
WEWORM: AN ETHICAL WORM GENERATION TOOLKIT

Mark Wallis, Frans A Henskens
School of Electrical Engineering and Computer Science, University of Newcastle, Newcastle, N.S.W, Australia

mark.wallis@studentmail.newcastle.edu.au, frans.henskens@newcastle.edu.au

Keywords: Worm, Virus, Ethical, Toolkit, Cleanup, Infection.

Abstract: One of the largest threats to network security in Internet-connected corporate networks is attack via worms.
Worms infiltrate the network and compromise security, consuming processor cycles and network
bandwidth that would otherwise be available for corporate use. This research analyses a particular strain of
network worm called the “Ethical worm”, which is targeted towards beneficial means rather than malicious.
Also presented is a design for an Ethical worm generation toolkit (named WEWorm) that will aid System
administrators in the cleanup of an infected network.

1 INTRODUCTION

One of the largest threats to network security in
Internet-connected corporate networks is attack via
viruses and worms. While viruses are a continuing
concern in the industry it is worms that are posing
the greatest threat. Worms infiltrate the network and
compromise security, consuming processing cycles
and network bandwidth that would otherwise be
available for corporate use. Additionally, they may
disable or alter the operation of resources from their
surrounding environment with the intent of
hampering administrative efforts to detect and
remove them. In a large corporate network that
spans many distinct physical sites it is normally left
to a single group of network administrators to detect
and resolve worm or virus outbreaks across the
corporation. One of the methods than can be used to
deal with worm outbreaks involves the use of patch
programs. When worms are flooding the
communications links and stealing CPU cycles,
administrators need a method by which such a patch
program can be effectively and automatically
distributed across the network - essentially
mimicking the way that worm traffic can spread
throughout the corporation. A patch program
deployed in this way is called an Ethical worm.

This paper presents WEWorm, the outcome of a
project that involved the design and development of
prototype tools that allow the security team of an
organisation to build and deploy Ethical worms.
Such worms are able to move from machine to
machine, curing any Malicious worm infections

before propagating to other hosts. WEWorms have
the ability to move between hosts using minimal
resources as well as the ability to disguise
themselves to avoid detection by sentient worms
that are designed to be self-preserving.

2 PROBLEM DESCRIPTION

In 2001 the CodeRed worm was analysed and found
to have infected more than 359,000 servers in less
than 14 hours, with a peak infection rate of 2,000
new hosts every minute (CAIDA 2006).

In 2003 the Sapphire/Slammer worm had managed
to spread itself worldwide in less than 10 minutes –
making it the fastest spreading worm to date
(CAIDA 2006).

In 2004 at the time of the W32/Mydoom.A worm
infection it is estimated that one in 12 emails on the
Internet were infected with the MyDoom virus
(SecurityStats undated).

The statistics above give an insight into one of the
largest security concerns that exists on the Internet
today. Malicious programmers are developing
worms and viruses that can spread and contaminate
at alarming rates. Security administrators do not
have the time and resources to be able to act upon
the results of existing detection and notification
systems before their network becomes compromised
with each latest viral outbreak.

Much research is currently active in the area of
detection and automatic-response for computer virus
and worm infections (C.C Zou 2003; S. Sidiroglou
2003). Unfortunately the skills of the worm
developers are now at a level where the efforts of
the network administrators are focused more on
cleaning up network infections, than preventing
them. No longer can it be assumed that strong
network perimeter defences are enough to protect a
network from infection. Another important issue
involves the problems and restrictions placed on a
network when the administrator is tasked with
cleaning up an infected environment. For example,
the performance of an infected network may well
work against attempts to remove the infection. The
situation becomes even more difficult when the
infection involves malicious software that is actively
trying to ensure its own survival. Such Malicious
software may be capable of disabling local host
virus protection and other secondary systems that
remote administrators use to aid the cleanup process.

A growing number of corporate private networks
contain multiple geographically disparate sites
connected by wide area links. In such situations a
single group of network administrators may well be
tasked with the cleanup of nodes over the diverse
environment. Unfortunately many of the latest
generation of Malicious worms generate so much
network traffic in their attempt to spread that they
flood the communications links that administrators
use to remotely manage distant nodes. The wide
area communication links to distant nodes are of
necessity slower than local links and reduction in
their performance is particularly damaging.

The focus WEWorm is the cleanup of
environment-wide infections in private networks –
such as a network owned by a single corporation, or
a single educational institution.

2.1 Current Opinions

2.1.1 V. Bontchev - “Are ‘Good’
Computer Viruses still a bad idea”

In (Bontchev 1999) the author details the particular
reasons why the greater security community sees
Ethical worms as harmful. Not all points are
relevant to all Ethical worm designs, but it is
beneficial to review them to provide a requirement
from which to build a design.

The reasons are summarised as follows:
1. Lack of control – once an Ethical worm is

released into the wild there is no control mechanism

by which an administrator can remotely choose to
halt its execution.

2. Recognition difficulty – if an Ethical worm
spreads via the same distribution mechanism as a
Malicious worm, existing anti-virus software may
not be able to tell them apart and act negatively
towards the Ethical worm.

3. Resource wasting – an Ethical worm may use
up computer and network resources just as a
Malicious worm can.

4. Compatibility problems – it is impossible to
test every combination of hardware and software in
hosts connected to the Internet – hence an Ethical
worm may hit compatibility problems trying to
execute on any non-standard hosts it infects.

5. Effectiveness – under certain circumstances it
can be found that a non self-replicating piece of
software would perform the same task as an Ethical
worm.

6. Unauthorised access – just like their malicious
counterparts, Ethical worms tend to execute on the
host system without authorisation from the host
owner.

7. Misuse – any sort of system designed for
deploying Ethical worms could also be used to then
also design and deliver Malicious worms

8. Trust – any worm, no matter its intention, is
capable of removing the user’s trust in their
computer system, because the user can no longer
guarantee that they are familiar with every piece of
software executing on their system.

9. Negative Common Meaning – due to the
media spin of the words “virus” and “worm” it is
very hard for normal users to understand the idea of
an Ethical worm whose aim is to do good.

2.1.2 B. Schneier – “Benevolent Worms”

In (Schneier 2003) Schneier claims that Ethical
worms are essentially patch-delivery mechanisms,
and as such should be designed to cover the
following four major characteristics of a good patch-
delivery system:

1. People can choose the patches they want,
2. Installation is adapted to the host it is

executing on,
3. It is easy to stop an installation in progress, or

uninstall the software,
4. It is easy to know what has been installed

where.

Historically, Ethical worms have addressed none
of the above items – and hence their effectiveness in
solving the worm problem has come under scrutiny.

3 WEWORM PROJECT

As can be seen from the above reviews, the Ethical
worm concept is not strongly supported. Initially it
was intended that WEWorm would be used to clean
up worms in Internets spanning multiple private
networks. In the light of current commentary, it was
decided, instead, to focus on a particular restriction
to the scope of this original intention. This allows
the design to address the majority of the issues
identified by previous research, and to develop a
scalable solution to the problem of the repair and
clean up of infected hosts.

To date all the reported Ethical worms have been
developed in a way that ensured they spread across
as many hosts and networks as possible – just like
the Malicious worm they were trying to remove.
The WEWorm design presented in this paper aims
to target small networks of hosts controlled as a
single group. This provides a solution for use by
large corporations and organisations for which a
priority is the removal of worms from their own
internal networks, rather than the removal of a worm
from all hosts on the Internet.

This restriction introduces new issues that need
to be addressed – namely how an administrator can
control a worm to guarantee it will not spread
outside of the network into which it was introduced
to protect.

3.1 Effect of Domain Restriction

This section reviews the criticisms raised in
(Bontchev 1999) and discusses the restriction of the
problem domain to private networks.

Lack of control: Due to the restricted scope of
the problem domain described above, any control
mechanism will be much more effective. This is
because the Ethical worm no longer has to
communicate with active instances over the global
Internet. A control mechanism based on a modular
framework was developed. This framework provides
an effective mechanism for passing control
messages between the active Ethical worm
instances, and provides a level of active control over
the system.

Recognition difficulty: Limiting the scope of
Ethical worms to a single network makes it possible
to create a unique propagation method for it. This
allows the worm to spread through the network

using a sanctioned propagation technique that is
unique to Ethical worms in this environment.
Combined with various encryption signatures
described later in the paper, this provides an
excellent method of distinguishing sanctioned
Ethical worms from Malicious worm infections.

Resource Wastage: Problem domain restriction
negates the issue of resource wasting by Ethical
worms. If an Ethical worm is sanctioned and
deployed by a network administrator in a single
network entity then any resources used by that
Ethical worm will be well known and accepted
before deployment. It will be shown that the
WEWorm toolkit can be used to provide estimates
of resource usage to the Ethical worm designer to
help him/her understand the resources required to
deploy the self-propagating code on their network.

Compatibility Problems: Deploying an Ethical
worm into a single well-defined network entity
gives the worm designer the ability to tailor the
worm to specific subsets of infected nodes.
Compatibility problems can be mitigated in
networks where a standard SOE (Standard
Operating Environment) deployment is used on all
machines. The toolkit design will show how an
Ethical worm can be designed and then test-
deployed on a standard SOE with a view to allowing
network administrators to complete a full test cycle
before the work is released into the network.

Effectiveness: While the problem domain
restriction does not specifically address the issue of
effectiveness, a comparison will be made between
the restricted technique and other mainstream patch-
delivery systems that can be used to solve similar
problems.

Unauthorised access: Using WEWorm, the only
person who will be able to deploy an Ethical worm
will be the system administrator responsible for the
network. Focusing on single-entity networks negates
the issue of ownership of the systems. If the single
entity network actually contains public clients (i.e. a
university network that contains student-owned
machines) then the users may be made aware of the
possible deployment of Ethical worms in the terms
and conditions of use of the network.

Misuse: WEWorm addresses the issue of misuse
by ensuring that any worm developed using the
toolkit is designed in such a fashion that can only
propagate to nodes that trust the signature of the
worm’s author. This ensures that the design cannot
be directly reused for malicious intent without
further alteration to remove safeguards.

Trust: As with the issue of unauthorised access,
only Ethical worms designed by the network

administrator can propagate to nodes in the network
deploying the presented design. This ensures that the
end user’s trust in their workstation is maintained
and is not compromised any more than by other
automatic patch delivery mechanisms.

Negative Common Meaning: By restricting the
problem to single-entity networks it can be ensured
that appropriate training and documentation can be
developed and circulated among users and staff. The
purpose is so they are aware that the Ethical worm
deployment is a trusted design by their
administrative staff, and should be trusted despite
the negative connotations of the name.

3.2 Design Goals

The following major design goals were identified
for the WEWorm project. These goals also include a
subset from (Schneier 2003), in which the author
describes a minimum set of requirements that any
patch deployment system has to exhibit to be trusted
and effective.

Identification of infection: The system must be
designed in such a way that it can be further
integrated directly into a larger Intrusion Detection
system. This would allow IDS alerts to
automatically trigger Ethical worm actions and
deployment.

Responding to infection: External intrusion
detection systems must be able to communicate with
the Ethical worm system to allow automatic
deployment of Ethical worms from an existing
library. The IDS would be able to store a link
between a certain signature and its related Ethical
worm to automatically combat infection.

System Security: The Ethical worm system must
be secure from abuse by Malicious entities. This
security must protect the system from being reused
for the distribution and development of Malicious
worms while also providing security of the overall
environment.

Patch choice: Users should be able to choose
which patches are deployed on their system. The
restricted implementation domain allows the
network administrator to decide which Ethical
worms will be deployed into the network. While the
end-user will continue to have no choice, in such
environments security is not their responsibility and
hence the trust and decision is placed on the network
administrator to choose the appropriate patches to be
deployed to each system.

Adaptive Installation: Each patch should be
adaptive to the host on which it is being deployed. It
will be shown that the presented modular WEWorm

design allows the administrator to develop Ethical
worms that act differently depending on the host on
which they are executing. This will give added
power, allowing the Ethical worm to work across
multiple installations and architectures as required.

Installation Interruption: A patch system must be
interruptible, even when it is halfway through a
patch installation. It will be shown that the control
methods in the WEWorm design allow the user to
control and stop the further propagation of an
Ethical worm in the network. Simulation and testing
demonstrate that the system does this effectively.

Installation Reporting: The WEWorm system
implements a monitoring and reporting mechanism
that satisfies the requirement that any patch
management system must be able to report on what
patches have been installed, and where in the
network. Similarly to some of the historical Ethical
worms described previously, the design allows the
user to log the worm’s actions both on the host itself
and to a centralised database. These logs record
when a particular host executes an Ethical worm,
after the network administrators have deployed it.

3.3 Design of WeWorm

WEWorm implements an Ethical worm system
targeted at the cleanup of Malicious worm infections
in a single network entity. The above design
considerations were used to define the system
requirements, and the above criteria were used to
create a design that addresses the documented
concerns about the Ethical worm concept, while also
meeting all the specified design goals. The overall
design was based on a toolkit concept that allows a
network administrator to rapidly design, build and
deploy an Ethical worm into a network environment.
The developed Ethical worm is supported by a pre-
established runtime environment.

3.3.1 Toolkit Concept

The modular design of an Ethical worm is well
suited to the use of a component based architecture
that allows rapid, piece-by-piece building of a
solution. The toolkit is constructed using two groups
of components – common and targeted. Some
components form part of the worm itself and some
execute on the target hosts as part of the
environment that supports the Ethical worms. This
component architecture also allows corporations to
share components between each other to remove a
worm infection on a more global scale.

Components are classified as follows based on
their role in the Ethical worm system.

3.3.2 Common Components Groups

Common components are those that are shared
between, and required for, the operation of all
Ethical worms. These components comprise the core
of the payload and interact with the runtime
environment to provide end-to-end connectivity for
the system. Common components are of two kinds.
The first kind is packaged as part of each WEWorm
instance and is used when the worm is being
executed in the runtime environment. The second
kind is packaged as part of the environment itself as
is used in handling the processing of each new
WEWorm instance, as it is executed within the
environment.

The common components that are packaged with
WEWorm instances are the:

• Propagation Component
• Outgoing Security Component
• Outgoing Network Component
• Reporting Component
• Control Component

The common components that are packaged with

the runtime environment include:
• Incoming Security Component
• Incoming Network Component

WEWorm instances also include targeted

components that are tailored to deal with the
Malicious worm for which they are designed.

3.3.3 Targeted Components

Targeted components deal with specific
Malicious worm attacks and generally need to be
modified or created specifically for each Ethical
worm that is deployed. The main targeted
component is the Executable component.

3.3.4 System Walkthrough

The following section describes the process
followed to create and deploy an Ethical worm. It
demonstrates the steps that a Network Administrator
takes to use the WEWorm system to cleanse an
infection in a local network.

1. Network administrator receives an alert
from their IDS system that an infection has
occurred.

2. Network administrator uses this IDS
information to ascertain the nature of the infection.

3. Network administrator designs the
requirements for the Ethical worm based on the IDS
information.

4. Network administrator builds the
WEWorm payload using the pluggable modules. If
required a targeted executable component is
developed to address a specific instance of
Malicious worm.

5. Network administrator manually loads the
payload into a host in the network and executes it.

6. Normal execution flow for the payload
begins:

6.1 The Incoming Network component in
the node’s environment receives the
payload.

6.2 The Incoming Security component in
the node’s environment authenticates the
payload.

6.3 Control Component executes to ensure
there are no administrative commands
waiting to be actioned.

6.4 Executable component of the payload
executes a single command.

6.5 If more commands exist then repeat
through Control and Executable tasks
until all commands have been executed.

6.6 Reporting component executes.
6.7 Propagation component executes and if

further propagation is required then:
I. payload for propagation is created

II. outgoing Network component
delivers the payload to the next node.

3.4 Targetted Component
Development

The targeted component development follows
the previously described toolkit methodology. The
task of cleaning up a Malicious worm infection can
be seen as a series of common steps with varying
parameters. Implementing a subset of these
commands allows for rapid development of the
actual Ethical payload as well as the surrounding
support infrastructure.

The following are examples of modular
commands that can be implemented using
WEWorm. They are a subset of the commands used
by real-world viral removal instructions.

• Kill process
• Remove registry parameter
• Delete file
• Reboot host
• Download file via TFTP
• Execute file

For example, to remove a Blaster infection the
following payload commands would be sequenced
together

• Download the Microsoft patch from a
TFTP server

• Execute the Microsoft patch
• Kill msblast.exe process
• Delete msblast.exe file from System32

folder
• Delete registry key HKLM\Software\

Microsoft\Windows\CurrentVersion\Run, value
windows auto update

3.5 Delivery Mechanism
Development

Design of WEWorm included analysis into the best
network delivery mechanism that could be used for
propagating Ethical worm payloads between nodes
in a network environment. The delivery mechanism
has to satisfy specific requirements to be acceptable
for use in hostile and congested networks. These
requirements include

• High levels of efficiency,
• Small packet sizes, and
• Focus on local domains.
High levels of efficiency and small packet sizes

are requirements that specifically address the
problem if communication in a network that is
congested with Malicious worm traffic.

Taking these requirements into account the
following network protocol was specified to handle
inter-node communication:

IP Protocol: UDP
Source Port: dynamic
Destination Port: 55
Addressing Method: 1:m Broadcasting
Packet Payload: dynamic packet length
based on tuning parameters suited towards a
specific network outbreak.

UDP was chosen as the transport protocol due to

its lightweight implementation and ability to pass
data without the added network bandwidth
requirements of hand shaking. The initiating node
dynamically chooses the source port. The
destination port is deliberately chosen to be less than
1024, thus ensuring that only privileged processes
can bind to that port. The addressing method chosen
is a one-to-many broadcast, which as described
earlier allows a single host to propagate to as many
other hosts in the same broadcast domain as

possible. In a perfect network, every host in the
domain should receive a one-to-many broadcast
payload. However, in the presence of malicious
infections, it is possible that this is not always the
case, and hence multiple stages of propagation are
supported in a fashion that models the spread of
Malicious worms themselves. The broadcast
delivery mechanism also ensures that the design is
focused on local domains as per the project scope
definition (noting that IP only supports intra-
network broadcast).

The use of a broadcast delivery mechanism
introduces the constraint that an Ethical worm can
never propagate to a node outside of the current
broadcast domain. This acts as a safe guard, but also
introduces issues with large corporate networks that
span multiple broadcast domains. These issues are
solved using repeater nodes that essentially tunnel
the broadcast traffic between domains.

The use of a custom UDP packet design also
allows the user of WEWorm technology to choose
how to structure packets so they are able to traverse
a malicious network. A trade off may be required
between the size of packets and the number of
packets it can take to deliver a payload. The more
packets required to propagate a payload the more
CPU power is required on the end nodes to
authenticate and rebuild the final payload
deliverable. Increases in the number of packets also
means that each packet is smaller and more likely to
be able to move through congested networks than
large fragmented packets. This trade off is a
configurable option of the outgoing delivery
component.

3.6 Delivery Security Development

Security is paramount in the environment, thus
ensuring that only trusted sources are able to
disseminate Ethical worms. Special caution needs to
be taken to ensure the deployment environment
cannot be used for malicious means. The WEWorm
design relies on signing and encryption methods that
are optional components of deployed Ethical worms.
A trade-off is available to be made by the network
administrator for security versus efficiency.

A high security option is available that encrypts
each outgoing packet prior to processing by the
delivery component. This encryption ensures that
not only is the payload data protected from sniffing
attacks while in transit over the network, but also
that payloads encrypted with the trusted key are the
only ones that can be executed on each node. The
encryption is based on public/private key encryption

with each node in the system having a list of
acceptable public keys from which to accept
payloads.

The medium security option implements a
security component that does not encrypt, but signs
each packet prior to processing. This allows the
receiving node to validate that the payload has come
from a trusted source but will not protect the
payload itself from being viewed by malicious
entities on the network.

The low security option sends packets in raw
form, without any encryption or validation
mechanism.

4 WEWORM PROTOTYPE

A prototype of WEWorm has been implemented.
This prototype provides the key functionality
required to develop and deploy an Ethical worm that
is targeted at cleaning up a Malicious worm
infection. The following design choices were made
for this prototype.

Choice of Runtime: A user-mode software
runtime solution was chosen due to the high levels
of rapid prototyping afforded by such an
environment. While a user-mode software solution
is not the most secure option due to its susceptibility
to local malicious code attacks, it does provide the
greatest flexibility when it comes to interacting with
the underlying operating system of the node in order
to remove an infection.

Choice of Language: Java was chosen as the
development language for the prototype. This is
largely due to the fact that the Java Virtual Machine
(JVM) (T. Lindhalm) essentially mimics the user-
mode software runtime environment specified in the
initial design. Each node in the network executes a
JVM instance which provides the environment in
which the Ethical payload will execute.

Choice of Environment: The prototype was
developed in a small-scale real network environment
consisting of three servers executing multiple virtual
machines. This created a virtual network of 15
infected hosts configurable in various network
deployments – including a large single broadcast
domain and two separate broadcast domains
separated by a router and VPN.

Runtime Environment Overview: The runtime
environment was implemented as an application
running under a JVM on each node in the network.
This application executes code that listens for all
incoming packets on the specified UDP port. Once a
data packet is received the runtime environment

uses streamlined pipeline architecture to process the
Ethical worm payload. Each component in the
process is deployed as part of a library of features in
the runtime environment. If any of the components
required to execute a payload are not available then
the complete payload is rejected for execution.

Manual control of the runtime environment is
available using a subset of command line tools that
allow the administrator to perform tasks such as
manually executing a payload and reporting the
current environment’s status.

The JVM design was chosen to give a high level
of support for deploying WEWorm Ethical worms
into a heterogenous environment. Creation of a
specific Virtual Machine for WEWorm deployment
was outside the scope of a prototype, and
additionally was unnecessary due to the superset of
the required functionality that the JVM is able to
provide

4.1 Testing and Simulation

Testing of the prototype was broken into two main
categories – live testing and simulation.
Live testing was completed using real hardware
executing multiple virtual hosts to mimic a small
corporate network. A Cisco router was introduced to
allow testing of the prototype across multiple
broadcast domains. The tests involved infecting all
hosts in the network with a “captured” Malicious
worm and then deploying an Ethical worm, built
with the toolkit, to remove the infection. The Ethical
worms used for testing were built with reporting
components that allowed a central host to track the
Ethical worm in various network scenarios.
Scenarios were chosen to simulate differing levels
of network usage and domain structure.

The following live tests were completed
1. Blaster infection across 15 hosts in a single

broadcast domain. Network usage levels normal.
2. Blaster infection across 15 hosts in a single

broadcast domain. Network flooding enabled to
create high packet loss.

3. Blaster infection across 15 hosts in two
broadcast domains with a pair of repeater nodes
used to replicate the deployment. Network usage
levels normal.

4. Blaster infection across 15 hosts in two
broadcast domains with a pair of repeater nodes
used to replicate the deployment.

Network flooding, enabled between the
broadcast domains, was used to create high packet
loss.

After the live test results were gathered the data
was used to extrapolate results for larger networks
using a network simulation package. The ns-2
network simulator (ISI) package was used to create
large but basic scenarios in order to test propagation
between large numbers of nodes in single broadcast
domains.

The anti-Blaster Ethical worm developed for this
testing was created from the following components

• Propagation Component = broadcast run-
once with delay.

• Security Component = message signing, no
encryption.

• Network Component = 1:m broadcasting.
• Reporting Component = centralised HTTP

POST report.
• Control Component = centralised HTTP

GET control.

4.2 Test Results and Review

The following results were gathered on the test
scenarios described above. All tests were executed
using the standard packet strategy of large packet
size with no fragmentation. The resulting packet size
of the payload was 5.1 kb’s.

Table 1: Test results with large packet size
Test
Type

Nod
es

Doma
ins

Packet
Loss

Total
time

Nod
es

per
sec

Real 15 1 None 6
secs

2.5

Real 15 1 75% 34
secs

0.4
4

Real 15 2
(rout
ed)

None 8
secs

1.8
8

Real 15 2
(rout
ed)

75% 62
secs

0.2
4

Simula
ted

50 1 None ~ 25
secs

2

Simula
ted

100 1 None ~ 50
secs

2

Simula
ted

100
0

1 None ~ 500
secs

2

The real prototype environment was rebalanced

to use smaller packets for payload delivery. The
packets were reduced to 1 kb so it took 6 packets in
total to deliver the WEWorm. The following results
were obtained:

Table 2: Test results with small packet size
Test
Type

Nod
es

Doma
ins

Packet
Loss

Over
all

Time

Nod
es

per
Sec
ond

Real 15 1 None 14
secs

1.07

Real 15 1 75% 31
secs

0.48

Real 15 2
(route

d)

None 19
secs

0.79

Real 15 2
(route

d)

75% 54
secs

0.28

5 CONCLUSION

The community does not currently embrace the
concept of the Ethical worm. This research has
shown that, with appropriate domain restriction and
design, the concept has a place in modern network
security.

Testing results, both real and simulated, have
shown that Ethical worms provide the ability to
quickly clean up malicious infections, and that they
provide environmental scalability.

The design has met all of the major original
requirements set out in (Bontchev 1999). In review

• Lack of control – resolved using control
modules and direct interaction with the runtime
environment on the host

• Recognition difficulty – resolved by
looking for an authorised signature that verifies the
worm payload as authentic

• Resource wasting – resolved using a very
light-weight UDP based protocol and streamlined
execution pipeline

• Compatibility problems – resolved by
domain restriction

• Effectiveness – addressed by inherent
worm design that can handle largely unstable
networks

• Unauthorised access – resolved by domain
restriction

• Misuse – resolved using payload signing
and encryption to ensure nodes only execute
authentic payload’s

• Trust – resolved by domain restriction
The initial design goals have also been met as

follows:

• Identification of infection – resolved by the
creation of an integration point for IDS systems to
design WEWorms.

• Responding to infection – resolved by the
creation of an integration point for IDS systems to
generate WEWorms.

• System security – resolved by the Security
modules that handle the encryption and network
delivery of WEWorms.

• Patch choice – resolved by allowing the
Network Administrator to use a 1:1 delivery
mechanism to control WEWorm propagation

• Adaptive Installation – resolved by
allowing the Network Administrator to use a 1:1
delivery mechanism to target WEWorms towards
subsets of hosts.

• Installation Interruption – resolved by
continuous Control module polling during the
WEWorm execution cycle

• Installation Reporting – resolved by the
Reporting module of the WEWorm design.

There is scope for much more work in this field.
The design phase of WEWorm has shown that a
user-mode software solution, while being well
suited for prototyping, is not the most suitable for
actual deployment. Work in pushing the Ethical
worm support into kernel space, or even into a
hardware implementation would greatly improve the
systems resistance to attack.

5.1 Future Work

This research suggests that the following items
warrant further investigation and analysis.

Active Deployment: Active deployment is a
topic that involves IDS systems automatically
generating and releasing Ethical worms to combat
infection in real time with no interaction required for
the System Administrator. Further development of
WEWorm to integrate deployment of Ethical worms
into existing IDS products would result in a
powerful end-to-end solution.

Provision of a GUI: At this stage the Ethical
worm payload is described using an XML schema.
Writing of XML is notoriously error-prone, so
automation of generation is desirable. WEWorm has
been designed and implemented to support ultimate
provision of a Graphical User Interface. Such a GUI
would allow network administrators to easily drag-
and-drop components to build up this XML
representation, ready for compilation using the
existing utilities.

Runtime Development: The current WEWorm
prototype was developed using the user-mode
software runtime concept. It is known that this
approach has security issues related to protection of
the runtime environment itself from malicious
attack. Further development leading to hardware
that implements this runtime environment would
increase security and reduce load on the node
processors. A preliminary design of such hardware
was been completed, as an additional module for
integration into standard network interface cards
(NICs).

REFERENCES

Bontchev, V. (1999). "Are ‘Good’ Computer Viruses Still
a Bad Idea ?" from
http://vx.netlux.org/lib/avb02.html.

C.C Zou, L. G., et al. (2003). "Monitoring and Early
Warning for Internet Worms." from http://www-
unix.ecs.umass.edu/~gong/papers/monitoringEar
lyWarning.pdf.

CAIDA. (2006). "Code-Red Security Analysis." from
http://www.caida.org/analysis/security/code-
red/.

CAIDA. (2006). "Sapphire Security Analysis." from
http://www.caida.org/analysis/security/sapphire/
.

ISI. "The Network Simulator - ns-2." from
http://www.isi.edu/nsnam/ns/.

S. Sidiroglou, A. K. (2003). "Countering Network Worms
through Automatic Patch Generation." from
http://www.cs.columbia.edu/techreports/cucs-
029-03.pdf.

Schneier, B. (2003). "Benevolent Worms " Crypto-Gram
Newsletter Retrieved Sep 03, from
http://www.schneier.com/crypto-gram-
0309.html#8.

SecurityStats. (undated). "Virus Statistics." from
http://www.securitystats.com/virusstats.htm.

T. Lindhalm, F. Y. "The Java Virtual Machine
Specification." from
http://java.sun.com/docs/books/vmspec/2nd-
edition/html/VMSpecTOC.doc.html.

APPENDIX: XML DESCRIPTOR

An example of the XML descriptor used to build a
worm using this toolkit can be found at the link
below

http://mark.serialmonkey.com/objects/sa
mple_xml.txt

