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Abstract 

Multivariable system identification is known to be a 
difficult problem. In part, this is due to the fact that, 
in general, the likelihood function is non-convex. The 
most commonly used class of procedures for off-line 
identification of multivariable systems is the method 

, commonly known as Sub-space. These methods avoid 
the non-convexity issue by using a multi-step proce- 
dure which includes a singular value decomposition. 
Unfortunately, it i s  not easy to develop a recursive form 
of these Subspace algorithms due to the singular value 
decomposition step. Here, we borrow ideas from the 
Subspace methodologies to develop a novel recursive 
algorithm. We assume that the Kronecker invariants 
for the system are known. We also illustrate the per- 
formance of the algorithm via a simple example. 

L Introduction 

h4uitipIe input - Multiple output (MIMO) system 
identification is known to be a difficult problem. The 
main source of difficulty is that the likelihood func- 
tion is almost always a non-convex functional, and 
therefore, in general, identification algorithms have 
to cope with the existence of local minima. In this 
context, Sub-space based methods have been demon- 
strated to be a strong alternative to maximum like- 
lihood (ML) methods and related schemes such as 
prediction error methods (PEM) (See for example 
[11, 27, 25, 21, 26, 23, 21 ). Key advantages of Sub- 
space methods include: 

s 

, 

These methods are of a non-iterative nature, and 
under mild conditions, achieve consistent param- 
eter estimates [5 ,  20, 41. 

They work directly with general multivariable 
state space models. 

(iii) 

0 4  

They employ numerically robust singular value 
decomposition (SVD) algorithms, and 

They provide an estimate of the order of the sys- 
tem in a natural way. 

However, traditional Sub-space methods also suffer 
from 

(i) 

(ii) 

(iii) 

(iv> 

several disadvantages, namely 

The methods do not directly work with closed 
loop data without significant extra effort [14]. 

Traditional methods do not allow one to use a 
specific structure in the state space matrices in 
the model [23]. 

The resulting models are over parameterized, 
Sub-space methods usually estimate every entry 
in the matrices of the state space representation, 
even though less parameters are necessary to rep- 
resent a system. 

It is not easy to extend the results to a recursive 
algorithm, mainly due to the SVD step. 

Our goal here is to present a novel recursive algorithm 
that is inspired by Sub-space procedures. Other Tecur- 
s h e  Sub-space methods have been described elsewhere 
tl6, 19, 17, 181. Our procedure is simple and allows 
us to estimate fewer parameters than is usual in Sub- 
space methods. 

2 Review of Sub-space methods 

In Subspace methods the system is typically modelled 
via a linear state space description of the following 
form: 
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where ut E R"., xt f R", and yt E R". are the input, 
state, and the output of the system respectively, and 
wi f Rn, and E R"v are the state and measure- 
ment noise. The latter are assumed to be white with 
correlation matrix given by 

lowing data matrices: 

.D=[*]= 
U* "1 . . .  ao U1 _ ' '  

U1 u g  . . t _  "t;' 1 el y2 . . .  

1 ;  1 , . . .  1 ; :  , . . .  

where 6k.z denotes the Kronecker delta. The pair [A, C) 
is assumed to be observable. 

Under mild conditions (see for example [I, 3, SI), this 
model can also be written in innovations form as fol- 
lows: 

Note that all these data matrices have a Hankel struc- 
ture. 

It is straightforward to show, using (41, that the output 
yt can be written as 

~ t + l   AX^ + But i- K w ~  ( 4) 
yt = C X ~  -I- Dui f wt 

yt = !I: + Yf 4- vt 

ytf = D~~ + C C A ~ - ~ B ~ ~ - ~  

Notice that if the state, xt were available, then the sys- 
P - CA$-' tem could be identified by a straightforward pracsdure. Y t  - X t - d t l  

However, this is rarely the case. Thus, a possible pro- d- 1 

cedure is to estimate the states first and then estimate 
the state matrices. This is the core ingredient in most 

incorporate several steps: ~t = ~t + CA"'KW~-~ = F,j(q-l)wt 

k= 1 
Subspace methods. SpecificaIly, Subspace methods d-1 

k=l 

calculate an oblique projection, which provides 
output predictions based on past input ( (u t } )  
and output ({yt}) sequences. 

use a SVD to extract the extended observability 
matrix and a state sequence for the predictions. 

estimate the matrices A,  B, C,  D, and K using 
different methods (several variants of the Sub 
space method utilize different methodologies to 
obtain these matrices). 

where Zt-dfl summarizes all of the information in 
the input and output signals up to time t - d. yf 
is the natural response which describes the effect of 
the initial conditions, and ytf is the forced response 
which describes the effect of the input over the inter- 
val [t - d + 1, t - 1). We can also see that the sequence 
{vt} is not white and its variance increases with the 
prediction horizon "d" . 
These steps in the usual Subspace methods are then: 

2.1 First Step: Obtain the extended observabil- 
These steps wiIl be briefly explained beIow. A more ity matrix and states 
detailed description can be found, for example, in a The first step in Subspace identification is essentially 
recent survey paper [2]. to obtain the extended observability matrix from the 

data, Traditional Subspace algorithms (CVA, MOESP, 
N4SID) can be described via the following two steps Let Tt denote the 0-algebra generated by 
[22]: {yo,yi , ,  . . ,yt}, and assume that {ut} is a known 

sequence. Also assume that 
(i) Estimate the system arder, the extended observ- 

ability matrix, and the state from output predic- E(Wl3t-l) = 0, E{wtwTl3t-1} = fl (7) 
tions. 

[ii) Estimate the state space matrices using the data 
and the estimates obtained in the first step. 

Subspace methods it is common to define the fol- 

This implies that {wt} is a martingale difference p r e  
cess of constant (conditional) variance (see €or example 

The best estimate of yt given the u-algebra y & d  is 
131). 

1659 



First Step Second Step 

I 
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Singular 

Decomposition Pmjcction 

I '  

Figure 1: Typical two steps in Subspace methods 

described by the d-step ahead predictor: 

Notice that &lt-d is, in fact, the sum of the natural 
and forced response of the system without the influ- 
ence of noise. Thus, having an estimate of the d-step 

3 ahead prediction, it is possible to identify the parame- 
, ters based on noise free data. 

We next show that the matrix pf which contains the 
different d-step ahead predictions can be expressed as a 
function of the extended observability matrix, namely: 

where we have used equation (5) in equation (10). In 
equation ( lo) ,  we have: 

Then we have that: 

Equation (14) implies that if we eliminate the influence 
of the input signal, U,, from the d-step ahead predic- 
tions, ?f, we have an estimation of FX. Actually this 
term corresponds to the part of the predicted system 
outputs generated by the initial state in equation (8). 
We rewrite this component as 

y2i-1Ji-1 & / i  '. ' %+j-2)i+3-2 

(15) 
I - p  ' 

Note that if the system order is n, then the extended 
observability matrix, I', will also have rank n. Thus, 
we can write rX, using a,.n SVD, as follows: 

rx = Pf - buf = usvT 

(11) We can then associate F, and X with U,, S I ,  and &T 
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as follows: 

A typical variant of this step is to  pre and post multiply 
T X  by weighting matrices, and then to calculate the 
SVD. Different weighting matrices lead to  different 
Subspace methods [22], 

Notice that, if we make a similarity transformation, 
xt = Tzt ,  then the model can also be written as 

zt+l A ' z ~  + B'ut -I- K'wt 
Y t  = C ' Z ~  + D'u~ -I- Wt (18) 

where 

and hence 

This implies that this procedure yields one possible 
realization of the state space matrices for the s y s  
tem. This representation is dependent on the basis for 
the states implicit in the singular value decomposition 
step. 

2.2 Second Step: Estimate the system param- 
eters 
Once the extended observability matrix r and the state 
sequence of the system X have been extracted as de- 
scribed in 2.1, different approaches can be followed to  
obtain the state space matrices, as represented in Fig- 
ure 1. Two procedures that are-commonly employed 
are: 

Using shift invariance properties: This method 
basically exploits the structure in the extended observ- 
ability matrix I'. The matrix C corresponds to the first 
n, rows, and the matrix il is obtained using ordinary 
least squares (OLS) 124, 261. Using MATLAB-like no- 
tation: 

C = r(i : :) (21) 

(22) r(i : n,(i - I), :)A = r(n, 4 1 : iny, :) 

Then, if the extended observability matrix is consis- 
tently estimated from input - output data, the matrix 
estimates wilI be also consistent [4]. 

Having the estimates 2, C, the matrices B and D can 
also be obtained by solving a least squares problem 112) 
since 

yt = C(41n - A)-lBut + Dut (23) 

Finally, the noise properties can be estimated by using 
the residuals: 

Using a linear regression: An alternative way to 
estimate the state space matrices is to  first obtain the 
estimate for the state sequence of the system, and then 
to solve the least square problem: 

Again, the noise properties are also estimated using 
the residuals. 

3 Discussion 

One of the difficulties inherent in Subspace identifi- 
cation is that we do not have the "true" model, and 
the d-step ahead predictions cannot be exactly found. 
Moreover, we have to obtain $',t-d from the input - 
output data. This problem is solved by estimating a 
high order ARX model (see 1121 and the references 
therein) where we assume that the state X t - d  in equa- 
tion (6) is a function of past inputs and outputs. The 
number of terms needed in the ARX models is a func- 
tion of the decay rate o€ A = A - XC. Indeed, for the 
system (4) the state is given by 

. 

and we see that l l f f js t l l  5 llAjll x llstll. 

It is important to note (see for exampIe IS]) that the 
estimate obtained by using least squares is the Best 
Linear Unbiased Estimate (BLUE) if the noise ut is 
white. However, this is not the case when the noise 
is not white as in equation (6). I t  is also important 
that the correlation T,(T) of the noise vt is not zero 
for 7 < d ,  which means that this signal will be more 
correlated as the prediction horizon d grows. This fact 
is important in closed loop identification. 

In [U] Subspace algorithms are described by using a 
d-step ahead predictor interpretation. It is established 
that if we estimate the d-step ahead predictions, pa- 
rameter estimates can be obtained. 

In 1131 it was demonstrated that when the true sys- 
tem is an ARMAX mode1 (A(q-l)yt = B(q-l)ut + 
C(q-')wt), then d-step ahead predictions $&-d, and 
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satisfy the following equations: 

- 1 0 ... 
0 ... 0 
0 1 0 0  
0 ... 0 

U: U: ... 4 1  

0 .,, 0 

a1 a2 - 1 .  

L 

ture: 

... 0 -  0 
1 O . . .  0 

... 0 
0 I . . .  0 

... 0 O 
0 O . . . l . . . D O  

ayl+l ... an 

- 

where q-l$tlt-d = &t-l~t-d.  In [13] it was also demon- 
strated that when the d-step ahead predictions were 
determined by using an ARX model of any order then 
these equations are also satisfied. 

In the next section we will .analyze the case when a 
particular state space basis (the observability canon- 
ical form for multivariable systems) is used. We will 
obtain equations similar to (28) with the number of 
parameters corresponding to the canonical form. 

To illustrate the key ideas we will use a 2 input, 2 out- 
put case. However, the generalization to nu input and 
ny outputs contains no additional conceptual issues. 

i 

4 Observability Canonical Form 

A potential problem with the standard Subspace 
methods is that the basis for the state space is set 
by the SVD step. This means that the matrices in 

, the corresponding state space model have no particu- 
lar structure and hence we need to assume full matri- 

; ces. This means that A, B,  C, D, K have respectively 
n2, mu, nny, nyn,, nnU elements. However, it is well 
known that fewer parameters are actually needed to 
describe an a - th order system. 

An alternative to the traditional subspace approach 
would be to introduce structure in the state space form 
to be obtained. Under the assumption that the model 
fl)-[2> is completely observable, the matrices A and C 
can be written without loss of generality as [6 ,  10, 71: 

' 

, 

, 

r =  

Proof: 
Then, the edended observability matrix i s  given by  

We use the form of the matrices as in (29). 

(33) 

The result is obtained by straightfomad culculation. 
1 

Claim 2 The Markov parameters for the system (4) 
have the following structure: 

1 ... * 
b r f I , l  . . ' b2y,+l,nu 

. .  

where the starred lines represents non zero coefficients. 
The sum of the Kronecker invariants (or observability 
indices ) yi 5 n.p' + 1 gives the system order: 

CArr% = 

Proof: We take absemubility matrix in (32) and 
Claim 1 The extended observability matrix  r in the 
obseruability canonical form has the following struc- 

multiply on the right side by the mat+ B. H 
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We next show that the special structures for the matri- 
ces I?, and the Markov parameters found above allow 
us to find a simple way to estimate the parameters of 
the matrices A, and B in (4). 

From (32) we can obtain the following: 

where the super indexes 1, 2, ..., n denote the entries 
in the vector. We see from (35) to (42) that, if we 
calculate the d-step ahead predictions $l;t-d from a 
long regression procedure, then we c a n  also estimate 
the matrix A from a linear regression. 

Additionally, the matrix B can be calculated in a 
straightforward way by a linear regression since the 
Markov parameters are given hy (34). The matrix D 
could be also estimated in the same way. 

The previous result has important consequences: 

1.  The first 7~ predicted outputs d,ue to  initial condi- 
tions in the matrix pF corresponds to an estimate 
of the system state, this is: 

2. From the identification point of view this fact 
is interesting because, instead of estimating nL2 
coefficients of the matrix A,  we need only es- 
timate 71 + n coefficients. Note the reduction 
in parameters, consider the case in (35) to (42) 
n = 10, y1 = 5, n, = 2, 'Ity = 2. Then, in 
the typicd Sub-space methods we have t o  es- 
timate n2 -t nn, -k 2nn, -t nyn, = 164. On 
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the other hand, in our approach we estimate 
71 + n + nnU + nnny + nnglzu = 59 parameters. 

3. We have only used the first n rows of the ma- 
trix YT to estimate the parameters in the matrix 
A. However, it is straightforward to see that it 
is possible to obtain a set of possible estimates 
from other rows, and then calculate an average, 
or weighting average. This is analogous to the 
pre and post weighting utilized previous to the 
SVD step in typical Sub-space methods. 

4. Once we have estimated the matrix A ,  we can 
estimate E ,  D, K by using linear regressions. 

5 Recursive Estimation 

Due to  the use of the observability canonical form our 
algorithm utilizes only linear regressions. These can be 
solved by many different methods 191. This also means 
that it is straightforward to obtain a recursive form of 
the algorithm, just using a recursive version of a linear 
regression. Our procedure can be described as follows: 

1. estimate the output predictions Y;, by using a 
long h e a r  regression. 

2. estimate a set of parameters for the matrix A 
from different blocks of rows in ?; using a linear 
regression. 

3. estimate the corresponding matrices B,  D, K via 
linear regression. 

In all of these steps it is possible to use a recursive farm 
for the linear regression. 

6 Comments on Convergence 

We will not give a formal analysis for the convergence 
of this algorithm. However, heuristically, we can say 
that, if we use along enough regression in step (l), then 
the d-step ahead predictions will converge to the true 
d-step ahead predictions. Then, since the parameter 
estimates are a simple function of these predictions, 
they will also converge. 



7 Examples 

A, = 

Consider the system (4) with the following matrices: 

- - 
0 1 0 0 0 0  

-0.06 0.5 0 0 0 0  
0 0  0 1 0 0  
0 . o  U 0 1 0  
0 0  0 0 0 1  

- 0 0 -0.096 0.712 -1.94 2.3 

Bo = 

CO = 

f Do= 

0.8 0.7 
0.18 0.21 

0 0 
0.24 0.1 
0.24 0.13 

0.1824 0.129 

1 0 0 0 0  
0 0 1 0 0  

0 0  

0 7 

’ (44) 

Fixing the basis of the state space as the observability 
canonical form, we can obtain a consistent estimate 
for the matrix Bo using recursive least squares, and 
exploiting the structure of the Markov parameters. 

We first use off-line OLS to implement the proce- 
dure using 6000 data points. Figure 2 captures the 
frequency response for the 2 x 2 system obtained for 
N4SID, the new algorithm with that of the true sys- 
tem. We note that the results are qualitatively the 
same. 

mu*” im U,, 

(4 7) 

Note that the “true” matrix A, is block diagonai. How- 
ever, here we will assume that we do not have that 
information. Indeed, we will estimate two vectors of 
parameters in the matrix A,: 13; = [ -0.06 0.5 3, 
and 8; = [ 0 0 -0.096 0.712 -1.94 2.3 1, and 
the full matrices B, and K. 

In this system the inputs and noises are chosen nor- 
mally distributed with zero mean and variances ut = 5, 
and ct = 0.04. We identify the system using N = 6000 
data points and we chouse the prediction horizon 2‘ = 
50. We also compare our results with these obtained 
from N4SID in MATLAB with the variable “N4Horizon” 
as [i i i]. 

For this example we have that the distep ahead pre- 
dictions satisfy: 

’ and we can obtain a recursive estimate for A,, using 
the numerically robust square root algorithm IS, 151. 

i #- 

Figure 2: Nyquist plot of the true system (red, continuous 
h e ) ,  N4SID (blue, dot line), and the batch 
form of the algorithm (green, dash line). 

We next run the recursive form of the algorithm. Fig- 
ure 3, 4, and 5 show the resulting frequency response 
extracted from the estimated parameters after 50, 500, 
5000 steps respectively. These plots also show the true 
frequency response. We see that after 500 steps, the es- 
timated frequency response is very close to the “true” 
frequency respaiise, whilst after 5UUU steps the esti- 
mated frequency response is essentially perfect. 

8 Conclusions 

We have described a simple scheme for recursive es- 
timation of parameters in MIMO stochastic systems. 
The novel algorithm borrows ideas from Subspace 
identification algorithms, specifically the idea of an 
oblique PrQjeCtiOII to  obtain the d-step ahead predjc- 
tions. We believe that because of the nature of this 
algorithm, it will converge globally, which is an im- 
portant feature with respects to  typical recursive alge 
rithms found in the literature. One drawback of this 
algorithm is the fact that we need to know the Kro- 
necker invariants for the system. However, these pa- 
rameters can be determined from prevjous off h e  iden- 
tification procedures. It is also possible to run paral- 
lel algorithms assuming different Kronecker invariants 



parameters, and use the one which performs better in 
validation. We believe that the same ideas explained 
in this paper could be used for systems with stmc- 
tures, different f i ~ m  the canonical form, thus allowing 
structured Subspace identification methods to be de- 
veloped. 
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Figure 3: Nyquist plot of the true system (red, continuous 
line), and the recursive form of the algorithm 
(blue, dash line). 
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Figure 4: Nyquist plat of the true system (red, continuous 
line), and the recursive form of the algorithm 
(blue, dash line). 
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