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Abstract

In this paper we propose a systematic switch-
ing control design method applicable to a class
of pilecewise linear hybrid systems. We con-
sider a class of systems controlled by a finite
state actuator (i.e. switching controller). For
the class of systems considered, precise con-
ditions for stabilizability are unknown. How-
ever, by considering the same systems with un-
known but bounded exogenous disturbances,
we are able to give finitely computable condi-
tions, sufficient for stabilizability without dis-
turbances, yet necessary for stabilizability with
disturbances.

1 Introduction

Despite some recent advances [1, 2, 5, 6], only a
few control design methods applicable to par-
ticular classes of hybrid systems have been sug-
gested [4, 9, 10, 11, 15]. The difficulties in
this area are serious and stem mainly from
the lack of computationally tractable and non-
conservative stability tests. The results on hy-
brid systems stability date back to the sixties
[7] when some results on Lyapunov stability
were obtained. Some recent and more general
results for hybrid systems have been suggested
in [2, 8, 3] using the concept of “multiple Lya-
punov functions” and piecewise quadratic Lya-

punov functions. The problem of quadratic
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stabilization has been analysed recently in a
number of papers (see, for example, [11, 12]).
In [14] a method is proposed for a system con-
sisting of two linear vector fields. The so-called
min-switch strategy is suggested in [4]. The di-
rect application of stability theorems was stud-
ied in [9]. In [15] an approach based on the idea
of multiple polyhedral Lyapunov functions was
developed. However, difficulty in assessing the
degree of conservatism is a feature common to
the approaches mentioned above. The impor-
tance of this becomes even more obvious if we
recall some recent results (see [13]) showing un-
decidability of the stability problem in the con-
text of LTV systems.

The objective of this paper is to present a
systematic approach to stabilizability analysis
and switching c_ontrol applicable to a class of
piecewise linear hybrid systems. The analysis
is based on the notions of a cell transition and
a cell trajectory whose properties play the ma-
jor role in determining stability /instability of
a controlled system. A desirable feature of the
proposed approach is the possibility of a trade-
off between the conservativeness of the results

and computational burden.
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2 Problem Statement

We consider the following class of nonlinear

discrete time hybrid systems.

High Level Dynamics:
S={Q, %, § AT, Q} (1)
Low Level Dynamics:

a(t+1) = A(i(2),{O)=(t) +d(t)  (2)

where S is a finite state machine with @ and ¥
being finite sets of symbolic states and events,
respectively; ¥ = L. UZun # 9, ¢ and E,,
denote the sets of controlled and uncontrolled
events, respectively; § : Q@ x ¥ — @ is a par-
tial transition function. Each state £ € Q of
the automaton S is interpreted as an activ-
ity (phase) of length At(¢) € AT(§) c N4
while a transition & — &;, V&, & € Q en-
abled by the event ¢;; € X is instantaneous. A
triple e;; = {&, o0ij, &} such that &, & € Q
and 6(§;, 0y;)! will be referred to as a transi-
tion from §; to §; enabled by ;5. The normal
opereting domain §2 C R™ reflects continuous
specifications. Equation (2) describes the low
level dynamics (LLD) with i(z) and £(t) being
the uncontrolled and controlled (respectively)
switching indices affecting the evolution of the
LLD. We will use the notion of a cell parti-
tion (3] defined on a compact set  C R™.
For each £ € @ the set Q is presented as a
finite union of convex polytopes 1 = Ule Q,
Q C R", Vi = 1,2,...,L. Within each cell
(assuming that ¢ is fixed) the dynamics are
z(t+1) = A(£(2))z(t). Thus, the indices 7 and
& are responsible for the changes in the dynam-

- ics caused by the evolution of the continuous

and discrete states, respectively. One exam-
ple of such systems is the multiswitch system
depicted in Figure 1 where W represent elec-
trical components, and K; represent switches.
For every combinations of the binary switches
the system evolves as a cell partition based

one. The high level switching controller is de-

Kz &1 g,

3 I

Figure 1: Multiswitch Hybrid System

fined as T'(£,z) : @ x R™ — 2%<, that is, to
each pair {£,z} we relate a particular com-
bination of the positions of the switches (en-
abled and disabled events). The following as-
sumptions are used: (Al) 0 € int Q; (A2)
Each Q;, i = 1,2,...,L is a convex polytope
in R™; (A3) The cells are non-overlapping,
that is, {Q; — 0%} {2, — 9%} = D, Vi # 4,
Vi,j=1,..,L; (A4) Foranyz € Q; N Q; # O,
Vi,j = 1,..,L and £ € @ the LLD are de-‘
fined by z(t+ 1) € {z(t+1) : z(t +1) =
A(l,6)z(t),l € {i,j}}; (AB) & = I, = Iy,
where ¢, is a set of forced transitions; (A6)
For every {¢;,§;} there exists a transition e;; =
{&,0:5,&}; (A7) 0 € int Q; for at least one
Q; € . In the sequel we will refer to that cell
as ;.

Assumptions (A1)-(A4) and (A7) are trans-
parent, while Assumptions (A5),(A6) define
every transition as admissible, controlled and

forcible. Since our objective is a switching con-
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trol method the description of the system ex-
plicitly showing only controlled transitions ap-

pears convenient.

Definition 2.1 An eTogenous distur-
bance d(t) is said to belong to the class
G i |l < K max{diam (1)}
with k' being a positive constant and

diam (Q;) = maxs yeq; ||z — .

Definition 2.2 A hybrid system (1),(2) con-
trolled by T'(€,x) is said to be asymptotically
stable with d(t) = 0 if (1) =z(t) € Q for all
t > to, to € Ni; (2) limi [|z(2)]] =0

Definition 2.3 A hybrid system (1),(2) con-
trolled by a switching controller T'(€,x) is said
to be stable in the class of ezogenous distur-
bances d(t) € G if the following conditions are
satisfied: (1) z(2) € Q for all t > tg, to € Ny;
(2) There exists a finite t* € N s.t. z(t) €
Vit > .

Definition 2.4 A hybrid system (1),(2) with
d(t) = 0 (d(t) € G, resp.) is stabilizable in the
class L if the exists a controller T'(€,x) s.t. the
controlled system is asymptotically stable (sta-
ble, resp.).

The two major steps essential in the proposed
method, namely, discrete event composition of
the system and cell trajectories analysis are

presented below.

3 Discrete Event Composi-
tion

The main idea behind the discrete event com-
position is superposition of the cell partitions

associated with each discrete mode upon one

another. This allows us to obtain a cell par-
tition based description of the original system
where the evolution of the contimious dynam-
ics within each cell explicitly depends on the

chosen switching sequence. Before proceed-

& 52
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Figure 2: Discrete Event Composition

ing further we recall that a convex polytope
2;(£) can be constructed as the intersection of
p(€) linear half-spaces, each given by an affine
inequality c;i(§)x > zu(€), I = 1,2,---p(§).
Given decompositions of 2 = UZI;(";) Q,(8),
V¢ € @ we define the discrete event com-
position as 0 = Uf:l 2; with each cell Q;,
satisfying the conditions: (C1) Each €, is
a convex polyhedron; (C2) For every hyper-
plane H € {Hji}, Hye = {z : cu(§)z =
zi(€), 1 <1 < p(€),€ € Q} and every §;
HNQ; # 0 & HNQ; € 0 {Q;}; (C3) For
each face, F;, 1 = 1,2,...,s of Q; there exists
an H € {Hj¢} st. F; € H.

An example of discrete event composition sat-
isfying conditions (C1)-(C3) is given in Fig-

ure 2.
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4 Cell Trajectories Analy-
sis

Having performed the discrete event com-

position we can start analysing stabil-
ity/stabilizability properties of the system.
The following assumption is used in the fur-
ther development.

(A8) |Amaz(A(L, )| < 1 for at least one

switching index & € @ defined on ;.

In view of (A7)-(A8) we assume that {4
is a positive invariant set for the dynamics
z(t+1) = A(&)z(t), otherwise it is always pos-
sible to construct a subset £ C satisfying

Assumption (A8).

Definition 4.1 The mapping Q;  x
T, z) — Tr(Q;) where Tr(Q;) = {%
W NQAG,E) # O} is said to be a cell
mapping of the cell Q; with respect to the
controller I'(£, x).

Definition 4.2 The transition ; — Qf is
said to be a cell transition if O € Tr(Q;).

Definition 4.3 A sequence Pp(Q;) = ; —
O — Y = ... = Qs composed of n transitions
1s said to be a cell trajectory of the hybrid sys-
tem (1), (2) of length n € N. We say that a
given cell trajectory is non-cyclic iff Q; # Q;
for all possible i, j, otherwise the cell trajectory

18 cyclic.

An illustrative example of the notions intro-
duced above is given by Figure 5. Here (}; —
{02, 23,824, Q5} is a cell mapping, {1 — N},
{01 = Q3}, {1 = Q4} and {Q1 - Qs} are
cell transitions and £; — Q5 — 7 being a

. cell trajectory. In the sequel we will use the

Figure 3: Cell Transitions

notation Pp(f};) to refer to the set of all pos-
sible cell trajectories originating from the cell
;. We note that it follows trivially that every

non-cyclic cell trajectory is finite.

4.1 Stability Results

First we present two stability results applicable
to the hybrid system (1), (2) controlled by a
fixed controller T'(¢, ). This will enable us to

proceed with the switching controller design.

Theorem 4.1 The hybrid system (1), (2)
controlled by a fized switching controller
T'(¢,z) is stable with d(t) = 0 if every cell tra-
jectory generated by the system and defined on

Q — O, is non-cyclic.

Theorem 4.2 The hybrid system (1), (2)
controlled by T'(&,x) is unstable in the pres-
ence of d(t) € G if the closed loop system gen-
erates at least one cyclic cell trajectory defined
on 2 — €.

The theorems above provide sufficient and nec-
essary stability conditions, respectively, for
two slightly different classes of hybrid sys-
tems. To be precise, the difference is in the
presence/absence of the exogenous disturbance

d(t) € G. Making the cell partition of 2 denser
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is expected to narrow the gap between the suf-
ficient and necessary conditions above. This,
however, can only be achieved at a higher com-
putational price. The following algorithms can
" be used for stability analysis.

Algorithm A (Forward Propagation Algo-
rithm)

STEP 1. Initialise j =1 and n = 2.

STEP 2. Compute {P,(f};) : Po(Q;) €
Pn((;)}-

STEP 3. If every cell trajectory P,(Q;) €
Pn(82;) is non-cyclic then GO TO STEP 4 oth-
erwise the system is unstable, STOP.

STEP 4.
O, then GO TO STEP 6 otherwise GO TO
STEP 5.

STEP 5. Set n =n-+1. GO TO STEP 3.
STEP 6. If j < L then set § = j 4+ 1 and
n = 2 and GO TO STEP 2 otherwise STOP.

If all the cell trajectories enter

The main idea behind this algorithm is di-
rectly computing all valid cell trajectories and
analysing their properties. A different solution
to the problem at hand can be found by recur-
sively extending domains of attraction starting
with the cell €; being a positive invariant set
by definition.

Algorithm B (Backward Propagation Algo-

rithm)
STEP 1. Set W1 = Ql, 1= 1.
STEP 2. Compute recursively W11 =

Wi U{Q; : Tr(Qy) € Wi}, with Tr(Q;) de-
fined as Tr(2;) = Ua,etr(e;) -

STEP 3. If W; C W;; then set i =7+ 1 and
GO TO STEP 2 otherwise W; = Wy, and
STOP.

Tt is easy to show that the condition Wy, =

is equivalent to the absence of cyclic cell tra-
jectories. If, however, W, C (2 then the set
Wair is exactly the domain of attraction for

the hybrid system.

5 Switching Controller De-
sign

By definition the existence of a stabilizing con-
troller is equivalent to the existence of a proper
distribution of the switching indices over the
cell partition of the system which would guar-
antee the absence in the closed loop system of
cyclic cell trajectories. First, we modify Algo-
rithm B taking into account the multiple choice
of the switching indices available for each cell.
Algorithm C (Switching Controller Design)
STEP 1. Set W1 = Q5,7 =1.

STEP 2. Compute recursively Wiy, =
w; U{Q; 3 ¢ st Tr(Q;,6) < Wi,
with Tr(Q;,£) defined as Tr(Q;,6) =
UQkETr(Q,- ,£) Q.

STEP 3. For each cell (; define a set of valid
switching indices &; = {¢: Tr(;,£) C Wi}.
STEP 4. If W; C W;4, then 4 = ¢+ 1 and
GO TO STEP 2 otherwise W; = W onsr and
STOP.

Relying on the algorithm above we are now in

the position to formulate the following results.

Theorem 5.1 Let Weoner = §2 then the hybrid
system (1), (2) with d(t) = 0 is asymptotically
stabilizable to the the origin by the switching
controller T'(€, z).

Theorem 5.2 Let Weonir C Q then there ex-

ists no switching controller of the form IT'(€, x)
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such that the closed loop system with the ex-

ogenous disturbance d(t) € G is stable.

The interpretation of the results above is sim-

ilar to that we made in Section 4.1.

6 Conclusions

In this paper we describe a method of switch-
ing control design applicable to a class of piece-
wise linear discrete time hybrid systems. The
method is based on the notions of a cell tran-
sition and cell trajectory and allows for auto-
mated systematic treatment of a class of hybrid

systems.
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