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The Half-Duplex Gaussian Two-Way Relay Channel
with Direct Links

Lawrence Ong
School of Electrical Engineering and Computer Science, The University of Newcastle, Australia

Abstract—We study the half-duplex Gaussian two-way relay
channel with direct user-to-user links. In this setup, two users
exchange data via a relay and via direct user-to-user links. Due
to the half-duplex constraint, the channel can be in one of eight
different states at any time (two of which are useless: no node
transmitting and no node listening). Restricting to only four
states, we propose a scheme that utilizes lattice codes to improve
upon existing four-state schemes. Using all six states, we propose
another scheme that utilizes lattice codes and coherent combining,
and show that it can outperform existing schemes.

Index Terms—Two-way relay channel, bi-directional relaying,
lattice codes, half duplex, Gaussian

I. INTRODUCTION

We study a class of relay-aided networks where two users
exchange data through a relay. This network configuration—
commonly found in the cellular mobile network, the satellite
network, and the WiFi network—is referred to as the two-way
relay channel or the bi-directional relaying channel. Common
assumptions for the two-way relay channel are that the nodes
operate in the full duplex mode and/or that there is no user-to-
user link (i.e., data transfer is done only via the relay) [1], [2],
[3], [4, Sec IV.A]. In this paper, we consider the case where
(i) the nodes operate in the half-duplex mode,1 and (ii) there
are user-to-user links.

Under the half-duplex constraint, the channel operates in
one of eight states at any time, depending on which nodes
transmit and which listen.2 Using only four states, Kim et al. [6]
designed a coding scheme where the relay completely decodes
all the messages, bins the messages, and forwards the addition
of the bin indices. Also using only four states, Ghasemi-Goojani
and Behroozi [7] built on the idea of nested lattice codes (which
was designed for the full-duplex two-way relay channel [1])
by proposing an intermediate lattice to achieve a better rate
region. In this paper, we use the combination of functional-
decode-forward (which neither uses binning nor requires the
relay to decode all messages) using lattice codes (but without
needing the intermediate lattice) and simultaneous decoding
to design a new four-state scheme. We show that this scheme

Lawrence Ong is the recipient of an Australian Research Council Future
Fellowship (FT140100219).

1There are fundamental differences between a full-duplex channel and its
half-duplex counterpart. See the single-relay channel [5] for example.

2Without the user-to-user links, there are only two useful states: (1) the
relay transmits and both users listen, and (2) the relay listens and both users
transmit.
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Fig. 1. The half-duplex Gaussian two-way relay channel, where two users
(nodes 1 and 2) exchange data with the help of a relay (node 3). Under the
half-duplex constraint, at any time, for each node i, either Xi = 0 (node i is
listening) or Yi = 0 (node i is transmitting).

can achieve a strictly larger rate region than that by Kim et al.
and that by Ghasemi-Goojani and Behroozi.

Using all six states (ignoring the two states where no node
listens, and no node transmits), Gong et al. [8] proposed a
scheme that utilizes partial decode-forward. In this paper, we
combine the techniques used in our proposed four-state scheme
and the idea of coherent combining [9] to design a new six-state
scheme. We show that this scheme can achieve rate regions
strictly larger than all aforementioned schemes.

In this paper, we also point out some issues/errors in the
scheme proposed by Ghasemi-Goojani and Behroozi [7] and
that by Gong et al. [8].

II. CHANNEL MODEL

In the two-way relay channel (see Figure 1), node 1 wishes
to send a message, denoted by M1, to node 2; node 2 wishes to
send a message, M2 to node 1. Node 3, who has no message to
transmit, facilitates the message exchange. In this setup, nodes 1
and 2 are the users, and node 3 the relay. Let Xi ∈ R and
Yi ∈ R be the channel input and channel output, respectively,
of node i, for i ∈ {1, 2, 3}.

We consider the half-duplex channel, where the channel
state (a description of which node transmits and which node
listens) is pre-determined and made known to all nodes a priori.
Denote the channel state by a triplet (s1, s2, s3), where si = 0
if node i listens, and si = 1 otherwise (i.e., if node i transmits).
It is convenient to represent the channel state by an integer
s =

∑3
i=1 si2

i−1. With this notation, the channel states for all
s ∈ {0, 1, . . . , 7} are depicted in Figure 2.

Consider n uses of the memoryless Gaussian two-way relay
channel, where the t-th channel use is defined as follows:
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Fig. 2. All possible channel states, where an arrow from a node indicates that
it is transmitting, and no arrow, listening.

Yj [t] =


∑

i∈{1,2,3}\{j}
s.t. si[t]=1

hi,jXi[t] + Zj [t], if sj [t] = 0

0, otherwise,

(1)

for j ∈ {1, 2, 3} and t ∈ {1, 2, . . . , n}. Here, hi,j is the
channel gain from node i to node j, which is constant
for all channel uses. We do not impose the restriction that
hi,j = hj,i. The noise term Zj [t] is a zero-mean Gaussian
random variable with variance σ2

j , and is independent for each
j and t. (s1[t], s2[t], s3[t]) is the pre-determined channel state
of the t-th channel use.

For simplicity, for any user i ∈ {1, 2}, we denote the other
user by ī , (i mod 2) + 1. Let nk be the number of channel
uses (out of n) when the channel is in state k, i.e., nk , |{t ∈
{1, 2, . . . , n} : s[t] = k}|.

An (R1, R2, n) block code is defined as follows:
• A set of channel states: s = (s[1], s[2], . . . , s[n]).
• Two message sets: Mi ∈ {1, 2, . . . , 2nRi}, for i ∈ {1, 2}.
• Three sets of encoding functions: Xi[t] =
fi,t(Mi, Yi[1], Yi[2], . . . , Yi[t− 1], si[t]), for i ∈ {1, 2, 3}
and t ∈ {1, 2, . . . , n}, subject to the constraint that
Xi[t] = 0 if si[t] = 0, and the following per-state3

transmitted power constraint:
1

nk

∑
t∈{1,2,...,n}

s.t. s[t]=k and si[t]=1

E[X2
i [t]] ≤ Pi, (2)

for each node i ∈ {1, 2, 3} and each state k. We set
M3 = 0.

• Two decoding functions: M̂ī =
gi(Mi, Yi[1], Yi[2], . . . , Yi[n], s), for i ∈ {1, 2}.

Assuming that each message is uniformly distributed, the
error probability is defined as Pe = Pr{M̂1 6= M1 or M̂2 6=
M2}. A rate pair (R1, R2) is said to be achievable if given
any ε > 0, there exists an (R1, R2, n) code such that Pe ≤ ε.

To simplify expressions in our analyses, we define pair-wise
signal-to-noise ratio (SNR) λi,j , h2

i,jPi/σ
2
j for all node pairs

(i, j), and tk , nk/n for all states k.

3Under this type of power constraint, a node i is not allowed to transmit
at power higher than Pi in one state and at power lower than Pi in another
state to achieve the overall average of Pi. This simplifies the computation for
the achievable rate region as the we need not optimize the transmit power of
the nodes in each state.

Note that Yi[t] = 0 for all i ∈ {1, 2, 3} in states 0 and 7. So,
it suffices to consider only states 1 to 6, and set t0 = t7 = 0.

III. ACHIEVABLE REGIONS USING ONLY FOUR STATES

In this section, we study two existing schemes that use
only four channel states (i.e., states 1–4). We identify their
shortcomings, and propose a new scheme that utilizes index
coding and simultaneous decoding.

A. The Hybrid Broadcast Scheme using Decode-Forward and
Binning

Kim et al. [6] proposed the hybrid broadcast (HBC) scheme,
which uses functional-decode-forward and binning, described
briefly as follows:
• In state i ∈ {1, 2}, user i broadcast its message Mi to

the relay and user ī.
• In state 3, both users simultaneously send {Mi} again

to the relay, using another independently generated code-
book.

• The relay decodes M1 and M2 over states 1–3.
• In state 4, the relay randomly assigns the message Mi

into 2nR
′
i bins. Let the bin indices be bi(Mi). The relay

broadcasts s1(M1) + s2(M2) mod 2nmax{R′
1,R

′
2}.

• User ī ∈ {1, 2} decodes bi(Mi) over state 4, and then
Mi over state i with the help of bi(Mi).

Lemma 1 (The HBC Scheme [6]): The HBC scheme achieves
a rate region RHBC ∈ R2, consisting of all non-negative rate
pairs (R1, R2), each satisfying

Ri <
ti
2

log(1 + λi,3)︸ ︷︷ ︸
,Ai

+
t3
2

log(1 + λi,3)︸ ︷︷ ︸
,Bi

, (3)

Ri <
ti
2

log(1 + λi,̄i)︸ ︷︷ ︸
,Ci

+
t4
2

log(1 + λ3,̄i)︸ ︷︷ ︸
,Di

, (4)

R1 +R2 < A1 +A2 +
t3
2

log(1 + λ1,3 + λ2,3)︸ ︷︷ ︸
,E

, (5)

for all i ∈ {1, 2}.

B. The Ghasemi-Behroozi Scheme using Lattice Codes

Recently, Ghasemi-Goojani and Behroozi [7] proposed a
coding scheme, which extends the lattice-based coding scheme
for the full-duplex two-way relay channel [1] using their
proposed intermediate lattice. They claimed that their scheme
achieves a larger region than the HBC scheme.

The scheme, referred to as the G-B scheme, is as follows:
• Form four nested lattices Λ1 ⊆ Λ2 ⊆ Λb ⊆ Λc ⊂ Rn3 ,

where Λb is the intermediate lattice.
• User i ∈ {1, 2} maps a message Mi to a lattice point
Vi ∈ {Λc∩Vi}, where Vi is the Voronoi region of Λi [10].
This lattice point is decomposed into two sub-messages:
(i) Vai ∈ {Λc ∩Vb} of rate Rai, and (ii) Vbi ∈ {Λb ∩Vi}
of rate Rbi, where Rai +Rbi = Ri.

• In state i ∈ {1, 2}, user i sends Vai and Vbi using the
superposition of two random Gaussian codewords.



• The relay recovers only Vai over state i, i ∈ {1, 2}.
• In state 3, the two users simultaneously send {Vbi}.
• Knowing Va1 and Va2, the relay decodes the lattice-

modulo sum [10] of Va2 and Vb2, denoted as Vb-sum, over
states 1–3.

• In state 4, the relay broadcasts the lattice-modulo sum of
Vb-sum, Va1, and Va2 using a random Gaussian codeword.

• User ī ∈ {1, 2} decodes Vi over states i and 4. From Vi,
user ī obtains Mi.

Lemma 2 (The G-B Scheme [7]): The G-B scheme achieves
a rate region RG-B ∈ R2, consisting of all non-negative rate
pairs (R1, R2), each satisfying

Ri < Ai +
[ t3

2
log(λi,3)

]+
︸ ︷︷ ︸

,B′
i

, (6)

Ri < Ci +Di, (7)

for all i ∈ {1, 2}, where [x]+ , max{0, x}.
Note that while the G-B scheme got rid of the sum-rate

constraint (5) in the HBC scheme (this is because using lattice
codes, the relay is not required to decode both messages M1

and M2), its constraint (6) is tighter than (3) in the HBC, as
B′i < Bi.

Issue: It is not clear if the rate bound (6) can be obtained
with the aforementioned coding scheme. The authors have
shown that considering state i ∈ {1, 2}, the relay can decode
Vai and Vbi (using successive decoding) if

Rai ≤
1

2
log

(
1 +

αλi,3
1 + (1− α)λi,3)

)
, (8)

Rbi ≤
1

2
log(1 + (1− α)λi,3), (9)

for some 0 ≤ α ≤ 1. Considering state 3, having decoded Va1

and Va2, the relay can decode Vb-sum if

Rbi ≤
[1

2
log(λi,3)

]+
, (10)

for i ∈ {1, 2}. The authors then argued that by using time
sharing between states i and 3, (9) and (10) give

Rbi ≤
ti
2

log(1 + (1− α)λi,3) +B′i, (11)

which is then combined with (8) to give (6).
An issue with this argument is that using time sharing,

different messages (say V ′bi and V ′′bi ) are transmitted in different
states, and this necessarily imposes additional rate constraints
on individual components. These components also impose more
rate constraints for them to be decoded at user ī.

On the other hand, if the same message Vbi is transmitted
in states i and 3 (which is intended by the authors), one
cannot invoke time sharing, but one can use simultaneous
decoding. However, there is still an issue of how the relay can
simultaneously decode the required lattice-modulo sum Vb-sum
from two different codewords, namely a Gaussian codeword in
state i (where only Vbi has been transmitted) and a lattice
codeword in state 3 (where both Vb1 and Vb2 have been
transmitted), if (11) is satisfied.

C. Our Proposed Scheme 1
In addition to the aforementioned issues related to the G-B

scheme, we also note that using the intermediate lattice Λb
incurs some rate loss in B′i (c.f. Nam et al. [1]).

We propose the following scheme, which uses nested
lattice codes without needing the intermediate lattice, and
simultaneous decoding:
• Create nested lattices as per the full-duplex case [1], Λ1 ⊆

Λ2 ⊆ Λc ∈ Rn3 .
• Each user i splits its message into two parts: Mai of

rate Rai, and Mbi of rate Rbi. It then maps its second
sub-message to a lattice point Mbi → Vbi ∈ {Λc ∩ Vi}.

• In state i ∈ {1, 2}, user i sends Mai using a random
Gaussian codeword, and the relay decodes Mai.

• In state 3, the users send lattice codewords simultaneously,
and the relay decodes the lattice-modulo sum Vb-sum (the
lattice-modulo sum of Vb1 and Vb2).4

• In state 4, the relay encodes Vb-sum and (Ma1 + Ma2

mod 2nmax{Ra1,Ra2}) together using a random Gaussian
codeword.

• User ī decodes Vb-sum and Mai simultaneously over states i
and 4.

Over state 3, the relay can decode Vb-sum if [1, Sec. IV.A]

Rbi <

[
t3
2

log

(
λi,3

λi,3 + λī,3
+ λi,3

)]+

︸ ︷︷ ︸
,B′′

i

, (12)

for both i ∈ {1, 2}; over state i ∈ {1, 2}, the relay can decode
Mai if [11, Thm. 9.1.1]

Rai < Ai, (13)

where Ai has been defined in (3).
Note that without using an intermediate lattice, we regain

the missing term in red (compare (12) with (6)), as B′′i > B′i.
Using simultaneous decoding (see, e.g., Asadi et al. [12])

over states i and 4, we can show that user ī ∈ {1, 2} (knowing
its own message Maī) can decode Vb-sum and Mai if

Rai < Ci +Di, (14)
Rbi < Di, (15)

Rai +Rbi < Ci +Di. (16)

Given (16), (14) is redundant.
From Mai and Vb-sum, user ī ∈ {1, 2} can obtain its required

Mi. Combining (12), (13), (15), (16) using Fourier-Motzkin
elimination, we have the following:

Theorem 1 (Proposed scheme 1): For the half-duplex
Gaussian two-way relay channel, utilizing only states 1–4,
a rate region R1 ∈ R2, consisting all non-negative rate pairs
(R1, R2), each satisfying the following, is achievable:

Ri < Ai +B′′i , (17)
Ri < Ai +Di, (18)
Ri < Ci +Di, (19)

4Note that the definition of Vb-sum here is different from that in the G-B
scheme, which uses an intermediate lattice.
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Fig. 3. A comparison of the HBC scheme, the G-B scheme, and our proposed
scheme 1, where SNR1 = λ1,3 = λ3,1 = 6dB, SNR2 = λ2,3 = λ3,2 =
5dB, and SNR3 = λ1,2 = λ2,1 = 2dB. The regions are obtained via linear
programming.

for all i ∈ {1, 2}.
Here, (19) is common among all three schemes. (17) is looser

than (6) in the G-B scheme (due to not using the intermediate
lattice). There is an additional constraint (18) (due to rate
splitting), but there is no sum rate constraint (as the relay does
not decode both messages).

D. Comparison

Figure 3 compares the rate regions achievable by these three
schemes for a specific channel configuration. It can be seen
that our proposed scheme achieves a strictly larger rate region
than the other two for this set of channel parameters. Also, it
shows that RG-B is not always strictly larger than RHBC.

IV. ACHIEVABLE REGIONS USING ALL SIX STATES

Instead of using only four states as in the previous section,
we may be able to enlarge the achievable rate region by using
all six states (states 1–6).

A. The Gong-Yue-Wang Scheme

A coding scheme using all six states has been proposed by
Gong, Yue, and Wang [8].5 The coding schemes are as follows:
• Each user i splits its message into three parts, Mi =

(Mai,Mbi,Mci) with rates (Rai, Rbi, Rci) respectively,
where Rai +Rbi +Rci = Ri.

• In state i ∈ {1, 2}, user i sends Mai, and the relay decodes
Mai.

• In state 3, both users send {Mbi} simultaneously, and the
relay decodes both Mb1 and Mb2.

• In state 4, the relay send (Ma1,Mb1)⊕ (Ma2,Mb2) (the
messages are converted into binary bits and then XORed).

• In state (4 + i), for i ∈ {1, 2}, user i sends Mci, while
the relay sends (Mai,Mbi).

The scheme, referred to as the G-Y-W scheme achieves the
following rate region:

5We follow the state definition by Kim et al. [6] and Ghasemi-Goojani and
Behroozi [7], which is different from that by Gong et al. [8].

Lemma 3 (The G-Y-W Scheme [8]): The G-Y-W scheme
achieves a rate region RG-Y-W ∈ R2, consisting of all non-
negative rate tuples (R1, R2), each satisfying the following:

Ri < (Ai +Bi) +
t4+i

2
log(1 + λi,̄i)︸ ︷︷ ︸

,Fi

, (20)

Ri < (Ci +Di) +
t4+i

2
log

(
1 +

λ3,̄i

1 + λi,̄i

)
︸ ︷︷ ︸

,Gi

+Fi, (21)

R1 +R2 < (A1 +A2 + E) + F1 + F2, (22)

for all i ∈ {1, 2}.
Setting t5 = t6 = 0⇒ Fi = Gi = 0, we recover the region
RHBC. This means RHBC ⊆ RG-Y-W. Here, Fi represents the
rate of Mci, i.e., Rci, transmitted on the direct user-to-user
link in state 4 + i, and Gi is the additional information (of
the messages Mai and Mbi) that the relay forwards in states 5
and 6.

Issue: The encoding scheme described by Gong et al. [8]
is incorrect, though the region RG-Y-W is actually achievable.
To see this, let t5 = t6 = 0, meaning that Fi = Gi = 0 and
Mc1 = Mc2 = ∅. We get the region RHBC. However, using the
message-splitting technique described by Gong et al., we see
that the relay must decode Ma1 over state 1, which necessarily
imposes Ra1 < A1. In addition, Mb1 is decoded by user 2
over only state 4 (since we have set t5 = 0), which necessarily
imposes Rb1 < D1. So, there should be another constraint
R1 < A1 + D1 for RG-Y-W when t5 = t6 = 0.6 This issue
can be easily rectified using the coding technique in the HBC
scheme, where (i) user i sends the same message in states i
and 3, i.e., the message is not split, and (ii) the relay sends the
sum of binned message indices in states 4–6. The splitting of
message Mci for direct user-to-user transmissions in states 5
and 6 is fine here, because it does not impose additional rate
constraint (as {Mci} are not decoded by the relay).

B. Our Proposed Scheme 2

We will now improve upon the G-Y-W scheme by using
lattice codes as in our proposed scheme 1, which removes
the sum rate constraint (22). In addition, we will also utilize
coherent combining [9, Sec. IV] to get power gain in states 5
and 6. Our proposed scheme 2 is as follows:
• The message Mi, i ∈ {1, 2}, is split into Mai, Mbi, and
Mci with rates Rai, Rbi, and Rci respectively.

• In states 1–4, we used our proposed scheme 1.
• As in scheme 1, the relay decodes Vb-sum (instead of both
Mb1 and Mb2 as in the G-Y-W scheme) and {Mai} over
states 1–4.

• In state (4 + i) for i ∈ {1, 2}:
– The relay sends Mai using a random Gaussian

codeword.
– User i sends two codewords. Instead of sending only

the new sub-message Mci (as in the G-Y-W scheme),

6This is similar to constraint (18) in scheme 1 where message splitting is
used, and both parts are decoded by both the relay and the user.



user i splits its power to send (i) same signal as the
relay using αi fraction of its power, and (ii) Mci using
(1− αi) fraction of its power, for some 0 ≤ αi ≤ 1.

Decoding at the relay (over states 1–4) is the same as that
in scheme 1. So, the relay can decode Vb-sum if (12) holds, and
Mai if (13) holds.

Using simultaneous decoding over states i, 4, and (4 + i),
user ī (knowing Maī a priori) can decode Vb-sum and Mai if

Rai < Ci +Di +
t4+i

2
log

(
1 +

(
√
λ3,̄i +

√
αiλi,̄i)

2

1 + (1− αi)λi,̄i

)
︸ ︷︷ ︸

,Hi

,

(23)
Rbi < Di, (24)
Rai +Rbi < Ci +Di +Hi, (25)

where Hi is due to the coherently-combined signals (carrying
Mai) transmitted by both the relay and user i in state (4 + i),
by treating the signals carrying Mci as noise. The analysis is
the same as that for scheme 1. Given (25), (23) is redundant.

In state (4 + i), after decoding Mai, user ī subtracts the
signals carrying Mai off its received signals. It can decode
Mci if [11, Thm. 9.1.1]

Rci <
t4+i

2
log
(

1 + (1− αi)λi,̄i
)

︸ ︷︷ ︸
Ii

. (26)

Combining (12), (13), (24), (25), and (26), we have the
following:

Theorem 2 (Proposed scheme 2): For the half-duplex
Gaussian two-way relay channel, the rate region R2 ∈ R2,
consisting all non-negative rate pairs (R1, R2), each satisfying
the following, is achievable:

Ri < Ai +B′′i + Ii, (27)
Ri < Ai +Di + Ii, (28)
Ri < Ci +Di +Hi + Ii, (29)

for all i ∈ {1, 2}.
Note that setting t5 = t6 = 0, we recover R1. Hence,

R1 ⊆ R2.

C. Comparison

Setting αi = 0 for scheme 2, we have Hi|αi=0 = Gi and
Ii|αi=0 = Fi, and thus (27) equals (20), and (29) equals (21).
While scheme 2 does not impose the sum-rate constraint (22)
of the G-Y-W scheme, it includes an additional constraint
(28). So, one scheme could perform better under some channel
parameters, and worse under some.

Figure 4 compares the rate region achievable using two four-
state schemes (the HBC scheme and our proposed scheme 1)
and two six-state schemes (the G-Y-W scheme and our
proposed scheme 2). We use the same channel parameters
as in Figure 3. We see that for this channel configuration, our
proposed scheme 2 outperforms all other schemes. As expected,
RHBC ⊆ RG-Y-W and R1 ⊆ R2.
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Fig. 4. A comparison of the HBC scheme, the G-Y-W scheme, and our
proposed schemes 1 and 2, where SNR1 = λ1,3 = λ3,1 = 6dB, SNR2 =
λ2,3 = λ3,2 = 5dB, and SNR3 = λ1,2 = λ2,1 = 2dB. The region R2 is
obtained via linear programming and exhaustive search over 0 ≤ α1, α2 ≤ 1.

An outer bound to the capacity region is calculated based
on the cut-set argument [11, Thm. 15.10.1]. It consists of all
non-negative rate pairs (R1, R2), each satisfying the following:

Ri ≤
ti
2

log(1 + λi,3 + λi,̄i) +Bi + Ii|αi=0, (30)

Ri ≤ Ci +Di +Hi|αi=1, (31)

for all i ∈ {1, 2}.
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