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Abstract 
There has been a large literature on the feedback con- 
trol of flexible and resonant systems. Such systems 
arise naturally when system weight and or response 
speed issues push designers toward lighter, faster struc- 
tures for a range of mechanical systems. Feedback con- 
trol of such systems is often proposed to ameliorate the 
effects of the resonance. In this paper, we investigate 
the extent to which the dynamic structure of a simple 
class of resonant systems limits the achievable feedback 
control performance for such systems. It turns out that 
in the class of systems considered, there is a trade off 
between three common control objectives, namely: (i) 
good initial transient response (that is the absence of 
large overshoot or undershoot in the initial rise time), 
(ii) fast response, (iii) good settling behaviour (that is, 
the absence of very slow modes in the step response). 

1 Introduction 
Physical systems which exhibit resonance, or flexible 
modes, have been noted in several application areas. 
Some examples of such applications include: Computer 
Disk Drives [l], Robotics [2],[6], Spring Mass systems 
and Noise Cancelling Systems [4], Flexible Structures 
[8],[12] and Rolling Mills [3]. 

Many flexible systems inherently contain a number 
(possibly infinite) of lightly damped resonant modes. 
Here, we consider a simplified class of systems with 
a single lightly damped resonant mode. It is our 
contention that the performance limitations associated 
with more complex systems considering multiple modes 
will be at least as restrictive as the limitations we ex- 
pound for the single resonance case. 

Stein and Greene [lo] consider a flexible system and 
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study the implications of Bode gain-phase when at- 
tempting to ‘phase stabilize’ (or ‘strongly actively 
damp’) a large number of resonant modes. Goodwin 
et a1 [3] describe performance limitations in a SISO 
setting due to resonant zeros using time domain con- 
straints assuming the lightly damped resonant zeros are 
not cancelled in the controller. Hong and Bernstein 
[4] consider actuator placement, spillover and other is- 
sues in a four block setting, where a scalar input, dis- 
turbance, sensor and performance variables are con- 
sidered. Here we wish to generalize these results, in 
particular, we wish to consider aspects of sensitivity, 
minimal achievable linear quadratic and L ,  costs, and 
situations where there is a single actuator, yet multi- 
ple performance variables in a resonant system. To do 
this, we first “sharpen” the results of [3], to give the 
infimal L ,  error in a SISO system with resonant zeros. 
This result implicitly assumes that the lightly damped 
zeros are not cancelled in the controller. Later results 
interpret [13], [14] & [15] for resonant systems with two 
performance variables. These results support our ear- 
lier analysis without the need to assume zeros aren’t 
cancelled. 

In Section 2 we define the class of systems we wish to 
consider and introduce some preliminary definitions. 
Following this, in Section 3 we consider the problem of 
the best achievable L, performance for SISO systems 
with lightly damped zeros. In Section 4, we turn to 
the problem of the cheap control tracking for resonant 
systems. In particular, we show that in a single input 
two output (SITO) sense, there is a non-trivial lower 
bound on the achievable Lz performance for resonant 
systems. In section 5, we interpret a SITO integral de- 
veloped in [13] for resonant systems. The particular 
class of systems we consider here simplifies the inte- 
gral constraints in [13] and therefore admits more di- 
rect interpretations. In section 6, an example is used 
to illustrate the main conclusions of the paper. Section 
7 concludes, by noting that from several perspectives, 
there is a fundamental tradeoff in the class of resonant 
systems considered, between the three common control 
objectives of 
0 Keeping transient and sensitivity peaks small 
0 Achieving a fast, high bandwidth response 
0 Settling accurately, without long time constants 



2 Problem Formulation 

U U 

Figure 1: Spring Mass System 

To facilitate this discussion, we consider a simpli- 
fied system as shown in Figure 1. Here we use 
21 , 22,  m l ,  m2 to denote (respectively) the actual po- 
sitions, and masses of the two objects. We also use U 
and k to denote (respectively) the input force (applied 
to ml) and the spring constant of the system. For sim- 
plicity here we ignore small but positive damping in the 
system. We denote by y1, y2, nl , n2 the measurements 
of 21 and 22,  and the sensor noise in these measure- 
ments, respectively. 

If we then chose as state variables: x = 
[ 2 1  i l  22 i 2  ] then it is a straightforward exer- 
cise in dynamics (see also [4]) to derive the state space 
equations: 

T 

r o  1 o 0 1  r n  i 

- l o  - 0 0 -  1 1 ”  

1 0 0 0  
= [ o  0 1 o]z+[ : ; ]  

This model can also be expressed in transfer function 
form as: 

= P(s)U(s)  + N ( s )  

where D(s )  = s2 (s2m1m2 + k (ml + m,)) (3) 

Although this transfer function has been derived for 
a particular physical system, a very similar dynamic 
structure arises from other example problems includ- 
ing flexible drive robots [6],  crane control (or “pendu- 
lum down”) type problems [13, Example 2.5.111, and 
stepper motor damping [5]. 

Also, in many cases of interest, the plant transfer func- 
tion, P ( s ) ,  from input to performance variables is not 
square. In particular, we are considering an actuator 
deficient plant, with more performance variables than 
actuators. 

For later use, we define two resonant frequencies, the 

free resonance, wf , and the lockeh resonance, w1 de- 
fined by: 

In [15, Sec2.21, the concept of Feasible Set point COOT- 
danates (FSC) is introduced. These coordinates define 
a linear static reparameterization of the outputs which 
clearly describe the achievable steady state set points. 

In this case, the outputs in FSC, 
can be represented by: 

= 2- 

= P ( s ) U ( s )  + N ( s )  

Note that here, apart from scaling, FSC corresponds 
to using the average position, and the difference in 
positions, rather than the individual positions of the 
masses. 

In the remainder of the paper, we shall also make use 
of the following “settling” time definition: 

Definition 1 We say that the closed loop system has 
an exact settling time T,, af for all t > Tes the error 
in the step response i s  zero. 

Note that in theory, an exact settling time does not 
exist in most systems. However, for brevity here, we 
will assume that an exact settling time does exist. Note 
that the results that follow in sections 3 and 4 which 
use the exact settling time can be generalized to the 
case where we have an exponential bound on the tail of 
step response, such as le(t)l 5 for all t > T,. 
Provided E is small, and a is not too small compared 
with TL1, then qualitatively similar results will follow. 
This is explored in more detail in [3, Section 5.41 for 
a similar problem. For simplicity, we do not repeat 
the details of the arguments here, except to note that 
if a is allowed to be small, that is if we allow slow 
final settling behaviour, then the results following are 
relaxed, or possibly even removed. 

In the next section, we consider the problem of deter- 
mining the lowest worst case peaks in the error signal 
which can occur. These results investigate more thor- 
oughly the results of [3] by using L1 optimal control 
theory ([7]). 

3The term free is used to denote the resonant frequency when 
there are no external forces; the term locked is used to denote 
the resonant frequency when the actuated mass, mi, is fixed. 
This term arises in the context of compliant drive systems where 
ml is analogous to the drive inertia, m2 is analogous to the load 
inertia, and wl can be determined by “locking” the drive. 
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3 SISO Time Domain Constraints - Infimai 
&,norm 

We begin by providing a result from [7] and [ll] about 
the structure of the error signal with minimum L,  
norm. We then show how this result may be interpreted 
for our example system. 

Proposition 1 Given constants T E R+, Ai E R and 
linearly independent analytic functions Ci : R+ + R, 
i = l..n define the n integral constraints on a function 
v ( t ) :  

l ' v ( t ) C i ( t ) d t  = Ai (7) 

LI, ) 

Suppose there exist real constants ai (not all zero), i = 
l..n and c such that with 

v*(t) = c sign a i ~ , ( t )  (8) 

(where sign denotes the signum function), v*(t) satis- 
fies the constraints of (7). Then 

min Ilv(.)llLm = Ilv*(.>llLm 
4.) (9) 

U(.) satisfies (7) 

Proof Outline: (see also [7] or [ll]). 
Note that the result is trivial for c = 0. For c # 0, 
consider any v(t)  which satisfies the constraints, (7). 
Then since w * ( t )  also satisfies the constraints: 

iT (v( t )  - v*(t))  Ci( t )dt  = 0 ,  i = 1 . .  .n (10) 

which implies: 
"T n 1- (v(t)  - v*(t))  C a i C i ( t ) d t  = 0 (11) 

i= 1 

Since the integral in (11) is zero either the integrand is 
zero (except on sets of measure zero), or the integrand 
must alternate signs. If the integrand is zero, then 
since Ci are linearly independent and analytic, then 
v( t )  = v*(t)  (except on a set of measure zero), and 
(9) is satisfied with equality. Otherwise, the integrand 
must alternate signs on a non-zero measure set and so 
there exists a set S c [0, T) of non-zero measure such 
that for all t o  E S 

(v(t0) - v*(to))  sign(v*(to)) > 0 

I 4 t o ) l  > Iv*(to)l = IC1 

(12) 

(8) and (12) directly imply that for all t o  E S 

(13) 

and so Ilv(.)llLm > llv*(*)llLm (14) 
0 

We now show how this result can be applied to systems 
with imaginary axis zeros. 

In [3] it was shown that there are constraints on the 
achievable performance due to resonant zeros. In this 
case, if we consider simply the SISO system relating U 

and from [3] we see that the integral constraints for 
(unit) step output disturbance4 performance with ex- 
act settling time Te, are given by: 

( J?" e ( t )  cos (wlt)  dt = 0 

and we know from Proposition 1 that the min L,  error 
signal, subject to (16), will be of the form: 

c sign ( a 1  cos(wlt) + a2 sin(wlt)) 0 < t < Tes 

t > Tes 
(17) 

If we restrict ourselves to Te, < $, then 
sign (a1 cos(w1t) + a2 sin(wlt)) will contain only one 
sign change. Let T be the time where this switch oc- 
curs, so the constraints can be rewritten as: 

cos(w1t)dt - s,'.' cos(wlt)dt] = 0 

which are solved to give: 

This is shown (solid) in Figure 2 along with (dashed)the 
approximate bound derived in [3]. This figure clearly 
shows that it is not possible to have rapid 'exact' set- 
tling and small transient peaks in L,. Note also that 
as the spring becomes stiffer, w1 becomes larger and 
therefore the lower bound on the L, norm is relaxed. 

4 Cheap Linear Quadratic Cost 
In this section, we apply the results of [15] to the prob- 
lem defined in section 2. In particular, the main result 
of this section is the following: 

Proposition 2 For any stabilizing controller for the 
plant ( I ) ,  the integral squared error for a unit feasible 
setpoint change must satisfy: 

4 ~ r  equivalently, a negative unit step reference 
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Normalised settling time 

Figure 2: Plot of IC( vs 9 
Proof: Note that for the plant given in (6) ,  the plant 
numerator in FSC is: 

We note from (21) that &(s) and &(s) have all 
zeros on the imaginary axis. Therefore, for the cheap 
control tracking problem, we primarily need to consider 
the term A, defined 

A(s) = P~(-s)&(s) (22) 
= 2 (mXs4 + 2m2s2k + 2k2) 

From (22) it is easy to show that A(s) has exactly two 
zeros, &,2, with positive real parts, namely: 

I -  

61,2 = F m2 (,/* *iG) 2 (23) 

In particular, we note from [15, Thm 3.11 that for a 
setpoint tracking problem, where the setpoint is the 
(feasible) unit setpoint: y’ = [ 1 0 I T ,  the cheap 
control cost is given by5: 

lis ( /dm eT( t ) e ( t )  + E2u2(t)dt = Var(P) 1 
where 

Var(P) = zs,: 
r -  

z 0.64wr’ 

and the result follows. 0 

One interpretation of this result is the following corol- 
lary: 

5Note that in this case, since the plant includes an integrator 
(in fact it includes two), then in 1151 .ii is zero, and therefore, 
U = U=. 

Corollary 1 Consider the system [2], and assume that 
the closed loop has an exact settling time of T,,, then 
the rms error, eTga over the interval [0, Tea) defined by: 

(27) 
0.8 

satisfies e:ga I: - 
d G z  

Proof: Follows directly from Proposition 2 and the 
0 

It follows directly from the above corollary, that if the 
product of the locked resonance and the exact set- 
tling time is small, then necessarily, the step response 
will have a large r.m.s. error during the initial phase, 
t E [0, Tea). In particular, small spring constants (that 
is very flexible systems) give small locked resonant fre- 
quencies and are therefore difficult to control with both 
small r.m.s. errors, and small exact settling times. 

definition of exact settling time. 

5 Frequency Domain Integral Sensitivity 
Results 

n .. 

Y 

Figure 3: SIT0 feedback Control 

Here, we review some of the main results from [13, 
Chapter 31, highlighting their interpretation for reso- 
nant systems. We first define f“ the output comple- 
mentary sensitivity function, in FSC, as: 

PO(S) = P ( s ) ~ ( s )  ( I  + P(s)C(S))-’  (28) 

where C(s) is the co>troller transfer function as in Fig- 
ure 3. Note that TO is in fact the transfer function 
from output noise to the output, or equivalently, from 
tJe reference signal to the output. We will also define 
SO as the output sensitivity, which is the transfcr func- 
tion from output dis_turbapces to the output. SO also 
obeys the identity: So + TO = I .  

Since the only feasible steady state outputs are those 
where $2 is zero, it is of interest to consider the response 
to a unit feasible setpoint, F = [l 0IT. This is given by 
the first column of To which we denote by Fo.1. We 
then have the following result: 

Proposition 3 Consider any internally stablalazing 
controller for the system (6). Then: 

d w l r  
ln(IIFo.l(jw)ll) - 2 -Var(P)  = 1.005wI’ (29) 7 w2 2 

0 
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Proof This follows as a special case of [13, Proposi- 
tion 3.1.71, upon noting that for the system (6), there 
are only complex zeros in &(s), and therefore, several 
terms in [13, Proposition 3.1.71 are zero. Also,-since 
there is a double integrator in the plant and PN~(s) 
contains a double zero at s = 0, then further terms 
in [13, Proposition 3.1.71 are zero, leaving (29) as the 
result. 0 

This proposition shows that the weighted average of 
In (llfo.1 (jw)ll) is a strictly positive quantity, which 

in turn implies that T0.1 (jw)llmust exceed unity over 
a range of frequencies. 

Note that since the plant (2) contains a double integra- 
tor, and we are in feasible set point coordinates, any 
internally stabilizing controller yields at low frequen- 
cies: 

Therefore, there will exist positive constants c2 and WO 

such that 

II 

3011 (8) = 0 (s2) (30) 

Proposition 4 If we define the low frequency LZ en- 
ergy in the error signal as: 

EiF = 711. (jW)llzdw (32) 
0 

where E(s) i s  the Laplace transform of the error in the 
step response, then: 

SUP In ( ~ ~ ~ o . ~ ( j w ) ~ ~ )  2 ~ . O O ~ - - C ~ - ~ E L F  WO WO 2 (WO) (33) 
w>wo Wl 

Proof Using (31) in (29) we can show that: 
m 

WO 

Splitting the interval of intergration in (33) to the dif- 
ference between and and using (29) gives: 

From (351, using the fact that ln(1 +z) 5 2 and 
E(s)  = +So.l(s) gives: 

WO 

(36) 

as required. 0 

WO = 1.005- - c2 - *,TiF (WO) 
Wl 2 

Note that EiF(w0) ,  the low frequency L2 energy in 
the error signal, is indicative of the long term (i.e. set- 
tling) behaviour of the error signal. Clearly, from equa- 
tion (33) there is a tradeoff between the objectives oE 
(i) keeping EiF and c2 small (for good settling and 
low frequency disturbance rejection); 
(ii) keeping WO for fast control; and 
(iii) keeping peaks in F0.1 small (to avoid undesirable 
transient and sensitivity peaks). 

6 Examples 
In this section we will look at typical responses achiev- 
able at the outputs of the spring-mass system. Addi- 
tional constraints due to factors such as input band- 
width, saturations, slew rate limits or measurement 
noise will further restrict the achievable response but 
are not considered here. 

From (2) we see that the system has no multivariable 
zeros and no right half plane polese. In fact, if we use 
state feedback, then the closed loop response at the 
output is given by: 

where dcl(s) has degree 4 and the system poles (in d,l) 
can be arbitrarily chosen. 

The following figures illustrate typical reference step 
responses for the normalized system (1 = ml = m2 = 
k) under state feedback: U = -K (z - [l 0 1 OITr). 
These parameter values put the system zeros at * j .  

From the results in the preceding sections it is clear 
that there are restrictions on the responses available. 
These will generally take one of the following forms: 

Case (a) Fast response, with rapid settling (and there- 
fore poor transients). This type response is shown 
in signals Y1A & Y2A of Figure 4 where fast set- 
tling has occurred, but at the expense of a bad initial 
transient. State feedback gains for this example are: 
K = [ 30.46 9.00 8.28 46.80 1. 
Case (b) Fast response, but with a long slow set- 
tling. Signals Y1B & Y2B in Figure 4 represent a 
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different trade-off which results in good (fast) initial 
transients, but poor settling characteristics. In this 
case the state feedback gain was chosen as: K = 
[ 0.150 1.80 0.674 0.0082 1. The controller has 
poles near the imaginary axis zeros which trades off 
a better y1 response against y2 performance. 

Case (c) Slow response, with good overall behaviour. 
A typical response of this type is shown in Figure 4 
with signals Y1C & Y2C, where we have traded both 
speed of initial response & the final settling time for a 
much better although slower response. State feedback 
gains are: K = [ 2.38 3.40 -1.64 -0.72 1. 

:’ i ,,..Y?B 
, . . . . . . . .. . .  . .  

’ J ;.,’ 
0 r - 2  ’ I 

12 4 time 8 0 

Figure 4: Reference Step Responses 

7 Conclusions , 

We have examined the control of a class of resonant sys- 
tem with more performance variables than actuators. 
In the class of systems considered, there is a feedback 
control performance limitation which may be expressed 
in various ways, including, a non-trivial minimal inte- 
gral squared error; a non-trivial L1 performance cost 
whenever there is a limit on the closed loop response 
time, and a frequency domain sensitivity integral. All 
of these factors point to a limitation which can be de- 
scribed qualitatively as a trade-off between response 
time (that is bandwidth) and sensitivity/transient per- 
formance limitations. 

Further work in this area is aimed at understanding 
further issues in actuator and sensor placement, and 
looking at multiple modes (e.g. flexible structure) sys- 
tems. 

References 
[l] Banther, M., Y. Huang and W.C. Messner, “Op- 
timal Strain Gauge Placement for an Instrumented 
Disk Drive Suspension”, Proc. ACC98, Philadelphia. 

1850 

[2] Geniele, H, R.V. Pate1 and K. Khorasani, “End- 
Point Control of a Flexible-Link Manipulator: Theory 
and Experiments”, IEEE Transactions on Control Sys- 
tem Technology, V5, N6, pp556-570, 1997. 

[3] Goodwin, G.C., A.R. Woodyatt, R.H. Middleton 
and J.  Shim, “Fundamental Limitations due to jw axis 
zeros in SISO Systems”, to appear, Automatic, 1999 
[4] Hong, 3. and D.S. Bernstein, “Bode Integral 
Constraints, Colocation, and Spillover in Active Noise 
and Vibration Control”, IEEE Transactions on Control 
System Technology, V6, N1, pplll-120, January 1998. 

[5] Middleton, R.H. & A. Cantoni, ”Electromagnetic 
Damping for Stepper Motors with Chopper Drives”, 
IEEE Trans. Ind. Electronics, IE33, N3,241-246,1986. 
[6] Middleton, R.H., R.J. Evans and R.E. Betz, 
“Servo-Regulator Designs for Robotic Systems with 
Resonances” , International Symposium and Exhibition 
on Robotics, Sydney, Australia, November 1988. 

[7] Miller, D.E., “Minimizing the Maximum Value of 
the Regulated Output to a Fixed Input”, Proceedings 
31st IEEE CDC, Tuscon, Arizona, 1992. 

[SI Moheimani, S.O.R, H. Pota and I. R. Petersen, 
“Active control of noise and vibration in acoustic ducts 
and flexible structures - a Spatial Control approach”, 
Procs of the 1998 ACC, Philadelphia - June 1998 

[9] Seron, M.M., J.H. Braslavsky, P.V. Kokotovic 
and D.Q. Mayne, “Feedback Limitations in Nonlinear 
Systems: From Bode Integrals to Cheap Control”, 36th 
IEEE CDC, pp2067-2072, San Diego - December 1997. 

[lo] Stein, G. & C. Greene, “Inherent Damping, Solv- 
ability conditions, and solutions for structural vibra- 
tion control”, Tech Report, Honeywell Research Cen- 
tre, 2600, Ridgeway Park Minneapolis, MN55413, 1980 

Ill] Wang, Zi-Qin., M. Sznaier, “L, Optimal Control 
of SISO Continuous-time Systems”, Automatica, Vol. 

[12] Wei, B. & D.S. Bernstein, “Benchmark Problems 
for Robust Control Design”, Proc ACC92, pp2047-48 

[13] Woodyatt, A.R., “Feedback Control of Multivari- 
able Non-Square Systems”, Ph.D. Thesis, Department 
of Electrical and Computer Engineering, The Univer- 
sity of Newcastle, 2308 Australia, January 1999. 

[14] Woodyatt, A.R., J.S. Freudenberg and R.H. Mid- 
dleton, “A design tradeoff for single input two output 
feedback systems”, Proceedings of the 35th Allerton 
Conference on Communications , Control and Com- 
puting, Allerton, Illinois, 1997. 

[15] Woodyatt, A.R., M.M. Seron, J.S. Freudenberg 
and R.H. Middleton, “Cheap Control tracking perfor- 
mance for non right invertible systems”, Proc. 37th 
IEEE CDC, Tampa, Florida, 1998. 

33, NO. 1, pp. 85-90, 1997. 


