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Abstract 

The act of accessing data objects in a persistent 
store may result in the creation of state 
dependencies between the accessing processes and 
data objects.  It is important for the logical integrity 
of the store that checkpoint or roll-back of all 
dependent entities (processes or objects) occurs as 
an atomic action.  Reducing the number of 
dependent entities in the system leads to shortening 
of the period of suspension of processes during 
checkpoint and roll-back operations and thus 
improvement in system efficiency.  In this paper we 
investigate a new approach to the representation of 
dependencies based on differentiating between 
dependencies created as a result of read accesses 
and of write accesses.  Using directed graphs to 
maintain information about dependencies and 
separately defining the meaning of graph edges for 
checkpoint and roll-back operations, we show that it 
is possible to significantly reduce the cascade effects 
of these operations. 

1  Introduction 
Persistent systems provide mechanisms for the 
uniform management of data regardless of its 
lifetime [1].  Provision of such uniformity, using 
conventional two-level store computer architectures, 
requires the abstraction of a very large store which 
involves all data in the system and appears as a 
failure-free store.  Such store is referred to as a 
persistent store and the property of providing the 
illusion of being failure-free is often called store 
stability [2]. 

A Distributed Persistent Store (DPS) is a 
network-wide persistent store which supports 
concurrent access of users for a distributed system 
[6].  Casper [12] and the Monads-DSM [5] are 
examples of DPSs.  Both support the existence of 
persistent objects in a paged virtual storage space.  
Nodes provide access to the persistent store by 
maintaining a cache of virtual pages from the store 
in their local volatile memory.  These virtual pages 
are provided to client nodes by a central page server 

(Casper) or by a group of page servers (the Monads-
DSM).  Pages are transmitted between client and 
server nodes as required by user processes, the page 
coherence protocols and the store stability protocols. 

When a computer system fails, the contents of its 
volatile memory are typically lost, while the 
contents of its non-volatile memory (disk or tape) 
remain unchanged.  As persistent stores provide 
uniform management of data, the transfer of such 
data between volatile and non-volatile memory is 
transparent to the user.  At any instant in time the 
true state of a persistent store is represented by the 
combination of the contents of the volatile and non-
volatile memories.  Since the contents of volatile 
memory are typically lost after system failure, a 
stable persistent store must be able to revert to some 
consistent state described in non-volatile memory. 

Techniques proposed to achieve this ([7, 10]) are 
typically based on flushing the volatile system state 
to non-volatile storage (checkpointing) and using 
this state on occurrence of a failure (or in response 
to the request of the user or higher level 
applications) to revert to the most recent checkpoint 
(rolling back).  This requires the existence of at least 
one global consistent state at each point in time.  
Accordingly, checkpoint operations must be 
achieved as an atomic action in order to guarantee 
the existence of such a state even if some failure 
occurs during the checkpoint operations themselves.  
It is desirable that such a consistent state is close to 
the state at the time of failure, thus minimising the 
loss of modifications to the store.  However, 
frequent recording of a global state is not normally 
acceptable due to the cost of such operations. 

Checkpointing the whole system state in an 
atomic action may necessitate cessation or 
restriction of the system normal operations during 
the checkpoint.  This is not so efficient for the 
system throughput, especially in the case of DPSs.  
To overcome this problem, mechanisms [7] have 
been proposed to checkpoint parts of the store 
independently; the global state of the system is the 
collection of these stable parts.  Checkpointing parts 
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of the store independently however, creates the 
possibility of logical inconsistencies between data.  
Therefore, inter-relationships (dependencies) 
between such parts must be taken into account to 
ensure consistency. 

As processes access data objects, they may 
become dependent on each other, due to the possible 
effect of the data on the way that the processes 
modify data in some other objects.  It is important 
for the logical integrity of the store that 
checkpointing of all dependent entities occurs as an 
atomic action.  Dependencies are detected and 
recorded in Casper using sets called associations 
[12]. 

The problem with large sets of dependent entities 
(especially in a distributed environment) is the 
degradation in system performance caused by the 
propagation of checkpoint and roll-back operations 
called the cascade effect.  This cascade effect can be 
reduced by controlling the number of the 
independently checkpointed entities and the 
frequency of checkpoint operations.  As we will 
show the extent of cascadable operation is reduced 
through the use of a new technique for describing 
dependencies. 

In this paper, we investigate the use of directed 
graphs as a method of maintaining dependencies 
among entities in a DPS.  We show that the use of 
directed graphs allows us to separately describe 
checkpoint and roll-back dependencies, thus 
improving store efficiency. 

2  Entity dependency in distributed 
environments  
Constructing a system-wide consistent state in 
distributed systems is not as straightforward as for 
single-node systems.  Even if each node has its own 
individual consistent stable state, a collection of 
individual stable states cannot be considered as a 
global consistent state.  This is because of the 
dependencies among entities belonging to different 
nodes and that such dependencies may traverse 
nodes. 

Process communication in computer systems 
may lead to inter-entity dependencies.  Processes in 
distributed systems may communicate through 
passing messages or accessing a (virtual) shared 
memory.  The criterion for dependency is not 
similar for these methods of communication. 

2.1  Dependency criteria in message 
passing systems 
In message passing systems a process communicates 
with another process or invokes an object by 
sending and receiving messages.  Such message 
passing results in the dependency of the receiver to 
the sender of a message.  The sender may also have 

received messages from other processes, resulting in 
a cross-dependency of entities.  Knowledge of the 
order (time) in which messages are sent and 
received is important in such systems.  However, no 
system-wide physical clock exists in distributed 
systems.  Lamport [9] proposed achievement of 
such ordering using the concept of logical time.  
Logical time describes the happened-before relation 
between local events in a process as well as the 
inter-process events such as sending and receiving 
messages.  Having such a unique time and 
appending messages with the time, it is possible to 
specify criteria for dependency and global consistent 
state.  According to [11] ,  
1) Message Mi depends on message Mj if and only 

if Mi is produced in a site after receipt of Mj or 
after receipt of Mk which depends on Mj . 

2) Message M is called an ’orphan message’ if its 
receiver records the receipt in its stable state, 
but its sender reverts to a state which existed 
before its sending of the message.  Message M 
is called a ‘missing message’ if its sender 
records its sending, but its receiver reverts to a 
state which existed before its receipt of the 
message.  A global state which does not include 
any orphan or missing message is called a 
global consistent state. 

The problem with message passing systems is that 
each message transmission is regarded as a source 
of dependency between the sender and receiver of 
the message.  This is while some messages may 
include special system management information or 
read-only data which in fact result in no real 
dependency. 

2.2  Dependency criteria in shared 
memory systems 
Processes in Distributed Shared Memories (DSMs) 
communicate through accessing the same data 
objects.  This sort of communication results in 
dependency of the processes and the object if the 
object has been modified since the last checkpoint 
operation.  Similarly to sending and receiving 
messages in message-based systems, writing to and 
reading from an object are considered the two major 
events in DSMs.  Writing on an object may be 
considered equivalent to sending a message to the 
object and reading from an object equivalent to 
receiving a message in terms of message passing 
systems [4] . 

In contrast to message passing systems in which 
each message transmission results in a dependency, 
in DSMs, 
• access to data (only transmission of messages 

including data in terms of message passing 
systems) is considered as the criterion of 
dependency, and 
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• operation behaviour can be taken into account to 
prevent false dependencies to be considered.  For 
example, accessing an unmodified data results in 
no dependency; this may be detected using 
coherency mechanisms provided for the DSMs. 

In summary, using DSM reduces inter-entity 
dependencies in comparison with message passing 
systems [8] .   

3  Implications of dependencies in 
distributed persistent stores 
Casper and the Monads-DSM are examples of DPS 
implementations which attempt to provide stability 
of their store through checkpointing individual parts 
of their store.  They track and maintain 
dependencies for their defined granularity of 
stabilisation. 

Casper employs the central server model of 
distributed memory management to provide the 
abstraction of a DPS.  It considers the world as a set 
of clients served by a central server which provides 
access to shared objects and maintains the stability 
and coherency of the paged persistent store.  
Checkpoint operations occur at the client level and 
may be cascaded to other clients.  Clients which 
have seen the same modified data since the last 
stable state, are deemed to be dependent on each 
other and are grouped into dynamic sets called 
Associations [12].  Each Association is accompanied 
by a list of persistent pages which contain the 
modified data which was accessed in common.  
Whenever a client obtains a copy of a modified 
page, Associations may change according to the 
following rules:  
• The Association to which the client belongs is 

merged with the Associations of other clients 
dependent on the page, and 

• The page is inserted into the list of persistent 
pages modified by members of the merged 
Association.   

When any client belonging to an Association 
initiates a checkpoint operation, all clients in the 
Association are forced to checkpoint.  Similarly, if 
any client in an Association rolls back to its last 
stable state, all clients in the Association must roll 
back.  This results in consistency of the persistent 
store. 

The granularity of checkpoint in Monads is a 
volume (logical disk partition) [10] .  In a multi-
volume single Monads node, or a network of 
Monads computers, it is possible to have cross 
references between volumes.  Volumes are used to 
store both processes (process stacks) and objects 
and therefore, dependencies may develop between 
them.  Monads-DSM represents such dependencies 
using dependency graphs of volumes.  In order to 
ensure consistency, volumes containing cross 

references are checkpointed together and a 
dependency graph is maintained at each node to 
describe relationships between volumes.  To ensure 
atomicity of checkpoint operations, a two-phase 
commit protocol is also proposed, in which a 
volume and all its dependent volumes are 
checkpointed together [7]  

A problem with the original Monads-DSM 
approach is the granularity of stability.  Using 
volumes as the granularity of stability leads to the 
incidence of checkpoint operations on unwilling 
data objects in a volume together with some other 
objects which must be checkpointed for consistency 
reasons.  In single volume nodes, a checkpoint on 
that volume effectively results in a suspension of 
operation for that node. 

4 Implications of dependency on 
performance and useability 
Existence of a system-wide consistent stable state at 
recovery from a failure is ensured if checkpoint of 
an entity is propagated to all its dependent entities.  
This can be provided through the achievement of the 
following operations as an atomic action: 
• the checkpoint of the entity, and 
• the checkpoint of all other dependent entities to 

which the checkpoint is propagated. 
A similar sequence should also be followed in the 
case of roll-back of an entity following a failure.  
The problem with such a sequence is the partial 
cessation of processing during the checkpoint or 
roll-back operation.  Suspension of operation of a 
part of the system results not only in unuseability of 
the suspended part, but also inability of other (non-
suspended) parts to communicate with the 
suspended part.  This is more crucial in distributed 
systems as entities reside on different nodes may 
depend on each other and thus completion of a 
checkpoint may require transmission of some 
messages and wait for reply from remote nodes.  
Therefore, reducing the effect of dependent parts of 
the store is required to improve the system 
performance  

Reducing the effect of dependent data on system 
performance requires that 
1) Propagation of checkpoint and roll-back 

operations to unrequired parts of the store is 
prevented.  Selection of entities as the granularity 
of checkpoint operations reduces such 
propagation. 

2) The extent (number) of dependent parts of the 
store is reduced.  To provide this, we need to 
rethink our basis for dependencies.  By 
exploiting the behaviour of operations between 
processes and objects in terms of dependency, 
we will define a new model of propagation of 
checkpoint and roll-back operations. 
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5  A new representation of dependencies 
Considering processes as the agents of change on 
data and objects as the repository of data in a 
persistent store, inter-entity dependencies are 
created as a result of the invocation of objects by 
processes.  Neither processes nor objects can 
directly depend on each other, but they may depend 
on each other through an entity of the other kind. 

We assume entities as the granularity of 
checkpoint (and roll-back) operations.  Checkpoints 
are initiated for entities to advance their stable state.  
During a checkpoint operation for an object, all 
modified pages since the last checkpoint are written 
back to disk, becoming clean.  We refer to such 
object as an unmodified object (unmodified since its 
most recent checkpoint) and to an object with some 
modified data since its most recent checkpoint as a 
modified object. 

Previous work on stability in persistent systems 
[7, 13]  considered that dependency is always a 
bidirectional relationship, i.e.  when two entities are 
dependent, the checkpoint or roll-back of each of 
them is propagated to the other entity.  In the new 
representation of dependencies, we distinguish 
between dependencies created as a result of 
different operations.  Accordingly we propose that 
dependency is in fact a unidirectional relationship 
between two entities of different kind (processes 
and objects).  By considering read and write as the 
main operations on objects, the following categories 
of operations may be considered in terms of 
dependency. 
1) A process may read from an unmodified object.  

This results in no dependency between the 
reading process and the object as the current state 
of the object is stable. 

2) A process may read from a modified object.  
This results in a unidirectional dependency 
between the reading process and the object, due 
to the unstability of the read data at the time of 
the read operation.  The direction of the 
dependency (i.e.  which side depends on the 
other side) is a matter which is specified when a 
cascadable operation (checkpoint or roll-back) is 
being propagated.  Consider a process P which 
has read from a modified object O.  Before P 
checkpoints its state, it must ensure that the read 
data is stable; O is not required to ensure about 
the stability of P when it is being checkpointed.  
As a result, the direction of dependency in the 
case of checkpoint is from P to O.  A roll-back 
of O would result in an inconsistency with P and 
thus necessitates a roll-back of P.  However, a 
roll-back of P does not affect O.  Thus, the 
direction of dependency in the case of roll-back 
is from O to P (O depends on P). 

3) A process may modify an object.  This results in 
the dependency of both entities on each other 
and is represented by a pair of unidirectional 
dependencies between them.  This pair of 
dependencies is necessary to prevent the 
occurrence of missed object modification or 
orphan object modification through propagation 
of checkpoint (roll-back) of each side to the 
other side.  A missed object modification occurs 
when an object is modified and subsequently 
rolled back to the state prior of the modification.  
An orphan object modification occurs when an 
object is modified and subsequently the 
modifying process rolls back to the state prior to 
the modification. 

Methods of representing dependencies in persistent 
systems which assume all dependencies are 
bidirectional are unable to represent directional 
dependencies.  Directed graphs can be used to fulfil 
the requirements of the new representation.  We 
refer to a directed graph which represents such 
dependencies as a Directed Dependency Graph 
(DDG).  DDGs are also used to separately represent 
the checkpoint and roll-back dependencies between 
entities.  This is described later in this paper. 

One DDG is associated per entity, but different 
spanning-trees may be traversed depending on the 
kind of the operation (checkpoint or roll-back), 
initiated for the entity.  As read operations in a 
computer system typically outnumber write 
operations [3], we believe that the cost of cascadable 
operations will decrease dramatically by use of the 
proposed directed graphs.  This is because read 
operations on modified data now create a 
unidirectional dependency.  The simulation results 
presented in section 7 confirm this claim. 

5.1  Notation 
We use → edge in order to specify the dependency 
relationship between two entities.  E1 → E2 means 
that E1 depends on E2.  → is transitive, but not 
symmetric i.e. 

if (E1 → E2) and (E2 → E3 ),  
 then it is implied that (E1 → E3) 
but, E1 → E2 does not imply that E2 → E1. 

However, the right hand side of a → relation may 
depend on the left hand side 
• through transitivity; the existence of a cycle in 

the directed dependency graph (e.g.  for 
E1 → E2, we may also have E2 → E3 and 
E3 → E1 which implies that E2 → E1), or when 

• a process has modified an object, which results 
in two unidirectional edges with different 
directions between the two entities.   

In the case of a write operation which leads to a pair 
of dependencies, instead of indicating two 
unidirectional edges (E1 → E2 and E2 → E1), we use 
the notation E1 ↔ E2. 
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The construction and maintenance of DDGs are 
integrated into the management of the persistent 
store which typically utilises the operating system 
kernel services such as the virtual memory 
management. 

5.2  Construction of directed dependency 
graphs 
We assume that dependencies are recorded as soon 
as they occur.  Update of DDGs is synchronously 
achieved with the operations cause the 
dependencies.  A DDG grows or shrinks according 
to the following criteria. 
• When a process reads an unmodified object, 

nothing is added to any DDG. 
• When a process P1 reads a modified object O1, 

the edge P1 → O1 is inserted into the DDG 
including P1 or O1, if at least one of the DDGs 
containing P1 or O1 includes only one entity; 
otherwise the edge joins the two DDGs. 

• When a process P1 modifies an object O1, the 
edge P1 ↔ O1 is inserted into the DDG including 
P1 or O1, if at least one of the DDGs containing 
P1 or O1 includes only one entity; otherwise the 
edge joins the two DDGs. 

• When a process belonging to a DDG reads an 
object or modifies an object which belongs to 
another DDG, the two DDGs are merged using 
one of the above edges to create a single larger 
graph. 

• A graph shrinks when a set of dependent entities 
is checkpointed or reverts to their last stable 
state.  Once a checkpoint or roll-back operation 
is initiated for an entity E, for each entity which 
is reachable from E in the DDG corresponding to 
the operation, the operation is applied on the 
entity.  Then all edges attached to the entity are 
removed.  Such removal of all edges is possible 
due to the stability of the entity1. 

• DDGs are not persistent.  When a node crashes, 
all graphs stored on that node are lost.   

• DDGs do not store any information about the 
order of occurrence of dependencies.  Operations 
on an object may happen in different times, the 
issue which is unimportant during a time slice 
regarding dependency.  Nevertheless, before the 
allocation of a new time slice to a process, it 
should be ensured that all dependencies till this 
stage have been recorded. 

At any given time each entity belongs to one and 
only one dependency graph.  To find the entities 
dependent on an entity, it is sufficient to find the 
location of the entity in its graph (subject to the kind 
of operation) and then traverse the directed graph 
starting from the entity.  This may be different for 

                                                           
1At this stage we assume that checkpoints are achieved atomically. 

each entity in the graph and thus may result in a 
different set of dependent entities. 

5.3  Description of dependencies in a 
multi-node environment using DDGs 
So far we have implicitly assumed that entities 
belong to a single-node computing environment.  It 
is crucial that the described model be able to 
describe dependencies between entities in a 
distributed environment where an entity in a node 
may depend on a remote entity.  The described 
scheme is fully applicable to a distributed 
environment with the abstraction of shared virtual 
memory.  It may also be applicable for message 
passing systems if page accesses are properly 
replaced by message transmission assuming that 
messages contain enough information regarding 
their operation behaviour.   

Two major issues regarding the application of 
described DDGs for distributed virtual stores are the 
maintenance of distributed DDGs and the 
representation of edges which link entities residing 
on deferent nodes.  A centralised or distributed 
approach may be applied to manage distributed 
DDGs regardless of the model of page serving.  
However, to gracefully integrate stability 
management with memory management, distributed 
graphs might be more harmonised with the model of 
page serving used in distributed virtual stores.  
Accordingly the following approaches can be taken:  
1) Use of a central server for dependencies: In 

DPSs such as Casper which rely on a central 
page server, all objects are accessed through a 
central server.  Such a server can also manage 
distributed dependency graphs.  This method of 
maintaining graphs is simple, but it has the 
potential drawback of the server bottleneck. 

2) Use of a distributed server for dependencies: 
Regardless of the page serving strategy this 
group of approaches relies on a distributed graph 
which is maintained by all processing sites.  This 
does not force any relationship between page 
serving nodes and dependency maintaining 
nodes.  For example, diskless nodes in a 
distributed system do not serve any data object, 
while they may host processes which access 
remote objects and thus insert some edges in the 
distributed dependency graph.  Distribution of 
DDGs may be achieved either through 
replication of DDGs or decomposing DDGs into 
sub-graphs, as described below. 

• Replication: A distributed DDG is replicated on 
all nodes which own at least one entity in the 
graph, even disk-less nodes.  This overcomes the 
drawback of the server bottleneck in the central-
server approach, but it requires the maintenance 
of consistency between graph replicas.  In this 
approach, a node must be aware of all 
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dependencies happening on all nodes with 
common DDGs with the node; most of the 
dependencies may be locally unimportant.  
Moreover, any change in a DDG must be 
atomically multicast to all nodes residing a 
replica. 

• Sub-graphs: A distributed DDG is decomposed 
into some sub-graphs, each maintained by a 
different node.  Each sub-graph may include all 
local dependencies in a node as well as direct 
dependencies2 of its entities on remote entities.  
As the majority of accesses in a node are 
typically local, each sub-graph is populated with 
local entities, but some edges connecting a local 
entity to a remote entity may also exist. 

 This approach balances the load of maintaining 
dependency graphs gracefully over nodes, but 
finding all dependent entities on an entity may 
require traversing the graph over nodes which 
necessitates transmission of messages.  The 
approach is appropriate for distributed persistent 
systems which are constructed using a true 
distributed shared memory.  In comparison to the 
alternative approaches the cost of the approach is 
reasonable, but cross references of entities on 
different nodes is a problem.  However, node 
crashes result in the lost of their sub-graph and 
thus roll-back of dependent entities. 

Representation of edges which link two remote 
entities is similar to that of edges which link local 
entities in both centralised maintenance of DDGs 
and replication of DDGs.  In the case of distributed 
maintenance of DDGs using sub-graphs, however, 
this is not so straightforward as an edge should link 
two entities which reside on different sub-graphs on 
different nodes.  When a process P attempts to 
access a modified page of a remote object R, a page 
fault is raised locally.  In handling the fault, the 
local kernel realises that the fault is for a remote 
page and therefore sends a message to its owner 
node, requesting to supply the page.  To ensure that 
the local kernel and the kernel in the owner node are 
aware of possible dependency as a result of the 
access, a solution is to duplicate such edge and let 
both kernels to insert the edge into their sub-graphs.  
Inserting the edge in both kernels require the 
existence of a vertex representing the remote entity. 

We propose pseudo entities to provide the local 
representation of remote entities.  A pseudo entity is 
the ghost of a remote entity and contributes in local 
sub-graphs of a DDG behalf of the remote entity.  
To distinguish entities which correspond to remote 
pseudo entities, we refer to them as real entities and 
to other entities as non-pseudo entities.  Pseudo 
entities are identified with the identity of their 
                                                           
2An entity directly depends on another entity, if the path connecting them 

has only one edge. 

corresponding real entities.  Pseudo entities act 
similar to real entities regarding the propagation of 
cascadable operations except that a message should 
also be sent to the node owning their corresponding 
real entities to propagate an operation.  We assume 
that each entity’s identifier encloses its host node 
identifier. 

Each link connecting two entities residing on 
different nodes in fact is represented by two edges, 
each links a pseudo entity to a real entity in the same 
way as for local entities.  To cope with this 
arrangement, the local kernel in the scenario of 
accessing a modified page of a remote object 
mentioned above, has the knowledge of the local 
process (P) and the remote object (R) containing the 
requested page, the remote kernel also must have the 
knowledge of both R and P (as a remote process).  
Therefore, as a part of its requesting message, the 
local kernel must enclose the identifier of P.   

Consider the distributed DDG shown in figure 1 
in which process P12 reads a modified page of the 
object O21.  P12 accesses the object through a virtual 
address.  Because the corresponding page is not in 
local memory, a page fault occurs and consequently 
the page-fault-handler sends a request to the server 
for the page.  Eventually,  
• a copy of the page is transferred into the local 

memory of N1,  
• N1 inserts the edge P12 → O’21 into its 

dependency graph (O’21 is a pseudo entity for 
O21), and 

• N2 inserts the edge P’12 → O21 into its 
dependency graph (P’12 is a pseudo entity for 
P12). 

 

P11 P12

O11
O' 21

N1 N2

P21 P22

O22O21

P'12

Psuedo entities Modified Objects Unmodified objects  
 

Figure 1 P12 reads from a remote object O21. 

6  Examples of implications of this new 
representation 
In order to illustrate the impact of the new scheme 
in single-node stores, we present, in figure 2, a 
scenario in which the effect of operations on DDGs 
is demonstrated.  We then show the effects of 
checkpoint and roll-back operations on the resultant 
graph. 

The figure depicts a sequence of operations 
performed in a store starting from an initial state 
(e.g.  after system restart).  We assume that three 
processes (P1, P2, and P3) are accessing four 
objects (O1, O2, O3, and O4).  Processes are shown 
by circles in the figure, while objects are shown by 
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blank (unmodified) or shaded (modified) rectangles.  
For simplicity, we do not consider system-related 

information maintained on a per object basis. 
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Figure 2 The scenario of merging directed dependency graphs due to read and write operations 

 
 

6.1  Implication of new representation on 
cascadable operations 
DDGs are used to identify entities for which a 
checkpoint or roll-back operation should be 
propagated.  However, the path which should be 
traversed for cascading roll-back is different from 
that for cascading checkpoint operations as a result 
of the unidirectional edges in the graph.  We use a 
single dependency graph and then apply separate 
checkpoint and roll-back algorithms to propagate 
the operation. 

To this end, the relation ∅ in the dependency 
graph has different meanings in terms of cascading 
checkpoint or roll-back operation.  To distinguish 
between our different meanings of the symbol, two 
further symbols are introduced to specify the 
dependency between two entities in terms of 
checkpoint or roll-back.  By E1 

S
→ E2 we mean that 

when E1 is checkpointed, E2 also should be 
checkpointed and therefore E1 depends on E2 in 
terms of checkpoint.  Likewise, E1 

R
← E2 means that 

E1 depends on E2 in terms of roll-back.  Figure 3 

shows the relationship between the edges forming a 
dependency graph and their meaning in checkpoint 
and roll-back graphs.  Note that the expression 
E1 → E2 is congruent to the expression E2 ← E1. 
 

Dependency Graph Checkpoint Graph Roll-back Graph 

→ S
→  R

←  

← S
←  R

→  

↔ S
← and  S

→  R
→ and  R

←  
 

Figure 3 The relationship between Dependency Graph, 
Checkpoint Graph, and Roll-back Graph 

 
As we have shown, read and write operations 

have different effects in terms of dependency.  
While the write operation makes both sides of the 
operation dependent on each other, the read 
operation on modified data makes only the reader 
process dependent to the read object.   As the ratio 
of read to write operations in usual applications is 
high, we can prevent the propagation of checkpoint 
and roll-back in some parts of the graph. 

To clarify the distinction between the 
implication of DDGs on checkpoint and roll-back 
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operations, consider a scenario in which a process 
P1 reads from a modified object O1.  Until the next 
checkpoint operation is commenced for process P1, 
all actions taken by P1 based on what it has read 
from O1 is unstable.  During such period of 
unstability, either of O1 or P1 may be checkpointed 
or rolled back.   
1) If O1 is checkpointed, P1 does not have to be 

checkpointed.  The worst case is that after 
checkpointing O1, P1 is rolled back to its last 
stable state.  This results in no inconsistency as 
the stable data in O1 may be read by P1 again. 

2) If P1 is checkpointed, O1 must also be 
checkpointed.  Otherwise, in the case of O1's 
roll-back, there is an inconsistent state in which 
an orphan page modification has been read by P1. 

3) If O1 is rolled back, P1 has to be rolled back.  
Otherwise, P1 has read an orphan object 
modification and thus an inconsistent state. 

4) If P1 is rolled back, O1 does not have to be rolled 
back.  This is due to the possibility of the repeat 
of the lost read operation. 

6.2  Checkpoint propagation using DDGs 
The checkpoint of an entity requires the checkpoint 
of the entity itself, all of its dependents (if any 
exist), and the system related data structures to be 
achieved as an atomic action.  We review the impact 
of DDGs on the propagation of checkpoint 
operations in this section.  To checkpoint an entity 
E, E is located in a DDG and the operation is 
resumed based on the following algorithm.   
 
Procedure Stabilise (E: entity) 

begin 

 if E has already set ‘visited’  

  then return; 

  else set E as ‘visited’; 

 for all Ei connected to E do 

 begin 

  if E 
S
→  Ei  

   then Stabilise (Ei ); 

  delete the edge between E and Ei; 

 end; 

 EntityStabilise (E); 

end. 

 
For example, consider the application of the 
algorithm to checkpoint P1 in the resultant graph 
from the scenario in figure 2.  The operation is 
propagated to only O1 and O2, as shown in figure 4.  
This restricted propagation represents a significant 
improvement in performance of the checkpoint 
operation in comparison with using Associations; in 
that case all entities in the scenario must be 
checkpointed.  This is more crucial in the case of 
distributed dependency graphs where the 
propagation of a checkpoint operation may result in 

the blocking of all or some entities in the 
coordinator node until participant nodes reply. 
 

P1 P2 P3

O1

O2 O4

O3

 
Figure 4 The state of entities after the checkpoint of p1  

6.3  Roll-back propagation using DDGs 
A roll-back operation is initiated for an entity 
whenever the entity recovers following a system 
failure or the abortion of a transaction in an 
application.  An entity may also be required to roll 
back due to the roll-back of a dependent entity, or 
even due to the occurrence of a failure in the node 
contains some entities dependent on the entity (in 
terms of roll-back graph).  With minor differences, 
the steps described in section 6.2 are followed for 
the propagation of the roll-back of an entity E.  
After locating the entity E in the graph, operations 
resume according to the following algorithm. 
 
Procedure Rollback (E: Entity) 

begin 

 if E has already ‘visited’  

  then return; 

  else set E as ‘visited’; 

 for all Ei connected to E do 

 begin 

  if E 
R
→  Ei  

   then Rollback (Ei ) 

  delete the edge between E and Ei; 

 end; 

 EntityRollback (E); 

end. 
 
For example, consider the application of the 
algorithm to roll back P3 in the graph resulted from 
the scenario in figure 2.  This leads to the 
propagation of the roll-back to only O3 as shown in 
figure 6.  Such a roll-back would result in the roll-
back of all entities if Associations were used. 
 

P1 P2 P3

O1

O2 O4

O3

 
Figure 6 The state of entities after the roll-back of P3  
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7  Simulation results 
To evaluate the effect of using DDGs, we simulated 
the Monads persistent store when either 
Associations or DDGs are used to manage 
dependencies.  Events considered in the simulation 
were: process creation, process termination, object 
opening, object closing, entity checkpoint, entity 
roll-back, read access, write access, and process 
switch.  Parameters in the study were: objects size, 
processes lifetime, checkpoint operations interval, 
roll-back operations interval, locality of accesses, 
and the rate of load/store operations.  For the results 
depicted in figures 6 and 7, we selected 20 seconds 
as the mean interval of checkpoint operations, 360 
seconds as the mean interval of roll-back operations, 
4 as the mean rate of load/store operations, and 10 
as the mean locality of accesses.  As there was no 
difference between a single-node and multi-node 
persistent environment to compare the two methods, 
we simulated a single-node environment. 

The results show that using Associations about 
65% more entities are checkpointed (possibly 
through propagation from other entities) than when 
DDGs are used.  Figure 6 shows the cumulative 
number of entities checkpointed using Associations 
and directed graphs.  Using Associations, the 
number of rolled back entities is 90% higher than 
when DDGs are used.  Figure 7 compares 
Associations and directed graphs in terms of the 
number of rolled back entities. 
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Figure 6 Number of checkpointed entities (cumulative) 
using associations and DDGs. 
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Figure 7 Number of rolled back entities (cumulative) using 
associations and DDGs. 

Conclusion  
In this paper we described the shortcomings 
inherent in the use of Associations to describe 
dependency relationships between processes and 
objects in a distributed persistent store.  In particular 
we showed that the cascade effect of checkpoint 
operations resulted in larger checkpoint operations 
than absolutely necessary.  We also showed that the 
cascade effect in roll-back operations resulted in 
unnecessary loss of store modification. 

We presented an alternate method for describing 
entity inter-relationships.  This alternate 
representation uses directed graphs.  By further 
separately defining the meaning of graph edges for 
checkpoint and roll-back operations, we showed that 
it is possible to significantly reduce the cascade 
effects of these operations.  As a result, checkpoint 
and roll-back operations are improved in terms of 
efficiency, and the loss of data caused by roll-back 
operations is reduced.  This is a significant 
achievement, because only those modifications 
which it is absolutely necessary to reverse are lost as 
a result of the roll-back operation.  The included 
simulation results confirm this claim. 

By integrating the management of dependencies 
into the virtual memory management, checking to 
see whether a DDG should be updated is not 
expensive.  As virtual pages are the unit of data 
transfer in a typical memory management scheme, 
detecting dependencies at the level of virtual pages 
can be achieved when page faults and write-fault 
exceptions are being handled. 
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