camacho and Bordons (1999),
Maciejowski (2002), Rossiter (2003) have been published.

The combination of industrial and academic research has enabled the evolu-
tion of MPC from its humble beginnings. Today, the process industry has in ge-
neral adopted MPC as the control strategy of choice for complex processes, due
largely to MPC’s inherent simplicity for incorporating constraints in its formula-
tion. The excellent survey paper by Qin and Badgwell (2003), details the evolution
of MPC and confirms its growing popularity among many process industries.

Constraints are a reality of any real-world process, and fall into the two distinct
categories, physical and operational. Physical constraints are the result of physical
limitations of the process itself such as valve actuation ranges and tank levels, whe-
reas operational constraints are those that are introduced to satisfy operational
requirements such as ensuring optimal process yield, desirable operating ranges
for equipment longevity and environmental considerations. Hence, as identified
previously it is of fundamental importance that any control strategy employed to
control such processes must allow the integration of constraints in its formulation.
The incorporation of constraints, in conjunction with the implementation require-
ments of MPC algorithms, has introduced significant problems in the areas of fea-
sibility and stability. Both of these areas have been addressed by researchers, but
due to the close interaction between these areas, the resulting solutions in many
cases introduce significant trade-offs. For example, the introduction of stability
and implementation requirements reduce the feasible operating range of MPC.

Infeasibility of an optimisation problem occurs when no solution satisfying all
of the constraints exists. For MPC, infeasibility occurs when an admissible control
sequence that steers a process from some initial state to a final state, does not
exist. This condition can occur due to many factors including modelling errors and
disturbances, however there is a class of infeasibility conditions that results from
ignoring the interaction between model dynamics and imposed constraints. This
class of infeasibility conditions are in many cases avoidable. In general infeasibility
is a major issue for practitioners and many authors have proposed methods for
dealing with infeasibility. The paper by Scokaert and Rawlings (1999), summarises
the main approaches to handling infeasibility. The main method of dealing with
infeasibility, is by the removal or relaxation of what are termed soft constraints.
Soft constraints are those constraints that can be relaxed or removed temporarily
with little consequence. Various techniques for removing or relaxing constraints
exist and include assigning priority levels to constraints to determine the order
of relaxation as described by Vada et al. (2001). In the event that the problem is
infeasible after the relaxation of all possible soft constraints, then the prediction
horizon of MPC is increased or the problem is deemed to be not controllable. In
most cases the relaxation of soft constraints allows the algorithm to contend with
infeasibility conditions without incident, but in some cases this action leads to a



derogatory effect on the system and, as shown in Medioli, Seron, and Middleton
(2005), could introduce instability.

The combination of process dynamics and constraints, results necessarily in
the reduction of the region in the state-space for which any control strategy is able
to control the process from some initial state to a desired final state. For the case
of regulation the desired final state is the origin. In some cases it is possible to
explicitly characterise the largest set of initial states that can be controlled to the
origin. This set of initial states is commonly referred to as the null controllable
set or region. Many authors have characterised the null controllable region of uns-
table systems and have provided control strategies that allow the resulting closed-
loop system to operate over the entire region; see for example Lasserre (1993), Teel
(1999), Hu, Miller, and Qiu (2002) and Favez, Mullhaupt, Shivasan, and Bonvin
(2004). These closed-loop systems are often referred to as semi-globally stable
systems. None of this research to the authors knowledge has addressed the null
controllable region in the context of the MPC control strategy.

Most tractable implementations of MPC have a finite length prediction hori-
zon and in general short horizons are needed to reduce the computational requi-
rements of the algorithm also termed complexity. Using a finite length prediction
horizon, necessarily introduces some additional constraints to the MPC problem.
These additional constraints result in only a subset of the null controllable region
being available to the MPC. The largest subset in which MPC is always feasible is
termed its feasibility region. The distinction between a null controllable region and
the feasibility region is that the former is dependent only on the model of the pro-
cess and its associated constraints, while the latter is in addition dependent on the
constraints introduced by the control strategy selected.

Unfortunately, optimality over a finite prediction horizon and in the presence
of constraints, does not provide any stability guarantees. Hence, stability for the
MPC algorithm can only be guaranteed if additional conditions are placed on the
optimisation problem. Research in the area of stability for MPC has progressed to
the point where the problem is well understood and the solutions available have
been summarised elegantly by the survey paper Mayne et al. (2000). The intro-
duction of stability conditions further restricts the feasibility region for an MPC
formulation.

In concert, null controllable regions, finite prediction horizon and stability re-
quirements significantly reduce the region of attraction of the MPC formulation,
defined as the set of states from which asymptotic stability of the origin can be
guaranteed for the MPC controlled system. This in turn results in potentially avoi-
dable infeasibility conditions that have in part resulted in infeasibility handling
algorithms. Further, by the recent survey conducted by Qin and Badgwell (2003),
stability requirements have not been added to the major commercial implemen-
tations of MPC for the process industry.

The results presented in this thesis, provide a characterisation of null control-
lable sets and formulate variations of the MPC algorithm that leverage this infor-
mation to produce closed-loop systems that have a region of attraction that is ar-
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bitrarily close to the null controllable region. In addition, this is all achieved in
the context of greatly reduced complexity, thereby allowing the use of such MPC
algorithms in high speed applications.

The main contributions of this thesis are:

1. New insights on the null controllable region of the system to be controlled
and the understanding of the significant benefits of incorporating this know-
ledge into the MPC formulation. For example, for systems with simple null
controllable set representations, the boundaries of these sets can be thought
of as implicit constraints.

2. The identification of an important, and practically relevant, class of systems,
which by the application of MPC-like control formulated with implicit con-
straints, result in semi-globally asymptotically stable or maximally control-
lable closed-loop systems. That is, they have a region of attraction arbitrarily
close to the null controllable region of the system.

3. A technique for introducing implicit constraints into MPC frameworks that
are based on ARMA models.

4. A detailed analysis of the null controllable sets of input constrained, open-
loop unstable systems with multiple unstable modes, which results in a com-
prehensive understanding of their structure and properties.

5. The development of a new variant of MPC called reduced parameterisation
MPC (RP MPC), formulated using the results of the detailed analysis of input
constrained, open-loop unstable systems. This new algorithm has a worst
case polylogarithmic complexity with respect to the horizon length. Since,
the best, worst case complexity for the on-line solution of MPC is linear
with respect to horizon length, this constitutes a significant improvement.
The reduced complexity allows increased horizon lengths and therefore ex-
pands the region of attraction closer to the null controllable set and maximal
controllability.

This thesis is divided into seven chapters that detail both the background and the
original contributions which in addition to this chapter are summarised as follows:

Chapter 2: This chapter provides background to the MPC algorithm to gain a bet-
ter perspective on the features of the control strategy. The addition of con-
straints to the MPC formulation is paramount to any real-world implemen-
tation of MPC, but we note that some of the implications of constraints are
not fully explored in the current literature and this fact leads to unexpected
consequences. These consequences occur mainly in the context of feasibi-
lity for which many authors have supplied additional techniques for addres-
sing this situation. These techniques are far from made redundant by the
work presented here however some interesting observations are made in the



presence of our work. We also note that the optimality of MPC does not im-
mediately result in stability guarantees in the presence of constraints and as
such the additional stability requirements proposed by other authors are in-
vestigated. Closing the chapter is a discussion of the main issues that affect
the practical implementation of MPC.

Chapter 3: This chapter analyses two classes of systems with relatively simple null
controllable set representations, namely, input constrained systems with one
unstable pole and output constrained second-order systems with one non-
minimum phase zero. Analysis of the null controllable sets for these classes
of systems shows that they can be equivalently represented by what we term
implicit constraints. An MPC-like control technique, that includes implicit
constraints, is formulated and applied to the two classes of systems. The
resulting closed-loop systems are analysed and found to have a region of at-
traction arbitrarily close to the null controllable set or maximally control-
lable. Further, maximal controllability is achieved, from the MPC-like for-
mulation, with a horizon length of one.

Chapter 4: All of the analysis presented in previous chapters is performed in state-
space as this provides a logical framework which yields some important in-
sights. We however note that in practice state-space models in MPC are far
less prevalent. Model identification is a critical component to the formula-
tion of MPC and its natural formulation is in terms of transfer function mo-
dels. To show that the concepts developed in Chapter 3 are applicable in the
prevalent implementation framework, we present a conversion technique for
the application of implicit constraints to transfer function models.

Chapter 5: Having identified the relatively simple structure of unstable systems
with a single unstable mode, this chapter investigates the characteristics of
the null controllable sets of unstable systems with a higher number of uns-
table modes. The analysis develops important aspects and properties of these
higher complexity null controllable sets, that are then used in the subsequent
chapter.

Chapter 6: We propose a new algorithm termed reduced parameterisation MPC
(RP MPC) that addresses avoidable infeasibility and reduces the complexity
of MPC to allow the implementation of high speed MPC when operating
near the controllable extremes of a system. This algorithm results directly
from observations in previous chapters with respect to maximally control-
lable systems and their region of attraction.

Chapter 7: Summarises the work presented, details the conclusions gained from
the research and addresses the direction of future research.
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Active steady-state constraints, 20
ARMA models, 71
non-minimum phase system, 51

Complexity, see MPC or RP MPC

Facets
basis, 87
composite, see Reduced parameteri-
sation
core, see Reduced parameterisation
exposed, see Test polytopes
Minkowski sum, 86
offset, 87
support hyperplane, 87

Generators, 85
composite, 90
core, 85
set ordering, 86

H-polytope
normals, 88
offsets, 88

Implicit constraints, 23
ARMA models, 63

Maximally controllable, 10
systems, 23

Membership determination, 115
composite generator partitioning, 120
exposed facet expansion, 119
non-exposed facet expansion, 121
testray, 117

Minkowski sum, 85

MPC, 7
continuous-time, 25
feasibility, 16
stability, 12

worst case complexity, 17, 141

Nominal infeasibility, 11

N-step controllable set, 83
feasible control sequence, 95
H-polytope representation, 88
Minkowski sum, 86

Null controllable set, 10
multiple unstable poles, 81
single non-minimum phase zero, 53
single unstable pole, 29

Orthogonal complement, 87
Positively invariant set, 10

Reduced parameterisation, 89
composite facet, 93
core facet, 98
generators, 90
H-polytope representation, 91
index sequence, 90
maximum parameters, 96
Minkowski sum, 90
Region of attraction, 10
RP MPC, 107
algorithm, 109
stability, 138
worst case complexity, 145

Test polytopes, 116
corresponding reduced parameteri-
sation, 116
exposed facets, 119
facet sets, 118
H-polytope representation, 116
Minkowski sum representation, 116

Zonotopes, 85
facets, 86
support hyperplane, 87
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