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Abstract

Multivariable system identification is known to be a

~ difficult problem. In part, this is due to the fact that,

in general, the likelihood function is non-convex. The
most commonly used class of procedures for off-line
identification of multivariable systems is the method

. commonly known as Sub-Space. These methods avoid
" the non-convexity issue by using a multi-step proce-

dure which includes a singular value decomposition.
Unfortunately, it is not easy to develop a recursive form
of these Sub-space algorithms due to the singular value
decomposition step. Here, we borrow ideas from the
Sub-space methodologies to develop a novel recursive
algorithm. We assume that the Kronecker invariants
for the system are known. We also illustrate the per-
formance of the algorithm via a simple example.

1 Introduction

Multiple input - Multiple output (MIMO) system
identification is known to be a difficult problem. The
main source of difficulty is that the likelihood func-
tion is almost always a non-convex functional, and
therefore, in general, identification algorithms have
to cope with the existence of local minima. In this
context, Sub-space based methods have been demon-
strated to be a strong alternative to maximum like-
lihood (ML) methods and related schemes such as
prediction error methods (PEM) (See for example
[11, 27, 25, 21, 26, 23, 2] ). Key advantages of Sub-
space methods include:

(i) These methods are of a non-iterative nature, and
nnder mild conditions, achieve consistent param-
eter estimates [5, 20, 4].

(ii) They work directly with general multivariable
state space models.
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(iil}) They employ numerically robust singular value
decomposition (SVD) algorithms, and

{(iv) They provide an estimate of the order of the sys-
tem in a natural way.

However, traditional Sub-space methods also suffer
from several disadvantages, namely

{i) The methods do not directly work with closed
loop data without significant extra effort [14].

(ii) Traditional methods do not allow one to use a
specific structure in the state space matrices in
the model [23].

{iii) The resulting models are over parameterized.
Sub-space methods usually estimate every entry
in the matrices of the state space representation,
even though less parameters are necessary to rep-
resent a system.

(iv) It is not easy to extend the results to a recursive
algorithim, mainly due to the SVD step.

Our goal here is to present a novel recursive algorithm
that is inspired by Sub-space procedures. Other recur-
sive Sub-space methods have been described elsewhere
{16, 19, 17, 18]. Our procedure is simple and allows
1s to estimate fewer parameters than is usual in Sub-
space methods.

2 Review of Sub-Space methods

In Sub-space methods the system is typically modelled
via a linear state space description of the following
form:

Ty = AIt + But +- T.U; (1)
Y = Cxy + Dy + 0, (2)


http://newcastle.edu

where u; € R™+, 2; € R*, and y; € R™ are the input,
state, and the output of the system respectively, and
w, € R", and v, € R™ are the state and measure-
ment noise. The latter are assumed to be white with
correlation matrix given by

)[4 )[2 3o o

where 8y ; denotes the Kronecker delta. The pair |4, C]
is assumed to be observable.

Under mild conditions (see for example [1, 3, 8]), this
model can also be written in innovations form as fol-
lows:

Tee1 = Axy + Buy - Kuy {4)
ye = Cze + Duy + wy

Notice that if the state, x; were available, then the sys-
tem could be identified by a straightforward procedure.
However, this is rarely the case. Thus, a possible pro-
cedure is to estimate the states first and then estimate
the state matrices. This is the core ingredient in most
Sub-space methods. Specifically, Sub-space methods
incorporate several steps:

e calculate an oblique projection, which provides
output predictions based on past input {{u:})
and output {{y:}) sequences.

e use a SV to extract the extended observability
matrix and a state sequence for the predictions.

* estimate the matrices A, B, C, D, and K using
different methods (several variants of the Sub-
space method utilize different methodologies to
obtain these matrices).

These steps will be briefly explained below. A more
detailed description can be found, for example, in a
recelit survey paper [2].

Traditional Sub-space algorithms (CVA, MOESP,
INA4SID) can be described via the following two steps
[22):

(1) Estimate the system order, the extended observ-
ability matrix, and the state from output predic-
tions.

(i) Estimate the state space matrices using the data
and the estimates obtained in the first step.

In Sub-space methods it is common to define the fol-
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lowing dafa matrices:

D=[; qlz

o uy u;_q un ¥ ¥Yi-1
uy wn s g o1 ¥2 e u;
Uiy g B Wi Ye_1 Yi Mit4—2
Witj—1 ¥i Yit1 Yitji—1

i Hitl

V42

(5)

ugig - uzipj-2 | w2i-1 v2i

Note that all these data matrices have a Hankel strue-
ture.

11 is straightforward to show, using {4), that the ontput
y; can be written as

ye=1y +ul +u (6)
’yf = CAd_lited+1
d—1
y = Du+ Y CA* " Bu,_y
k=1
d—1
vy = wy + ZCAk_IKwt—k = Fa{g™ yw,
k=1

where zy_g41 summarizes all of the information in
the input and output signals up to time ¢t — d. y}
is the natural response which describes the effect of
the initial conditions, and y{ is the forced response
which describes the effect of the input over the inter-
val [t —d+1,t —1). We can also see that the sequence
{v;} is not white and its variance increases with the
prediction horizon “d”.

These steps in the usual Sub-space methods are then:

2.1 First Step: Obtain the extended observabil-
ity matrix and states

The first step in Sub-space identification is essenmally
to obtain the extended observability matrix from the
data,

Let JF; denote the o-algebra generated by
{yo,¥1:-.-, ¥}, and assume that {u;} is a known
sequence. Also assume that

E{wd?}_l} = O, E{wtw;lg’t_l} =0 (7)

This implies that {uy} is a martingale difference pro-
cess of constant (conditional) variance {see for example

(31).

The best estimate of y: given the g-algebra Fi_4 is



ters based on noise free data.

We next show that the matrix ¥; which contains the
different d-step ahead predictions can be expressed as a
function of the extended observability matrix, namely:

iy Biga Tipio1)iti-2

a CYinji-1 Yigol Yitjliti~2
f = . . . (9)
U2i—1)i-1 ?32:‘]1‘ 372z'+j~2Ji+j—2
=TX + AU; (10)

where we have used equation (5) in equation (10). In
equation (10), we have:

D 0 0 0

CB D 0 0

A=| CAB  CB D 0
CA=2B CA3B CA~*B cB D

(11)
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Figure 1: Typical two steps in Sub-space methods
described by the d-step ahead predictor:
C
Gye—a = BE{wFr_a} CA
d-1 I'= . (12)
== CAdml.’Et_d+1 + Dut + ZC’Ak_lBut,k 044-'.—1
k=1
(8)
X = i Xipy Tir2 Titri—1 (13)
. Notice that f,_q is, in fact, the sum of the natural [ ' e )
and forced response of the system without the infiu-
_ence of noise. Thus, having an estimate of the d-step Lo s besve Hiale
. ahead prediction, it is possible to identify the parame- I'X = }}f YN (14)

Equation (14) implies that if we eliminate the influence
of the input signal, Uy, from the d-step ahead predic-
tions, }3}, we have an estimation of TX. Actually this
term corresponds to the part of the predicted system
outputs generated by the initial state in equation (8).
We rewrite this component as

A Ap ,.‘p
gﬁi-l Yt Yirj-1jitj—2
- Yirti-1 Fige Vi jlii—2
TX=Y]= | 2| ilits
~7 ~p ~p
Yoior)i-1 Yauy Yoirj-g)isi—2

(15)
Note that if the system order is 1z, then the extended
observability matrix, ', will also have rank n. Thus,

“we can write ['X, using an SVD, as follows:

TX =Y; — AU; = USVT

%[Ul U2]|:SIO

0] st

(16)

We can then associate T', and X with I/, S;, and V¥



as follows:

T =1;57? (17)
X =51*vT

A typical variant of this step is to pre and post multiply
T'X by weighting matrices, and then to caleulate the
SVD. Different weighting matrices lead to different
Sub-space methods [22].

Notice that, if we make a similarity transformation,
xy = Tz,, then the model can also be written as

Zt41 = A’zt + B"’U,; + K'wt
ve = C'zp + D'ug + wy {18)

where

A =T 'AT,B' =T"'B, K' =71T7'K,
C'=CT,D'=D (19)

and hence

I'X' =TX (20)

This implies that this procedure yields one possible
realization of the state space matrices for the sys-
tem. This representation is dependent on the basis for
the states implicit in the singular value decomposition
step.

2.2 Second Step: Estimate the system param-
eters

Once the extended observability matrix " and the state
sequence of the system X have been extracted as de-
seribed in 2.1, different approaches can be followed to
obtain the state space matrices, as represented in Fig-
ure 1. T'wo procedures that are-commonly employed
are:

Using shift invariance properties: This method
basically exploits the structure in the extended observ-
ability matrix I'. The matrix € corresponds to the first
n, rows, and the matrix A is obtained using ordinary
least squares (OLS) [24, 26]. Using MATLAB-like no-
tation:

C=TQ:ny:) (21)
[(t:n, (i~ 1),:JAd = D(ny + 1 :iny,:) (22)

Then, if the extended observability matrix is consis-
tently estimated from input - output data, the matrix
estimates will be also consistent [4].

Having the estimates A, C, the matrices B and D can
also be obtained by solving a least squares problem [12}
since

Yy = é(qIn - fi)_lBUt + D’Ltt (23)
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Finally, the noise properties can be estimated by using
the residuals:

Kft =Tty — A$g = But (24)
€ = Y — é.’.l’,‘t - bu; (25)

Using a linear regression: An alternative way to
estimate the state space matrices is to first obtain the
estimate for the state sequence of the system, and then
to solve the least square problem:

i ]=le o) lu ] e

Again, the noise properties are also estimated using
the residuals.

3 Discussion

One of the difficulties inherent in Sub-space identifi-
cation is that we do not have the “true” model, and
the d-step ahead predictions cannot be exactly found.
Moreover, we have {o obtain @fl ;g from the input -
output data. This problem is solved by estimating a
high order ARX model {see [12] and the references
therein) where we assume that the state z; g in equa-
tion (6) is a function of past inputs and outputs. The
number of terms needed in the ARX models is a func-
tion of the decay rate of A = A — KC. Indeed, for the
system (4) the state is given by

i—1
Ty = }itmu + Zfij[K’yt_j_]_ -+ (B — KD)ut,_j_]_l
=0
{27)

and we see that [|A7s|| < [|A7]] x [)sq]].

It is important to note (see for example [6]} that the
estimate obtained by using least squares is the Best
Linear Unbiased Estimate (BLUE) if the noise v, is
white. However, this is not the case when the noise
is not white as in equation (6). It is also important
that the correlation r,(7) of the noise ¥ i8 not zero
for 7 < d, which means that this signal will be more
correlated as the prediction horizon d grows. This fact
is important in closed loop identification.

In [13] Sub-space algorithms are described by using a
d-step ahead predictor interpretation. It is established
that if we estimate the d-step ahead predictions, pa-
rameter estimates can be obtained.

In [13] it was demonstrated that when the true sys-
tem is an ARMAX model (A(g~ '}y = Blg™us +
C(g Yu), then d-step ahead predictions ¥he_q» and



ﬁ'tfu_d satisfy the following equations:

- A{qgl)?;’f[t-d = 0
Alg™)if,_y=Bla (28)

where g yjs—g = fy—1je—a- In [13] it was also demon-

strated that when the d-step ahead predictions were

determined by using an ARX model of any order then
these equations are also satisfied.

Tn the next section we will analyze the case when a
particular state space basis (the observability canon-
ical form for multivariable systems) is used. We will
obtain equations similar to (28) with the number of
parameters corresponding to the catonical form.

To illustrate the key ideas we will use a 2 input, 2 out-
put case. However, the generalization to n, input and
n, outputs contains no additional conceptual issues.

4 Observability Canonical Form

A potential problem: with the standard Sub-space
methods is that the basis for the state space is set
hy the SVD step. This means that the matrices in
the corresponding state space model have no particu-
lar structure and hence we need to assume full matri-
ces. This means that 4, B, C, D, K have respectively
nz,nnu,nny,nynu,nny elements. However, it is well
known that fewer parameters are actually needed to
describe an e — th order system.

An alternative to the traditional subspace approach
would be to introduce structure in the state space form
to be obtained. Under the assumption that the model
{1)~(2) is completely observable, the matrices A and C
can be written without loss of generality as [6, 10, T}:

0 L,lo ... o
x * ([0 ... O
= 0 . 0|0 I, (29)
* o * 3 *
1 0 ...|lo ... o©
C‘[o . G }1 0... 0} &)

where the starred lines represents non zero coefficients.
The sum of the Kronecker invariants (or observability
indices ) ¥ = n; + 1 gives the system order:

i = (ni+1)=n (31)

i=1 =1

Claim 1 The extended observability matriz ' in the
observability canonical form has the following struc-
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ture:
M1 0 .- 0 0 7
0 0 i 0 0
D 1 0 0 s 0
0 0 0 1.. 0
U= "4 4} al, 0 0
0 0 0 0...1...0 O
ag [25)) coe | Qo d ooao Qn
L : : J
(32)
Proof: We use the form of the matrices as in (29).

Then, the extended observability matriz is given by
e
CA

CA:"H—']. (33)

The result is obtained by straightforward colculation.
u

Claim 2 The Markov parameters for the system (4)
have the following structure;

b1a . bl n
CB = ' T
[ b‘71+1,1 b'71+i,nu ]
CAB:[bbz’l bbzm }
Y1421 e Y1+2,nu
CA‘ZB — ': b3,1 . b3,nu }
b'¥1+3.1 o bygam.,
CAkB o ( bk}]_ P bk.ﬂu }
byptka oo Btk
CAnTig = [ b1 bas ., ]
boyia oo+ bayim.
CAMB = [ * * }
SR R & M
CATWHB = [ * * } 34
oyt k+1,1 boyy +k+1,m, (34)
Proof: We take observability matriz in (32} and

multiply on the right side by the matriz B. [



We next show that the special structures for the matri-
ces [', and the Markov parameters found above allow
us to find a simple way to estimate the parameters of
the matrices A, and B in (4).

From (32) we can obtain the following:

~p.1
z) = yf,t_l (35)
2 _ apl '

Ty = Potajs (36)

g AN 2%
sctji-—l - yt+71~llt—1 (37)

~p,1 _ i apd .'«,1.
Vermlt—1 = alyfit—l +t Oy Y e (38)

and
+1 _ .p2
:Egl :y?igﬁl (39)
+2 __.p2
I;Yl =yf+1|t_1 (40)
0,2
zp = vy 1 ]t—1 (41)

~p,2 o apl ~p,1 ~1,1
Yermle-1 _quflt—l + “Wfﬂlt—-l + “lefﬂ;—llt*l
op.2 ~p,2
Tyt A2l e

p,2
+ "‘+a“y?+-n+llt—l (42)

where the super indexes 1, 2,....n denote the entries
in the vector. We see from (35) to (42) that, if we
calculate the d-step ahead predictions @ﬁz— 4 from a
long regression procedure, then we can also estimate
the matrix A from a linear regression.

Additionally, the matrix B can be calculated in a
straightforward way by a linear regression since the
Markov parameters are given by (34). The matrix D
could be also estimated in the same way.

The previous result has important consequences:

1. The first n predicted outputs due to initial condi-
tions in the matrix Y}? corresponds to an estimate
of the system state, this is:

i

i+1]i .

(43)

ili1
1
Yitn—1litn—2

2. From the identification point of view this fact
is interesting because, instead of estimating n?
coefficients of the matrix A, we need only es-
timate ) + n coefficients. Note the reduction
in parameters, consider the case in (35) to (42)
n =10, = 5 n, = 2, n, = 2. Then, in
the typical Sub-space methods we have to es-
timate n? + nn, + 2nny, + nyn, = 164, On
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the other hand, in our approach we estimate
7 + 1t 4+ nng, 4+ nny, + nyn, = 59 parameters.

3. We have only used the first n rows of the ma-
trix Y}’ to estimate the parameters in the matrix
A. However, it is straightforward to see that it
is possible to obtain a set of possible estimates
from other rows, and then calculate an average,
or weighting average. This is analogous to the
pre and post weighting untilized previous to the
SVD step in typical Sub-space methods.

4. Once we have estimated the matrix A, we can
estimate B, D, K by using linear regressions.

5 Recursive Estimation

Due to the use of the observability canonical form our
algorithm utilizes only linear regressions. These can be
solved by many different methods [9]. This also means
that it is straightforward to obtain a recursive form of
the algorithm, just using a recursive version of a linear
regression. Our procedure can be described as follows:

1. estimate the output predictions ?fp, by using a
long linear regression.

2. estimate a set of parameters for the matrix A
from different blocks of rows in Yfp using a linear
Tegression.

3. estimate the corresponding matrices B, D, K via
linear regression.

In all of these steps it is possible to use a recursive form
for the linear regression.

6 Comments on Convergence

We will not give a formal analysis for the convergence
of this algorithm. However, heuristically, we can say
that, if we use a long enough regression in step (1), then
the d-step ahead predictions will converge to the true
d-step ahead predictions. Then, since the parameter
estimates are a simple function of these predictions,
they will also converge.



7 Examples

Consider the system (4) with the following matrices:

[ 0 1 0 0 0 0 7]
—0.06 05 0 0 0 0
0 0 0 1 0 0
4o = 0 0 0 0 1 0
0 0 0 0 0 1
|0 0 -0.006 0712 -1.94 2.3 |
(44)
0.8 0.7
0.16 0.21
0 0
Bo=1| 024 01 _ (45)
024  0.13
| 0.1824 0.129 |
100000
C"‘{001000] (46)
0 0
2.={0 o] (47)

Note that the “true” matrix A, is block diagonai. How-
~ever, here we will assume that we do not have that

information. Indeed, we will estimate two vectors of
parameters in the matrix A,: 81 = [ —0.06 0.5 ],
and 82 = [0 0 -0.096 0.712 -1.94 23], and
the full matrices B, and K.

In this system the inputs and noises are chosen nor-

mally distributed with zero mean and variances 02 = 5,

and o2, = 0.04. We identify the system using N = 6000
data points and we choose the prediction hortzon { =
50. We also compare our results with these obtained
from N4SID in MATLAB with the variable “N4Horizon”
asfi @ 4.

For this example we have that the d-step ahead pre-

dictions satisfy:

ey =21 (48)
?}f-’t—ll]t—l :5"'3 (49)
Qﬂ—lﬁlt—l :aigtplf—l + a3 At-!}-lllt—l (50)

Qﬁf_l =z (51)
@fflit—1 =7 : ' (52)
?}ff2|t—1 =z (83)
@ffau—l =zf (54)

-2 PR % ~p,1 02
Yiiqe—1 =0 Vg1 t a2yf+1|t—1 + a3y,

-2 -2 .2
Foay - T a5yf+2|t—1 + “ﬁyf+31t—1
(55)

and we can obtain a recursive estimate for 4,, using
the numerically robust square root algorithm [6, 15].

1664

Fixing the basis of the state space as the observability
canonical form, we can obtain a consistent estimate
for the matrix B, using recursive least squares, and
exploiting the structure of the Markov parameters.

We first use off-line OLS to implement the proce-
dure using 6000 data points. Figure 2 captures the
frequency response for the 2 x 2 system obtained for
N4SID, the new algorithm with that of the true sys-
tem. We note that the results are qualitatively the
same.
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Figure 2: Nyquist plot of the true system (red, continuous
line}), N4SID (blue, dot line), and the batch
form of the algorithm {green, dash line).

We next run the recursive form of the algorithm. Fig-
ure 3, 4, and 5 show the resulting frequency response
extracted from the estimated parameters after 50, 500,
5000 steps respectively. These plots also show the true
frequency response. We see that after 500 steps, the es-
timated frequency response is very close to the “true”
frequency response, whilst after 5000 steps the esti-
mated frequency response is essentially perfect.

8 Conclusions

We have described a simple scheme for recursive es-
timation of parameters in MIMO stochastic systems.
The novel algorithm borrows ideas from Sub-space

identification algorithms, specifically the idea of an

oblique projection to obtain the d-step ahead predic-
tions. We believe that because of the nature of this
algorithm, it will converge globally, which is an im-
portant feature with respects to typical recursive algo-
rithms found in the literature. One drawback of this
algorithm is the fact that we need to know the Kro-
necker invariants for the system. However, these pa-
rameters can be determined from previous off line iden-
tification procedures. It is also possible to run paral-
lel algorithms assuming different Kronecker invariants



parameters, and use the one which performs better in
validation. We believe that the same ideas explained
in this paper could be used for systems with struc-
tures, different from the canonical form, thus allowing
structured Sub-space identification methods to be de-
veloped.

Fromy 12

From: 11}

Imaginary Axia

Figure 3: Nyquist plot of the true system (red, continuous
line), and the recursive form of the algorithm
(blue, dash line).

Imaginary Axla

Flgure 4: Nyquist plot of the true system (red, continuous
line), and the recursive form of the algorithm
(blue, dash line).
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