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Abstract

Preview Control refers to a tracking control scheme
whereby a reference trajectory, and a finite ‘preview’
of future values of the reference trajectory are used
in the controller. Such controllers have been explored
in the context of linear and nonlinear inverse tracking
controllers, where particularly for non stably invertible
plants, preview of the reference trajectory gives signifi-
cant performance advantages. Without the presence of
preview, it has been known that lack of a stable inverse
imposes inherent limitations on the achievable perfor-
mance of a feedback control loop. In this paper, we ex-
plore the extension of these performance limitations to
the preview control case, In particular, we consider the
infimal achievable H,, performance, and Poisson sensi-
tivity integral results for the finite preview case.

1 Introduction

Consider a situation where we have a single input sin-
gle output linear time invariant plant, where the control
objective is to track a trajectory. If the plant is min-
imum phase (that is, it possesses a marginally stable
inverse), and in the absence of other constraints, then
appropriate feedforward and high gain feedback control
techniques may be used to give high performance track-
ing of the system output. However, in the case where
the plant is non-minimum phase (that is, it lacks a sta-
ble inverse), such tracking is not, in general, possible.
Further research (see for example (5], {11], [12] and [4])
has shown that in situations where the reference tra-
jectory is known in advance, improved tracking perfor-
mance can be attained; indeed, with unlimited advance
knowledge of the trajectory, perfect asymptotic track-
ing of any bounded reference trajectory can be attained.
This method of control, whereby advance knowledge of
the reference trajectory is utilised, is sometimes referred
to as ‘Preview Control’. We shall further differentiate
control schemes which require complete knowledge of the
reference trajectory ahead of time, from those where at
time ¢ the reference trajectory is known up until time
t4+ T, where T is a fixed positive time, which we denote
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as the ‘Preview Horizon’. This latter class we denote as
‘finite preview control’ and it is this class which is our
primary focus in this paper.

One of the aspects of this technique of preview con-
trol which has received little attention until recently is
the sensitivity and robustness properties of such con-
trol schemes. In [14], some aspects of sensitivity and
robustness are discussed, mainly from the point of view
of resolving an apparent paradox with time domain in-
tegral constraints espoused in [13]. Recent work in [5]
considers the achievable Hy tracking performance in a
preview setting.

The main aims of this paper are twofold. First, we con-
sider the problem of optimal achievable H,. tracking
performance in a finite preview control setting. In par-
ticular, we show that there is a non trivial lower bound
on this achievable performance which is dictated by the
cost function weighting, the plant non minimum phase
zeros, and the preview horizon, T. Secondly, we shall ex-
amine frequency domain interpolation constraints, and
their consequent implications on a Poisson logarithmic
sensitivity integral, in the spirit of those developed in [6]
and [15]. From both perspectives we shall see that in-
creasing the preview horizon permits improved tracking
performance in the preview control scheme.

2 Preliminaries

We denote by ORHP and CRHP respectively, the open
and closed right half complex planes. We consider lin-
ear time invariant scalar dynamic systems, with ratio-
nal transfer functions. We use the notation Zr and Pr
to denote respectively the sets of ORHP zeros (NMP
zeros) and poles of a transfer function T (s). We say
that T'(s) is ‘stable’ if none of it's poles is in the
CRHP, and minimum phase if none of it’s zeros is in the
ORHP. A transfer function, T (s) is said to be ‘proper’ if
SUP, .o seC, |1 (8)] exists and is finite. For any stable,
preper transfer function T (s) the H,. norm is defined

as [T (s}l = sup_|T {jw)|.

Consider a lnear feedback system as indicated in Figure
1 where P,(s) and C(s) denote respectively the linear
time invariant open loop plant and controller; 7 (¢t + T'),
u () and y (¢) are scalar functions of time denoted, re-
spectively, as the reference signal, with preview of T, the
plant input and the plant output. Our control objective
is to make the plant output y (t) track the reference r (¢)
accurately. The controller,
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Figure 1: Preview Control Block Diagram

C(s)y=c(s)[ H{s) Crp(s) ] (1)

is assumed to be rational, and proper. We shall assume
that the feedback loop in Figure 1 is internally stable,
and therefore can be rearranged as shown in Figure 2
where e (t) is now the performance variable, and P (s)
is the stable closed loop plant

_ c{s) Py (s)
P = e ) A ) @

Note that due to the requirement of internal stability,

” ) + o~ et

r(t+T)

H(s)

»t Pfs
v(t) ) y(t)

Figure 2: Feedforward only equivalent system

P () inherits all NMP zeros of P, (s). Indeed, it can be
shown that

Zp = Zp UZ,UPg,, (3)

For simplicity, we make the following assumption.

Assumption 1 Both Pg,, and Z. are empty, that is
Crpg (s) 1s stable, and ¢ (3) is minimum phase.

Note that Assumption 1 can always be achieved by par-
titioning the feedback transfer function (¢(s)Crp(s))
appropriately.

Under Assumption 1, it is clear that P (s} is a stable
transfer function, with precisely the same set of NMP
zeros as the original open loop plant, P, (s). We then
define the command tracking sensitivity function:
Sc(s)=eT —H(s)P(s) (4)
—aT‘E (S)

R(s)

The use of a two degree of freedom control architecture
implies that unstable open loop poles do not impose in-
terpolation constraints upon the command tracking sen-
sitivity. This effect does not depend on the use of pre-
view control. Indeed, suppose that the architecture of

Figure 1 is applied without preview. Then the command
tracking sensitivity reduces to:
Sc(s)=1-H{(s)P(s) (5)

N c(s) P, (s)
=1 H()(1+C(S)CFB(S)P”(S))

Therefore, at any unstable open loop plant pole, p,, we
have

 H)
CFB (pu)

and there is no ‘fundamental’ interpolation condition re-
quired in this two degree of freedom controller structure.
In other words, the value of S; at an open loop plant
pole is not fixed, but is determined by the controller ap-
plied. This phenomena may be understood by noting
that poles are altered by feedback.

Scip.) =1 (6)

Conversely, it follows from (5) that interpolation con-
straints due to plant NMP zeros cannot be removed by
the two degree of freedom architecture of Figure 1 with
no command preview. As may be seen from (12), the
use of preview control does alter the interpolation con-
straints, and we shall investigate the design implications
of this below.

In the following sections we shall give a more detailed
examination of properties of the command tracking sen-
sitivity function. In particular, in Section 3 we describe
the limiting achievable M., tracking performance with
finite preview, followed by examining frequency domain
Poisson integral inequalities in Section 4.

3 H, Tracking Performance

Consider the infimal achievable weighted H,, norm :
Yoin = 0l {[(3)S5 (¢) o) )

where w(s) is a real rationa] function. w(s) is assumed
to be minimum phase and stable, with no loss of gener-
ality. Furthermore, we shall assume that w(s) is strictly
proper. This assumption of a strictly proper weighting
is required for technical reasons (see for example Lemma
3 below). In addition for any strictly proper plant, note
that without such an assumption on w (s} regardless of
the amount of preview, v, > w{oo) since S¢ (oc) = 1.
As we shall see below, this is in contrast to the strictly
proper case where arbitrarily good infimal } . tracking
performance may be achieved by increasing the amount
of preview.

The minimal ‘H., norm 7,;, may in general be inter-
preted as a worst-case performance measure of track-
ing error, i.e., the best possible tracking error quantified

3076



under the integral square criterion, in response to all
possible energy-bounded refergnce input signals. Thus,
it serves as a benchmark complementary to the usual
Lo type criterion. Tracking with reference preview is
predominantly effective in the low frequency range, and
is generally performed on a prefiltered signal. In this
sense, w(s) may be interpreted as the transfer function
of a lowpass prefilter, or the spectrum of the reference
signal whose essential frequency component is in the low
frequency range.

The main technical tool to be used in our development
will be the theory of analytic function interpolation. The
following preliminary lemma is standard in this theory
{see, e.g., (1]}, which gives a necessary and sufficient
condition to the classical Nevanlinna-Pick interpolation
problem.

Lemma 2 Consider two sets of compler numbers
(2iy u3),i=1, ---, k, where z; are distinct. There ex-
ists @ rotional function F(s) such that (i) F(s) is stable,
(it} | F(8){lee < v, and (it} F(s) satisfies the conditions

F(2;) = uq, i=1, ---, k, (8)
if and only if

Q- 7—12UQUH > 0. (9)
where U =diag(w;, w2, ---, ug), and

1 1 1
ZITEl leEZ z]JE-Ek
2242 z9+Za z3+Z,
Q| #F . (10)
ZK+Z) 2k +ZE; zp+Ex

Based upon Lemma, 2, we shall pose and solve the above
minimization problem as one of Nevanlinna-Pick inter-
polation. We note that interpolation results are avail-
able for more general functions that need not be ratio-
nal. However, such circumstances will generally require
more delicate treatment [8]. We choose to base our de-
velopment on Lemma 2 for technical simplicity. For this
purpose, we shall also need rational approximants of
complex exponential functions. The lemma given below
follows directly from (2, pp 67], and is found in [3].

Lemma 3 Let

1-L\"
Fn(s) = ﬁ_g_% .
n

Then F,(s) .
. o0,

(11)

e™*T uniformiy on any compact set as

For any stable function F{s), define next the transfer
function
Sc,p(s) == F(s) — H(s)P(s), (12)

It is clear that S¢(s) = S e-»r(s). The following inter-
polation constraints on Se,p(s) follow immediately.

Lemma 4 Let z _ Zp be a NMP zere of P(s). Then
for any stable proper rational functions F(s) and H (s)

S, r){2) = F(2). (13

We now state our main result for this section.

Theorem 5 Let P(s) have simple NMP zeros z; . Zp,
t=1, ---, k. Suppose also that P(s} has no zero on
the imaginary azis, end that w(s) is stable and minimum
phase. Then

S {7: Q- SVAQVAI" 2 o} (19)

=- (Q*%WAQ%)
where
W i=diag(w(z1), -+, w(z)) (15)
A :=diag (e‘z‘T, - e‘z"'T) .

and @ is formed as in (10) from the NMP zeros of P (s).

Proof., We shall first evaluate

4 = b Ailw(s)Scr, ()} (16)
Define
n=diag(Fu(z1), -+, Falz)). (17)
In light of Lemma 2 and Lemma 4, we obtain
W = ity e@Sen @l b (18)
= e 8L L, b S r (8l <)
= inf {‘y: —’:T(W.n)Q(W,n)H 20}
=inf {72 712 QTHW )W )"Q ¥}
== (Q—%W -nQ%) _
Next, we show that
lim_ 5™ = in. (19)

n—os
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Indeed, since w(s) is strictly proper, for any arbitrarily
small § > 0, one can find a sufficiently large r > 0 such
that

sup
welr, oc)

lw(jw) (Sc(iw) — Se.r, (Fw))] < 6.

Furthermore, since F,(s) converges to ¢ 7 uniformly
on any compact set, for any arbitrarily small § > 0,
there exists an N such that for n > N,

sup |w(jw) (Sc{jw) — Sc,r, (jw))| =
wel0, r)

sup |w(jw) (e_j‘”T - Fn(ju))l < 4.
we[d, )

(20)

This suggests that for any arbitrarily small § > 0, there
exists an N such that for n > N,

[[lw(s)Se(s)loe — Iw(8)Sc,F, ()]loc| < &

for any stable H. Consequently, we have proved (5).
The proof may then be completed by evaluating the limit
fm ~, In light of Lemma 3, it is clear that

n—oc

n=A

lim
n—oc

(21)
This yields (14) as required. m

Remark 6 For a minimum phase P(s), it is evident
that yin = 0; that is, it is possible to achieve perfect
tracking even without preview. This is no longer true of
NMP plants, though preview can be used fo improve the
tracking performance. To illustrate, it is instructive to
examine certain limiting cases. Suppose that P(s) has
only one NMP zero z, for which Theorem 5 gives rise to

Yimin = [w(z)|e” Re(«T, (22)
Thus, Ypmin may still be kept small by selecting a large
T, and in the limit it opproaches zero when T . oo.
This error may be substantially smaller than |w(z}|, ie.,

the minimal error achievable in the absence of preview

(T =0).

It is worth noting that while in general it does not seem
possible to obtain an explicit expression such as (22) for
“Ymins the qualitative statement remains valid. This is
seen from the following corollary.

Corollary 7 Let P(s) have simple NMP zeros z; . Zp,
i=1, .-+, k. Suppose also that P(s) has no zero on
the imaginery aris, and that w(s) is stable and mini-
mum phase. Then:

(1) Ymin(T) 8 a continuous,
increasing function of T

(ii)

1 -
L LK .
Yooin < % (Q) max. fuw(z)le

monotonically non-

Re(zi)T‘ (23)

where k(Q) denotes the condition number of Q.

(i)

inf 'min = U, 24
rand 0 (24)
(iv}
s Ao— Re(z)T
Fenin > llgfgklw(zz)le (25)
(v} Suppose that 0 < Re(z) < Re(z2)..... Then for T

large,
Ymin |W(21)I6_ RE(ZI)T‘V (Q_1)11 Qll

where (J11denotes the 1,1 element of the matriz Q; and

(vi)

max e =T (Q7IWQH)

Te[0, oo) (26)

Proof. The proof utilises standard linear algebraic tech-
niques applied to (14). See a full version of this paper
for details. m

Corollary 7 gives important qualitative information
about the behaviour of the infimal Ho, performance un-
der fairly general circumstances. It is monotonically,
and exponentially decreasing in the preview horizon, T,
relative to the ‘time constant for the zeros exponential
envelope’, namely ﬁﬁ‘ This is illustrated in the fol-
lowing example.

Example 8 Suppose that the weighting function is
given by

1
1+ 87y

w(s)= (27)
where 7, = 0.3. Suppose also that twe NMP plant zeros
are located at s =1 and s = 2. Then Figure 3 shows the
achieveble H oo performance calculoted using Theorem 5.
Note from Figure 8 that as expected from Corollary 7,
Ymin 18 @ monotonically decreasing function of T. In
addition, for T large, Ymin 15 epproximately exponential
inT and drops by a factor of approximately 2.7 for every
second of increase in T .

Remark 9 Theorem 5 can be generalized to sttuations
where P(s) may have zeros on the imaginary axis. This
is accomplished in a straightforwaerd maenner by an op-
peal to a limiting argument, one typically found in
boundary Nevanlinna-Pick interpolation problems. This
leads to the following extension of Theoremn § which for
brevity we state without proof.

Theorem 10 Let P(s) have simple zeros z; . ORHP,
it =1, ---, k, ond simple zeros ju;, 1 =1, ---, L
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Figure 3: Example achievable performance for various
preview horizons.

Furthermore, suppose that w(s) is steble and minimum
phase. Then,

min = max { Jwljun) | 1§ = 1.4, T (Q7iwagt)}.

(23)

where }, W and A are formed from the (strictly) NMP
zeros only.

From Theorem 10, it is clear that in cases where the
performance is dominated by jw axis zeros, namely when

~{@7twaQt) S max {luwd), -+, Gl

then the achievable H,, performance is independent of
the preview. This can also be understood by consider-
ing the results in Corollary 7, whereby the bounds are
related to |w (z;)] |e*" |and we note that as z; . jw; the
bounds depend on |w (z;)] only. In this case preview con-
trol is rendered less effective, when |w(jw;)| is compar-
atively large. Intuitively, in these cases, performance is
dominated by the response to narrowband signals, which
are perfectly predictable. Therefore, for the signals of
interest in the worst case analysis, preview does not add
any additional information which is not available with-

. out preview. It is therefore reasonable to conjecture that

the preview would not improve the performance in such
cases.

4 Frequency Domain Integral
Inequalities

We now turn to interpretations and derivations of log-
arithmic sensitivity integrals, in the spirit of {6], [15]

and others. These integrals arise due to the interpola-
tion constraints expounded in Lemma 4. The following
Poisson type integral can be established for S¢(s).

Theorem 11 Consider the closed loop system in Fig-
ure 8, where H (s) and P (s) are stable rational transfer
functions, and neither is identicelly zero. Then for any
NMP zero z = x5 + jyo - C+ of P(s),

17 . _
;flog|5c(jw)|Wz(w)dw = —zoT + log | B;}(z)|
0
> —zoT (29)
where
zi— s
B()= ][ ( )
e z;+ 8
2.‘1‘()
W, (w) =
“ z§ + (W — yo)?
Proof. The result is immediate by application of

the well-known Poisson integral 6], [15] to G(s) :=
Sc(s)B;1(s), yielding

O

2 f log |G(jes) W (w)dew = log |G (2)].
0

Since |G(jw)| = {Sc(jw)l, and

G(2)] = |Sct2) B (=)
- |e_ZTB;1(z), — e-Re(z)T [BS—I(ZH ’

the result follows. m

Note that in the absence of preview, that is with T = 0,
it is possible to design H(s) such that H(s)P(s) # 1 for
all s . C4, in other words, Zs,. = Zn_yp) s empty
For example, if || H (s) P (s)l].. < 1 then this condition
will be satisfied. Under this circumstance, the integral
(29) becomes the ‘normal’ unity feedback result, except
with the effect of open loop unstable poles eliminated:

3=

flog |Se(iw)| W (w)dw =0
0

This elimination of the effect of open loop unstable poles
in the command tracking Poisson sensitivity integral is
achieved as a result of using a two degree of freedom
controller structure, as in Figure 1.

With preview in effect, the situation is more compli-
cated, however, we can make the following statement.
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Corollary 12 Suppose that the plant P (s) has a single
real NMP zero at s = z. Then the inequality in (29) is
tight in the sense that:

H{s) T

inf L f log |Se (j )W, (w)dw = —2T (30)
o]

Proof. (Outline) Clearly from (29) the infimum cannot
be less than —zT. It therefore remains to demonstrate
that by suitable choice of H (s) we can approach this
value from above.

Let r be the relative degree of P (s). For § > 0 and any
n select

1

HO =y

PTHs) (Fu(s)— Fal2))  (31)
where F}, (s) is the time delay approximation in (11). It
follows by some lengthy algebra (see full version of this
paper) that indeed the choice of H (s} in (31) is stable,
proper and gives a cost which may be made arbitrarily
close to —zT. ®

Note, however, that in the more general case where there
are multiple NMP plant zeros, the equivalent discussion
is significantly more complicated. In particular, it would
seem that in general, with multiple NMP plant. zeros and
strictly proper H and P, there will always be NMP zeros
of S (s5).This can be established by the result from [15,
Lemma A.11.1(ii), pp 323] as follows:

Lemma 13 For any steble, proper H(s), T > 0 and
strictly proper P (s), Sc (s) has NMP zeros.

Note that Lemma 13 applies even in the case where we
have a single real NMP plant zero, as in Corollary 12.
This does not necessarily contradict the tightness inher-
ent in Corollary 12, since it may be possible to produce
H (s) such that the contribution of the zeros of S¢ to
(29) is small. A more detailed understanding of cases
where there are multiple zeros is a topic of continuing
research.

5 Conclusions

This paper has considered a general class of finite pre-
view linear tracking control systems for NMP plants.
Under fairly mild assumptions on the class of plants,
we show that the weighted H,,, performance achievable
with preview T is approximately (for large T') propor-
tional to e=*T where a is the smallest real part of any
NMP zero. In addition, we have been able to exhibit
a Poisson sensitivity integral inequality, with weighted
log tracking sensitivity lower bounded by —aT. In both
cases, it is seen that the possible tracking performance is
improved by the use of sufficient preview, In particular,
a preview horizon T which is significantly longer than
the ‘time constant’ of the slowest NMP zero is desirable.
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