
Application Based Meta Tagging of Network Connections

Mark Wallis, Frans Henskens, Michael Hannaford
Distributed Computing Research Group

University of Newcastle
Newcastle, New South Wales, Australia

Abstract

Modern operating systems offer a large array of features
in their network subsystems that support fine-grained
access control, monitoring and accounting. Such features
allow a system administrator to account and filter outgoing
network connections based on attributes such as the desti-
nation IP address and port number of the connection. With
the increase in multi-user systems such as Grid Networks
and Shared Web Hosting, the complexity of these tasks
has increased. Current operating systems lack the ability
to determine the intent of a network connection based
on the connection’s technical characteristics alone. This
paper presents a new mechanism by which applications
themselves are given the ability to pass meta information
to the network subsystem, allowing it to take advantage of
application specific data.

Keywords: Socket, Tagging, Connection, Accounting,
Security

1 Introduction

As complexity in the design of network applications
grows, it becomes increasingly important that software sys-
tems are able to look at network connections in regards to
their intent rather than technical characteristics alone. Net-
work operating systems [11] offer a large array of features
that can be used to the advantage of application software,
but these features are limited in relation to the information
they are able to access.

For example, an operating system may offer a bandwidth
throttling feature [4] within its network subsystem which a
software package may wish to utilise. These features are
often activated based on specific technical attributes of the
network connection - such as its destination address or its
port number.

With the large array of network connections that exist
in any modern system it is often hard, if not impossible,

to distinguish the varying intents of each network connec-
tion from its technical characteristics alone. This restriction
means that advanced networking features in the operating
system lay under-utilised by software applications due to
lack of ability to tailor features for specific cases.

Examples of such restrictions are found in the areas of
Shared Web Hosting [6] and Grid Computing [5]. In these
areas it is impossible for the operating system to distinguish
between outgoing connections from two separate clients
sharing the same infrastructure. There is no differentiat-
ing factor in the technical characteristics of the connections
that allows the distinction to be made. These examples are
explored in more detail in Section 2.

This paper introduces the ability for meta-data to be pro-
vided by a network-aware application. The host operating
system is provided with the meta-data, allowing the appli-
cation to inform the OS of the intent of the connection as
well as its technical characteristics. Once a connection is
established the meta-data is retained, and is available to the
operating system. The meta-data information remains se-
cure within the system and it is not transmitted on the con-
nection.

Section 2 of the paper describes the problem in more de-
tail, with specific real-world examples. Section 3 provides
the design of the proposed solution and section 4 reviews
the security aspects. Finally, section 5 provides information
on the developed prototype with testing results appearing in
section 6.

2 Problem Description

Intent information cannot currently be passed from an
application to the operating system because of the data
structures used to represent a network connection in the sys-
tem. A popular method for representing a connection is the
Berkeley Socket [13]. This method allows technical infor-
mation such as local and remote port, local and remote IP
and protocol to be specified. Other auxiliary settings are
available by utilising optional function calls once the socket
has been established, but these options are generally related

Fifth International Conference on Information Technology: New Generations

978-0-7695-3099-4/08 $25.00 © 2008 IEEE
DOI 10.1109/ITNG.2008.209

384

Fifth International Conference on Information Technology: New Generations

978-0-7695-3099-4/08 $25.00 © 2008 IEEE
DOI 10.1109/ITNG.2008.209

384

Fifth International Conference on Information Technology: New Generations

978-0-7695-3099-4/08 $25.00 © 2008 IEEE
DOI 10.1109/ITNG.2008.209

384

Fifth International Conference on Information Technology: New Generations

978-0-7695-3099-4/08 $25.00 © 2008 IEEE
DOI 10.1109/ITNG.2008.209

384

Fifth International Conference on Information Technology: New Generations

978-0-7695-3099-4/08 $25.00 © 2008 IEEE
DOI 10.1109/ITNG.2008.209

384



to specific operating system functionality such as routing
and buffer maintenance.

Various real-world examples demonstrate that knowl-
edge of intent would allow the operating system to provide
value-add services to software applications. One key exam-
ple can be found in the area of Grid Computing [1].

2.1 Grid Computing Example

The ability to provide meta-data to the operating system
also has benefits for the field of grid computing. For exam-
ple, multiple companies may at any one time share the use
of a single grid computing deployment. Different compa-
nies may lease different network links between the nodes in
the grid, and also between the grid and external resources
required by deployed software. All network requests leav-
ing a node in the grid currently appear to be owned by the
grid process itself, rather than any specific company. It is
not possible for the operating system network layer to ap-
ply policy-based routing [9] to those outgoing connections.
Policy-based routing rules can ensure that each company
only uses the network link to which they are entitled, dy-
namically routing the data based on information other than
the destination IP address for the connection.

If the grid middle-ware was able to tag outgoing network
connections with a unique ID for the specific company re-
questing the related data, then the operating system would
be able to use this information in making policy-based rout-
ing decisions to ensure that each company utilises the cor-
rect link. The same approach can be applied to traffic shap-
ing if only one external link was available and the compa-
nies each had individual service level agreements [12] that
dictated how much of the link they were guaranteed for their
data.

3 Socket Meta Tagging

A new piece of information called the connection meta-
tag has been defined to allow an application to provide the
operating system with information on the intent of the net-
work connection. This meta-tag bridges the information
gap between an application and the operating system. The
meta-tag allows the application to influence the way the net-
work connection is seen by the networking subsystem of the
operating system and any other kernel-level processes. The
way the operating system interprets a meta-tag is defined
by the system administrator using a rules engine. This rules
engine defines how the operating system must act when it is
transmitting a packet of information attached to a meta-tag
enabled socket.

Each application software package defines its own set of
meta-tag values. These values are provided to the system

administrator as part of the software documentation to al-
low the administrator to decide if they wish to implement
any specific networking functions based on that meta-data.
For example, an application may choose to always meta-tag
their network connections with a client ID value. Another
application may meta-tag their network connections with a
piece of data that represents that connection’s priority to the
system.

Four properties of meta-tagging must be considered -
the structure of the meta-data, the application interface for
creating the meta-data, the kernel interface for storing the
meta-data and a rule-set which can inform the operating
system how to handle a connection with a specific piece of
meta-data.

3.1 Data structure

The initial design for the meta-data can be broken down
into two components. Firstly, a unique Application ID value
represents the software package that is providing the meta-
data. This Application ID is assigned from a central au-
thority, allowing the operating system to identify the piece
of software requesting the network socket. Application IDs
are assigned to software packages rather than to software
instances. This makes the IDs portable from one system
to another. The central authority model is similar to that
used whenever an application requires a new official net-
work TCP or UDP port number. Providing an application
ID within the meta-data also ensures that no two applica-
tions are able to overlap with their tag data.

The second piece of information is the tag itself. The
concept of tagging an object is common in many Web 2.0
applications [8]. A tag is a custom piece of information,
specific to the host application, that provides meta-data to
any application viewing that object. For example, in our
web hosting example the tag value may be set to a client
ID to allow accounting rules to store data usage against a
particular web host client.

The packaging of these two pieces of information into a
shared data structure gives flexibility in the makeup of the
tag itself. It is beneficial, for example, to support multiple
tags per socket. This definition can be implementation spe-
cific, but the recommended approach is to include a linked
list of tags against each socket.

3.2 Socket interface

The socket interface is used by software applications
when they wish to request a new network connection from
the operating system. A socket is defined as the endpoint
to a network connection. The Berkeley Socket [13] design
contains various API function calls, with the two of interest
to this work being the socket() and connect() calls.
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The socket() call is used to establish the various data
structures required for a new network connection. When
an application wishes to establish the network connection it
calls the connect() function, after which data may be sent
out of the system. The socket() function call must always
be executed before the connect() function call.

Extending this behaviour to support application meta-
tagging involves the introduction of steps between the
socket() and connect() calls so the application can attach
a tag to the socket before it is established. These addi-
tional function calls take the application ID and tag informa-
tion from the user-space application, and copies it into the
kernel-space data structure used to represent the socket. As
a result, the information becomes available to any kernel-
level processes that have sufficient security privileges. Se-
curity implications of allowing meta-data to be pushed into
kernel-space from a user-space application are discussed
in section 4. Inserting the new function call between the
socket() and connect() calls ensures that the meta-data infor-
mation is established before any packets are created. Figure
1 shows the order of operation.

Figure 1. Example of meta-data being applied
to a socket

3.3 Rule Set

The kernel-level operating system processes now have
the meta-tag information available to them. A rule-set in-
structs the operating system how to use this new informa-
tion. Each rule in the rule-set consists of the following com-
ponents:

1. a condition defined by a set of parameter names and
values

2. an action which is performed when the condition is
true

3. a focus, which defines when the rule is applied

The condition of a rule can be defined using multiple pa-
rameter name/value pairs. The action defines what the op-
erating system should do if it interprets a true response from
the condition statement. The focus indicates when the op-
erating system should apply the rule - either on outgoing
connections, incoming connections or connections that are
being forwarded through the system. To process the rules
a rules engine must exist within the operating system. At
present, not all operating systems offer a rules engine ca-
pable of executing a user-defined rule set, but it is known
to be present in Linux [14] and BSD [7]. These rules en-
gines currently exist primarily to act as network firewalls
and policy-based routers. The parameters to the conditions
in these rule-sets are limited to the standard socket informa-
tion such as destination and source IP address. The addition
of the meta-data on the socket allows this parameter set to
be extended to include the tag information as well. The ex-
isting rules engines can then be used to trigger actions based
on meta-data attached to the network sockets.

4 Security

The application meta-tagging approach allows user-level
applications to push custom data into kernel-level data
structures. To protect against potential security issues,
specifically buffer overflows, the networking function calls
that allow an application to set a meta-tag implement a data
validation step. Since these function calls are the only way
applications can provide meta-data to the socket, they are an
appropriate place to implement data and memory security.

Once applications are able to provide additional intent
information to the operating system, the issue of trust must
be addressed. In particular the operating system must be
certain of an application’s authenticity before it will act
on provided intent information. Without this guarantee it
is possible for malicious software to generate false tag in-
formation, resulting in, for example, the processing of its
network connections at a higher-than-appropriate privilege
level. Two possible protection mechanisms against mali-
cious tag generation are process owner restriction and tag
signing.

The simplest protection mechanism involves ensuring
that the operating system only trusts tags applied to network
connections when the process that requested the connection
is being executed by a trusted user, generally root or Admin-
istrator.

The second protection mechanism, tag signing, revolves
around the requirement of each software application to dig-
itally sign [2] their tagging request with a protected private
key. At the time that an application requests its unique ap-
plication ID it also can generate a private key for this pur-
pose. The applications private key must be protected from
other processes within the system. This method of secu-

386386386386386



rity allows the operating system to build a trust store of
public keys which it can use to verify that tagging requests
have come from a valid source. Private keys are paired to
the unique application IDs to ensure one application can-
not spoof the tags of another. Figure 2 shows the relation-
ship between the components and the security private/pub-
lic keys. The private key store is protected by the operating
system similarly to the encrypted password store used for
user authentication.

Figure 2. Security implementation using tag
signing

5 Prototype Implementation

A prototype implementation of application-based meta-
tagging of network connections has been developed. This
proof of concept implementation consists of patches and en-
hancements to the Linux operating system kernel [10] and
associated tools. The implementation is broken into four
components - a patch to the socket interface, NetFilter mod-
ules and enhancements, application code enhancements and
an iptables rule-set.

5.1 Patch to socket interface

The first component of the example Linux implementa-
tion is a patch to the Linux kernel [10] to support the new
meta-tag data structure and associated functions.

A new data structure was created in the include/linux/-
socket.h header file and defines two integer values used as
the meta-data in the prototype implementation. The struc-
ture can be tailored to suit specific implementations, for ex-
ample another application may provide the tag information
using a linked list of alpha-numeric strings.

A new socket option titled SO USERTAG was created
to allow the user-space application to attach a meta-tag to
the socket . Socket options are set by applications using the
setsockopt() function call. The setsockopt() function call
already exists within the Linux kernel and is used for allow-
ing the application to set custom socket parameters such as
SO DONTROUTE and SO LINGER, which are used to al-
ter the way the Operating System routes the connection and
processes its termination.[3].

5.2 Netfilter Module and Iptables exten-
sion

An extension to the Netfilter sub-system of the Linux
kernel [10] allows the new meta-tag information to be used
from the socket data structure. Netfilter [14] is the Linux-
based framework that provides the value-add networking
services such as policy routing, packet filtering and band-
width control. It consists of a series of loadable kernel mod-
ules, core kernel code and user-space utilities which com-
bine to provide a user-configurable enhanced networking
layer inside of the operating system. iptables is the user-
space configuration tool used to configure the various Net-
filter components.

The extension to Netfilter is two-fold:

1. a new Netfilter loadable-kernel-module (LKM) that
supports matching on specific meta-tags

2. an extension to the iptables tool to allow meta-tag rules
to be created

5.3 Example iptables rule-set

With the kernel code enhancements in place the iptables
command is used to define the meta-tag enabled ruleset.
Meta-tags are implemented as an extension to the large pre-
existing parameter capability of the Netfilter sub-system.
The example command shown in listing 1 defines a rule
which requests that the Netfilter code logs to the local sys-
log whenever a meta-tag with application ID ’24’ and tag
data ’26’ is encountered.

i p t a b l e s −A OUTPUT − j LOG −m u s e r t a g
−−t a g 26 −−a p p l i c a t i o n 24
−−log−p r e f i x ” Tagged p a c k e t found ”

Listing 1. Examples iptables command estab-
lishing a meta-tag rule

Note that the Netfilter subsystem operates at the packet
level rather than the network level, so the rule results in a log
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entry being written for every packet associated with that net-
work connection. This is the optimal method of implemen-
tation as it allows per-packet policy decisions rather than
restricting the system to connection-level decisions alone.

The iptables command is available for use primarily by
the system administrator. Applications are also capable of
calling the iptables command from their execution code if
the appropriate security permissions exist. This allows ap-
plications to dynamically create the rule-set on behalf of the
system administrator.

5.4 Patch to application code

The final required code change is enhancement of user-
level applications which require the tagging capability. List-
ing 2 presents a snippet of application code in which the
meta-tag data structure is built and associated with the
socket using the setsockopt function. Meta-tagging is com-
pletely optional, and this enhancement is only required in
applications that wish to define meta-tag data on their out-
going connections. Developers must access the appropriate
kernel header files in which the required data structures are
defined to compile the required meta-tag support.

When an application defines a meta-tag the application
developer must document the tag’s definition. This allows
the system administrator to build meta-tag rules for that ap-
plication.

s t r u c t u s e r t a g r e q u t r ;
b z e r o ( ( char ∗ ) &u t r , s i z e o f ( u t r ) ) ;

u t r . a p p l i c a t i o n i d =1;
u t r . t a g =1;

s e t s o c k o p t ( sockfd , SOL SOCKET ,
SO USERTAG , &u t r , s i z e o f ( u t r ) ) ;

Listing 2. Application setting a meta-tag on a
socket

6 Testing

Various tests were performed on the software prototype
to prove the the meta-tagging system was capable of solving
the problem as originally stated. Two key aspects of the
prototype’s performance that were assessed are:

1. Throughput

2. Policy-based routing

6.1 Throughput

During design of the meta-tag system it was imperative
that any enhancements made to the kernel networking sub-
system would cause no performance penalty on the process-
ing of packets that did not contain a network tag. Speed
tests performed using the prototype found no performance
degradation was noticeable after an example meta-tag rule-
set of 5 rules was applied to the system. It is inevitable that
process cycles used by the Netfilter sub-system will affect
performance as extra instructions are being processed by the
kernel during packet processing, but these effects were so
small as to be undetected in these experiments. This perfor-
mance degradation would also only affect latency of packet
transfer, not overall throughput.

Tests were performed using large (> 1 gigabyte) data
block transfers over a network socket using the FTP pro-
tocol, both with and without the FTP socket being tagged.
Table 1 shows speed tests results. While the throughput val-
ues themselves are of no particular import, but the fact that
they are all very similar shows that the prototype implemen-
tation had no noticeable adverse effect on the network per-
formance of the host.

Protocol Tagging RuleSet Throughput
FTP off n/a 11.23mbit/s
FTP on 5 11.14mbit/s
FTP on 1 11.15mbit/s

HTTP off n/a 11.34mbit/s
HTTP on 5 11.32mbit/s

Table 1. Throughput test results on 1.5 giga-
byte data set

6.2 Policy routing

To prove that meta-tagging resolves the grid computing
policy routing issue originally described, the rule-set dis-
played in listing 3 was generated. The initial command
establishes an iptables rule to match on application ID ’1’
and tag value ’7’. Packets found with this meta-tag have a
mark placed on their connection within the kernel network-
ing data structures. The ip rule command forces any pack-
ets with a mark of value ’1’ to be routed using the route
table labelled pr1, rather than the default route table. The ip
route commands that finish the listing establish different de-
fault routes for the default and custom pr1 route table. This
configuration allows packets tagged specifically with appli-
cation ID ’1’ and tag value ’7’ to be routed via a different
default gateway to all other packets.
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i p t a b l e s − t mangle −m u s e r t a g
−−t a g 7 −−a p p l i c a t i o n 1 − j connmark

i p t a b l e s − t mangle −N connmark
i p t a b l e s − t mangle −A connmark
− j MARK −−s e t−mark 1

i p r u l e add fwmark 1 t a b l e pr1
i p r o u t e add d e f a u l t

v i a 1 . 1 . 1 . 1 t a b l e pr1
i p r o u t e add d e f a u l t

v i a 1 . 1 . 1 . 2

Listing 3. Example Policy Routing ruleset

7 Conclusion

This paper presents an extension to operating system and
application software to support tracking of the intent of a
network connection. Meta-tagging allows operating sys-
tems to make sophisticated rule-based decisions on han-
dling of network packets. A prototype of the technique is
presented, verifying its feasibility. Specifically, the proto-
type shows that meta-tagging can satisfy real-world needs.
For example the intent of a connection, represented as meta-
tag data, can be used by the operating system to provide
value-added services such as policy-based routing and ac-
counting to the software application.

The meta-tag information is provided at the connection
level. The application of this data, though, is applied on a
per-packet basis to allow decisions to be made by the oper-
ating system at the packet level.

Of particular interest is the way meta-tagging allows for
enhanced services in the area of Grid Computing. Once
processes within the grid are able to tag network requests
with meta-data, physical network links can be treated as re-
sources within the grid, especially in environments where
multiple companies are sharing infrastructure with varying
SLAs.

7.1 Future Work

Ongoing research focuses on the following areas:

1. Enhancements to the prototype system to support mul-
tiple tags and non-numeric tag values. This is purely an
implementation enhancement that will greatly increase
the usefulness of the prototype.

2. Investigation into the mapping of tag data to rules and
actions. The Linux Netfilter system provides an excel-
lent method of mapping data to rules and actions, us-
ing the iptables tool, but this feature does not exist in
all major operating systems and hence implementation

into other operating systems may require the develop-
ment of such a rules engine.

3. Further investigation into the value-add services this
concept can bring to Grid Computing. For example
the notion of treating network resources as a reusable
resource within the grid itself (just as processing power
and data storage are currently treated) warrants further
investigation.

4. Dynamic tagging, which would allow applications to
remove and add meta-tag information to an established
connection.
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