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Abstract 

RTSYS is a menu driven DOS application for the manipulation, analysis, and graphical 

display of reaction time data.  It can be used either in a single task environment under 

DOS, with access to a set operating system commands, or as an application under 

Windows.  All  functions have context sensitive help.  RTSYS fits the Ex-Gaussian 

distribution to reaction time data without the difficulties usually associated with 

numerical parameter estimation.   Distribution fitting, and flexible censoring and 

rescaling options, allow RTSYS to address the problems of reaction time distribution 

skew and outlying responses with reasonable sample sizes.  RTSYS can automatically 

process multiple input files from experiments with arbitrary designs and produce 

formatted output of statistics for further processing by graphical and inferential 

statistical packages.  The present article reviews and explains techniques used by 

RTSYS and provides and overview of the operation of the program.   
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RTSYS is a DOS application written in Turbo Pascal 6.0 which calculates 

distribution statistics for reaction time (RT) data.  It also provides facilities for 

censoring and rescaling data.  Statistics calculated include the number of RTs, percent 

of RTs censored, the median, mean, variance, and a nonparametric measure of skew 

(i.e. (mean-median)/ standard deviation ).  Because RT data are often scored as correct 

or incorrect, where incorrect RTs are relatively infrequent, percent error and mean 

error RT are also calculated.  RTSYS fits the Ex-Gaussian distribution and reports 

distribution parameters µ, σ and τ.  Fitting the Ex-Gaussian also produces chi squared 

and likelihood goodness of fit statistics.  Goodness of fit can be inspected visually by 

plotting RT histograms and superimposed fitted Ex-Gaussian distributions. 

RTSYS will typically be used to convert raw data files collected from 

experiments into files of statistical parameters which are used as input to inferential 

and graphical applications.   One of RTSYS's most useful features is its ability to 

automatically process arbitrary factorial and non-factorial between and within subject 

designs.  Design cells can be collapsed both by mixing data from different factor levels 

or vincent averaging.  Vincent averaging (usually performed over a subjects factor) 

approximately preserves distribution shape and is useful for obtaining Ex-Gaussian fits 

where design cells contain to few observations for sufficiently precise parameter 

estimates.  Vincent probability histograms allow visual inspection of the shape of the 

averaged distribution and the goodness of fit of a fitted Ex-Gaussian distribution.   

Once you have specified a within-subject design and the names of the data files 

corresponding to each subject, RTSYS automatically calculates statistics for each 

subject and design cell.  Individual parameters for each subject and subject averages 
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for each cell can be viewed on screen, printed, or output to a parameter file.  Parameter 

file format, including delimiter and missing value characters, and the order of design 

cells, can be controlled to conform to the requirements of  graphical and inferential 

applications.  

RTSYS is accompanied by a manual which provides an extensive overview of the 

program, and examples of how to use options and organise analyses.  Example data files 

are provided so the user can practice using RTSYS.   RTSYS also has on-line context-

sensitive help for all options as well as an introductory help which gives an overview of 

the application.  The first section of this article reviews and explains the analysis 

techniques used by RTSYS.   The remainder of the article describes the user interface and 

hardware requirements of RTSYS.     

Why Should You Use RTSYS? 

Two phenomena make the analysis of RT data problematic.  First, RT data can 

contain fast and slow outlying values caused by anticipation and distraction.  If the 

proportion of outliers is sufficient, interpretation of results may be confounded.  

Second, RT distributions are usually positively skewed (e.g. Figure 1, but see Luce, 

1986, p.117, for a counter example with simple RT to an intense auditory stimulus).  

Skew creates problems of interpretation for descriptive statistics.  For instance, an 

independent variable may affect the mean and median differently by changing the 

degree of skew.  Significantly skewed or asymmetric data also violate an assumption 

made by most parametric tests, that variability in data is normal and hence distributed 

symmetrically.   

---------------- 
Figure 1 
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---------------- 
Skew is commonly ignored, or removed by non-linearly transforming the 

measurement scale, for instance from milliseconds (ms) to log(ms) or ms-1 (e.g. Box & 

Cox, 1964, 1982).  While this strategy is useful to ensure that data conform to a normal 

distribution assumption, Ratcliff and Murdock (1976), Hockley (1984),  Mewhort, 

Braun and Heathcote (1992) and Heathcote, Popiel and Mewhort (1990) all 

demonstrate that the magnitude of skew can contain information about the effect of 

experimental manipulations.  Hence, transformation may lead inferential tests to miss 

potentially important effects.  Further, analysis of untransformed RT takes advantage of 

a natural and interpretable ratio scale, time.  Nonlinear transformations of time produce 

scales which are not so easily interpretable, with the exception of the inverse transform 

which results in a speed scale.   

Solutions to the problem of outliers usually rely on removing or censoring 

observations.  Criteria for censoring are, however, problematic because real data are 

almost inevitably rejected along with spurious data.  The amount of real data lost as a 

function of the exclusion criterion is usually unknown, so one must choose criteria 

without being able to weigh the cost of losing real data against the benefit of excluding 

spurious data.  Despite these difficulties, outliers cannot be ignored, especially in 

paradigms where frequent distraction or anticipation is known to occur.  Beginning 

with Tukey's (1960) seminal paper on the contaminated normal model, there have been 

numerous demonstrations of the potentially large influence of even a small percentage 

of outliers on statistical parameter estimates.   

A further practical problem, generated in part by attempted solutions to the 

difficulties outlined above, is the plethora of statistics which must be calculated and 
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interpreted by the conscientious RT researcher.  Location (e.g. mean and median), scale 

(e.g. variance), and asymmetry (e.g. skew) measures, and potentially a variety of non-

linearly rescaled versions, need to be calculated.  Percent error  is useful to address the 

problem of speed-accuracy trade-off (Johnson, 1939; Link, 1982; Ollman, 1966; 

Pachella, 1974; Yellot, 1967).  Mean error RT is useful to determine if errors are due 

to anticipation or distraction.  To compound the problem, each censoring scheme 

doubles the number of statistics to be analysed. 

While RTSYS does not provide a panacea, it encourages researchers to explore 

possible solutions to the problems outlined with a range of techniques.  Through 

quantifying RT distribution shape, RTSYS can reveal structure within RT data not 

evidenced by conventional analyses.  The following sections provide relatively non-

technical explanations and illustrations of the techniques employed by RTSYS.  The 

first section deals with the issue of RT distribution skew, the second section with 

vincentising, a useful technique when the number of observations is low, and the third 

section with the issue of outliers.    

Estimating RT Distribution Skew 

The principal difficulty in determining skew is finding an efficient estimator.  

Efficiency is related to  the variation of estimates across samples.  When efficiency is 

low, estimates vary widely, especially with small samples.  Prior to the widespread 

availability of computers, the ease of computation of an estimator was also a 

consideration.  While the computational burdens of the techniques outlined are quite 

heavy, RTSYS has been optimised to allow adequate performance even on an XT or 

AT. 
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Kendall and Buckland's "Dictionary of Statistical Terms" (1960) defines skewness 

as "An older and less preferable term for asymmetry, in relation to a frequency 

distribution".  Most statistical packages describe skewness with a statistic called the 

third shape factor or moment ratio (often simply called skew): α3 = (µ3/µ2)2/3.  The 

variance, µ 2, and the third central moment, µ3, are estimated by:   
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The 2/3 exponent and µ2 components of α3 are scale factors.  It is µ3 which measures 

the asymmetry of the distribution.  As can be seen from its estimator, µ3 is negative 

when the distribution is left skewed (mean < median for unimodal distributions) and 

positive when the distribution is right skewed (mean > median, the usual case with RT 

data). 

 The formulae used to estimate α3 are justified using the method of moments.  The 

method of moments does not require specification of a particular theoretical 

distribution, although it does require that moments of the desired order exist (cf. the 

Cauchy distribution for which moments are undefined), and provides formulae which 

are simple to compute.  However, Ratcliff (1979) criticised estimation of skew in RT 

data by the method of moments on the grounds that it is inefficient (i.e. estimates are 

very variable, requiring tens of   thousands of observations to become sufficiently 

precise) and not robust (i.e. it is sensitive to outliers).  RTSYS calculates the standard 

deviation, using the method of moments formula, but does not calculate the third central 

moment or skewness using the method of moments formula because of its low 

efficiency.   
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Ratcliff suggested that, instead of the method of moments, maximum likelihood 

estimation be used to determine skewness.  Maximum likelihood estimation is more 

efficient than the method of moments.   In fact, it is consistent, efficient and has the 

highest asymptotic (large sample) efficiency of any unbiased estimation method (see 

Cox & Hinkley, 1974, Chapter 9).  Its drawback is that a particular theoretical form of 

the RT distribution must be assumed.  If the assumption is wrong, estimates will be 

biased.  It is also computationally intensive, requiring optimisation or search rather 

than providing a simple formula such as that for µ3. 

The Ex-Gaussian Distribution 

The theoretical distribution used by Ratcliff (1978, 1979, Ratcliff & Murdock, 

1976) as a model of RT distribution is the sum of independent gaussian (normal) and 

exponential random variables, named the Ex-Gaussian distribution by Burbeck and 

Luce (1982).   The Ex-Gaussian distribution has three parameters:  µ, the mean of the 

normal component, σ, the standard deviation of the normal component, and τ, the mean 

of the exponential component.  The parameters of the components are related in a 

straightforward manner to the central moments of the overall distribution, the mean, µ1, 

the variance,  

µ2, and the third central moment, µ3: 

µ1 = µ + τ      (1)  

µ2 = σ2 + τ2      (2) 

µ3 = 2τ3      (3) 

Hence, the overall mean is determined by the location of both normal and exponential 

components, the overall variance by both the variance of the normal and exponential 
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components (the variance of an exponential is τ2 ), and µ3 solely by the exponential 

component, as the normal distribution is symmetrical and hence makes no contribution 

to the asymmetry of the Ex-Gaussian.  

----------------- 
Figure Two  

----------------- 
 Figure 2 illustrates an Ex-Gaussian distribution and its gaussian and exponential 

components.  The curves are called probability density functions (pdf) because the 

probability of an RT in a given interval is the area under the curve in that interval.  For 

example, the probability of a 500 ms RT measured on a system with millisecond 

resolution (i.e. the response occurred in the interval between the 499th and 500th 

system clock tick) is the integral (i.e. area) of the pdf from 499 ms to 500 ms.  The pdfs 

for the exponential and gaussian components are given by the following equations:   
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The pdf for the Ex-Gaussian is calculated by taking the convolution of the above 

equations.   

Convolution of continuous random variables is most easily explained using the 

analogous operation for discrete random variables.  A discrete random variable is 

described by a probability function (pf), the discrete analogue of the continuous pdf.  

The pf gives the probability of each of a set of discrete outcomes.  For a fair coin, for 

example, the pf is p(x) = 0.5, where x = 0 for a tail (T) and x = 1 for a head (H).  Now 

consider the probability function for sum of two coin tosses, p2(x), where x = 0 for 

(T,T), x = 1 for (T,H) or (H,T), and x = 2 for (H,H).  The summation of coin-toss 
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outcomes is analogous to the summation of outcomes for the continuous gaussian and 

exponential components of the Ex-Gaussian.  Given that the coin tosses are 

independent, the probability for any pair of outcomes is 1/4, the product of the pf value 

for each outcome.  To finish constructing the pf we need only add the probabilities of 

pairs with identical outcomes, in this case the single outcome x = 1.  Hence:  p2(0) = 

1/4, p2(1) = 1/2, and p2(2) = 1/4.   

Convolution in the continuous case involves analogous operations of multiplying 

pdfs and summing densities for identical outcomes.  Summation of identical outcomes 

is replaced by integration over a variable z, where the outcome of one pdf is set to z 

and the other pdf to (RT - z), so that the sum of outcomes is z + (RT - z) = RT.  In the 

following equation the integration is performed over values where the exponential 

distribution has non-zero probability density ([0,∞]).  
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Unfortunately the convolution integral does not have a closed form solution.  However, 

the result can be expressed as above on the right using the standard normal integral 

which has a number of accurate and computationally cheap numerical approximations.   

The Ex-Gaussian was first proposed by McGill (1963) as a model of RT data 

where the right tail of the RT distribution seemed to be exponential.  McGill  suggested 

that the exponential distribution reflects the residual component of reaction time (the 

sum motor and perceptual and other non-decision stages), with the gaussian distribution 

due to decision latency.   However, Luce (1986) points out that a review of 

physiological mechanisms by Meijers and Eijkman (1974) found that the motor 
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component of the residual contributes very little variability.  As the exponential 

component is typically the main contributor of variability to the Ex-Gaussian, Luce 

suggests that it should not be identified with the low variance residual component of 

RT.   

The opposite attribution of components was suggested by Hohle (1965).  He used 

the central limit theorem to argue that residual time, because it is the sum of a number 

of component processes, is gaussian.  However, as the sum of gaussians is gaussian, 

part of the gaussian component could be due to decision processes even if Hohle is 

correct.  Later work suggests that both the gaussian and exponential components of 

fitted Ex-Gaussian distributions can be functions of experimental manipulations which 

should influence the decision stage (e.g. Heathcote, Popiel & Mewhort, 1991; Hockley, 

1984), rejecting a unique identification of the components of the Ex-Gaussian with 

residual and decision times.   

Luce (1986) notes that the fit of the Ex-Gaussian to RT data is "surprisingly 

accurate" (p.100).   For example, Ratcliff and Murdock (1976) found that the Ex-

Gaussian provided a better fit than Gamma and Lognormal distributions to data from 

recognition memory experiments.  Heathcote (1995a) argues that the Ex-Gaussian is a 

good model of RT data because the gaussian component can absorb additive gaussian 

measurement error.  Hence, the  Ex-Gaussian can model variability associated with the 

measurement process as well as variability intrinsic to the cognitive mechanisms 

producing the observed RT. 

Estimation of skewness through maximum likelihood fitting of the Ex-Gaussian 

was implemented in RTSYS because of the Ex-Gaussian's empirically demonstrated 
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ability to accurately model RT distribution.  However, it is hoped that, in the future, 

fitting of alternative distributions will be implemented.  Luce (1986) provides a 

comprehensive review of theoretically motivated RT distribution models.   Candidates 

for implementation in RTSYS include the displaced Gamma, Lognormal, Inverse 

Gaussian and Weibull distributions, all of which have a simple three parameter form 

and have received attention in the psychological literature.  Fitting of these 

distributions through maximising likelihood is not always as easy as for the Ex-

Gaussian because of non-regular parameters.  Regular parameters are asymptotically 

normally distributed.  When a parameter is not regular it has poor estimation 

properties.  Hence, another reason to prefer the Ex-Gaussian is that numerical 

estimation through likelihood maximisation is stable and robust.  

Estimating the Ex-Gaussian Parameters 

This section describes estimation of the Ex-Gaussian parameters by likelihood 

maximisation and compares it to estimation using the method of moments.  The 

likelihood of an observation is identical to its probability density for a continuous 

distribution, or probability for a discrete distribution.  However, while identical 

mathematically, the emphasis is shifted from the probability density of a particular  

observation given a set of distribution parameters, pd(RT|µ,σ,τ), to the probability 

density of a particular set of distribution parameters given the observation, L(µ,σ ,τ|RT).  

More commonly, likelihood is considered as the joint probability density of a set of 

observations, RT = (RT1, RT2, ... RTn).  Given that the observations are independent, 

the likelihood is given by the product of the probability densities of the individual 

observations.   
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L(µ,σ,τ|RT) = pd(RT1|µ,σ ,τ) pd(RT2|µ,σ,τ) ... pd(RTn|µ,σ,τ)  

For fixed RT the likelihood gives the probability density of particular values of the 

parameters.  Maximum likelihood estimation selects the parameter values which have 

the greatest probability density, that is, the parameter values which are most likely 

given the data set. 

  In some cases maximum likelihood estimation leads to closed form solutions for 

the parameters as a function of the data.  For example, least squares estimation for 

linear models with additive, constant variance gaussian error is equivalent to the 

maximum likelihood estimate.  For the Ex-Gaussian distribution, however, closed form 

solutions are not available, so maximum likelihood estimation is carried out by search.  

Search involves evaluating the likelihood for different values of the parameters until 

the best values are found.   

As the probability density values for each observation are usually small, their 

product, the likelihood, can become so small that it is difficult to represent in floating 

point form on a computer.  To avoid representational difficulties search is usually 

carried out using log likelihood (l(RT|µ,σ ,τ)) rather than likelihood itself.  Logarithms 

are monotonic, and, therefore, order preserving, functions.   Hence, the parameter 

values obtained by maximising likelihood are the same as the parameter values for the 

maximum log likelihood.  Logarithms also help to simplify the expression for the 

likelihood as they convert products to sums.  The Ex-Gaussian log likelihood is given 

by:   
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Φ(x) the standard normal integral given in Equation 4.  RTSYS uses a rational function 



RTSYS 

 

14 

 

approximation for Φ  which gives greater than single precision accuracy (Kennedy & 

Gentle, 1980, pp. 90-92).   

RTSYS replaces maximisation of log likelihood with an equivalent operation, 

minimisation of minus log likelihood.  As l(RT|µ,σ,τ) is usually negative,-l(RT|µ,σ ,τ) 

is usually positive and acts like a lack of fit measure such as squared deviation in least 

squares fitting:  a minimum value of minus log likelihood indicating the best fitting 

model. 

Search for the Maximum Likelihood Estimate 

To illustrate the process of maximum likelihood estimation through search we will 

investigate fitting of an example data set of ten RTs.  An Ex-Gaussian distribution with 

(µ,σ,τ) = (500,50,100) was sampled, resulting in the data set  (474.688, 506.445, 

524.081, 530.672, 530.869, 566.984, 582.311, 582.940, 603.574, 792.358).  As the 

Ex-Gaussian is a convolution, the easiest way to generate samples from it is to sum 

pairs of samples from normal and exponential distributions.  Table 1 gives estimates of 

the mean and second and third central moments (transformed to the same scale), and 

Ex-Gaussian parameters obtained by both maximum likelihood estimation and method 

of moments estimation.  Equations 1 to 3 were used to convert method of moments 

estimates of µ1, µ2, and µ3 to Ex-Gaussian parameter estimates and maximum 

likelihood estimates of µ, σ, and τ  to moments estimates.     

----------------- 
Table One  

----------------- 
The sample has positive skew as indicated by a median (549) less than the mean, 

and positive estimates of the third central moment.  Both methods produce similar 
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estimates.  Note that this occurred because the sample was selected to have a positive 

third central moment estimate.  The sample size used is to small for precise estimation 

and would often result in negatively skewed samples.  For example, the method-of-

moments third central moment estimate is dominated by the cubed residual for the 

largest data point which is an order of magnitude greater than all other cubed residuals.  

When this point is removed the method of moments estimate of µ31/3 = -54.1, 

indicating negative skew, despite the fact that the median (530.9) is still less than mean 

(544.7).  Ratcliff (1979) criticised the method of moments for its sensitivity to extreme 

RTs which may be outliers not generated by the psychological process under 

investigation.  In contrast, the Ex-Gaussian based maximum likelihood estimate remains 

positive (µ31/3 = 11.9) when the largest value is dropped from the sample. 

   The process of search used to obtain the maximum likelihood estimates can be 

illustrated geometrically.  Assume that we know the true value of two of the three Ex-

Gaussian parameters.  We could then construct a plot of minus log likelihood as a 

function of the unknown parameter.  Figure 3a, 3b, and 3c illustrate such plots for the 

example data when the unknown parameters are µ, σ, and τ respectively.  The value of 

the unknown parameter with the lowest value on the plot is the maximum likelihood 

estimate of the parameter. 

----------------- 
Figure Three  

----------------- 
Similarly, if we knew the true value of only one parameter we could plot each 

value of the unknown pair of parameters on a plane and the corresponding minus log 

likelihood as a point on a surface above the plane.  Figure 3d, 3e, and 3f plot the 

surfaces for µ, σ, and τ known respectively.  The maximum likelihood estimate 
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corresponds to the coordinates of the point on the plane under the lowest point on the 

surface.   The likelihood surface for estimation of all parameters simultaneously cannot 

be illustrated because it requires four dimensions (three for the parameters and one for 

the likelihood).    

Determination of the entire likelihood surface is wasteful (computation of the three 

dimensional plots took several hours each, see Appendix) when we require knowledge 

of only one point, the minimum.  Fortunately, in many cases we can find the minimum 

through search with only local knowledge of the surface.  To illustrate, imagine that you 

wish to find the lowest point in a landscape but it is dark so you have only knowledge 

of the local height provided by moving your foot around.  You could proceed by 

determining the lowest point in your neighbourhood, moving to it, then repeating the 

process until you are at the minimum and are surrounded higher points.   

The problem of search or optimisation has been intensively studied and algorithms 

exist which make search tractable even in high dimensional spaces.  RTSYS uses two 

such algorithms: Simplex and Marquardt-Levenberg.  Press, Flannery, Teukolsky, and 

Vetterling (1988) give detailed explanations and the exact algorithms.  The remainder 

of this section gives a brief description sufficient to facilitate use of the algorithms 

within RTSYS.   

Simplex is a simple and robust algorithm which acts very much like the above 

analogy, except that it moves around by contracting, expanding, and moving a four 

dimensional hypercube (the Simplex).  The Marquardt-Levenberg algorithm is more 

sophisticated, using the first and second derivatives of log likelihood with respect to 

the parameters as well as its magnitude.  The first derivatives (slopes) are used to 
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determine the direction of steepest descent and the second derivatives are used to 

estimate how far to step assuming that the surface is quadratic (e.g. a good 

approximation for Figure 3a).   Search is terminated when fractional tolerance, the ratio 

of the previous improvement in likelihood to the improvement of likelihood on the 

present move, falls below a criterion value.  Note that termination is not guaranteed.  

When the surface around the minimum is relatively smooth termination occurs rapidly.  

However, when the surface is irregular, termination may be slow or not occur at all.  

Generally larger RT data sets result in smoother likelihood surfaces and termination in 

fewer steps.  

Under ideal conditions Marquardt-Levenberg will find the minimum much more 

quickly than Simplex.  However, certain surfaces, such as a gradually descending 

valley, can cause very slow convergence.  Heading in the direction of steepest descent, 

combined with some overshoot of the bottom of the valley, may lead to repeated 

crossing at almost right angles to the gradual decrease toward the minimum.  The 

surface may also be markedly non-quadratic, leading to poor estimates of how far to 

move on each move on step.   

Experience with both methods indicates that Simplex is the most robust, rarely 

failing to converge.  With smaller data sets (n < 300) Marquardt-Levenberg tends to 

move quickly to the region of the minimum, but then either does not converges or 

converges slowly.  For larger data sets, however, Marquardt-Levenberg is much faster 

than Simplex.  For intermediate cases, RTSYS allows a combination of the two 

methods, using Marquardt-Levenberg for a default number of steps to find the 
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approximate region of the minimum, then switching to Simplex to find its exact 

location.  

Problems with Search 

In general, search is a sensitive process which requires careful attention.  It often 

results in non-convergence or error conditions due to floating point overflows or 

underflows.  With a slow computer, or even with a fast computer and a large number of 

data sets, determining the best fitting Ex-Gaussian parameters may become 

prohibitively time consuming.  The following describes features of RTSYS which 

automatically take care of many difficulties arising during  search.  The design goal for 

RTSYS was to allow unattended computation of best fitting parameters so that even 

users of slow machines can process large data sets by leaving RTSYS running 

overnight. 

The geometric analogy illustrates one difficulty with optimisation: the problem of 

local minima.  A local minimum is a point which is surrounded by higher points, but is 

still not the overall lowest point, the global minimum (see Figure 4).  Whether search 

descends to a local or global minimum depends where it starts.  Local minima can be 

avoided by a judicious choice of the starting point for search.  

--------------- 
Figure 4 

--------------- 
RTSYS allows the user to select a starting point, but is also able to estimate its 

own starting point.  When the method of moments produces reasonable estimates of the 

Ex-Gaussian parameters (i.e. σ  > 0, τ > 0, e.g. Table 1) they can be used as a starting 

point for search.  When they are not reasonable RTSYS uses a heuristic:  τ = 0.8 x 

sample standard deviation.  The heuristic is based on Luce's (1986) observation 
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previously cited (see also Ratcliff, 1993, p.510) and my own experience that τ 

dominates the variability of the Ex-Gaussian.  The remaining parameters are 

determined using Equations 1 and 2 (i.e. σ = 0.6 τ and µ = sample mean - τ). 

Some data sets may cause the search algorithm to attempt to evaluate the log 

likelihood function for σ  ≤ 0 or τ ≤ 0, causing a floating point error.  The Ex-Gaussian 

distribution may be an inappropriate model when the data's distribution is symmetric or 

negatively skewed (τ ≤ 0) or when it is sharply peaked and better modelled by an 

exponential plus a constant (σ ≤ 0).  Such cases may also occur due to sampling error 

when the Ex-Gaussian model is appropriate, especially for small sample sizes.  Even 

when  the final result is positive values of σ  and τ, attempts may be made during search 

to evaluate the log likelihood function at  parameter values which cause floating point 

errors.  To avoid floating point errors, RTSYS sets the minus log likelihood function to 

a large value for σ or τ ≤ (Sample Mean)/200.  This effectively introduces a barrier in 

the likelihood surface insuring that search does not move into inappropriate regions.  

Failed evaluations of the likelihood function are reported by RTSYS and implausible 

parameter estimates set to the missing value, alerting the user to the problem1.   

When fitting fails, RTSYS allows the cause to be determined and a remedy, if 

possible, to be found.  The problematic RT distributions can be plotted to examine the 

shape of the distribution.  Search may be attempted again with new start points or other 

parameters controlling the search process, such as the criterion for terminating search.  

In particular, Simplex search (the most robust method) can be carried out for single 

ordered files in an interactive mode.  During interactive mode the parameter vector (µ,

σ,τ) and minus log likelihood are displayed for each step.  At any step the search may 
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be paused and restarted with new control parameters supplied by the user.  Even with 

these precautions some cases may not converge (i.e. the search may converge in an 

unacceptable region of the parameter space or get caught in a limit cycle or even 

chaotic oscillation).  In such cases, censoring the data set or collecting more data may 

be necessary.  

Even when search is not problematic it is important to ensure that the Ex-Gaussian 

distribution provides an adequate model of the data.  RTSYS allows evaluation of the 

Ex-Gaussian model, both graphically, through plotting the Ex-Gaussian curve on a 

histogram of the data (see Figure 5), and inferentially, through a χ2 test.  The χ2 is 

calculated by comparing the observed and expected number of RTs in each of a series 

of categories which span the range of the RT distribution.  

--------------- 
Figure 5 

--------------- 
A difficulty with χ2 testing is choosing the width of the categories, especially 

when the scale of distributions may vary widely.  D'Angostino and Stephens (1986, p. 

69) recommend the use of χ2 cells with equal probabilities under the fitted 

distribution, citing a reduction in bias and better small sample properties.  

Unfortunately, determination of the width of equal probability bins requires search 

using the integral of the Ex-Gaussian pdf, an operation more computationally expensive 

than parameter fitting itself.  Instead, RTSYS uses categories with equal numbers of 

data points, approximating equally likely Ex-Gaussian categories for reasonable fits.  

The user may select the number of categories or allow RTSYS to automatically select 

2n2/5 categories (a heuristic suggested by D'Angostino & Stephens, p.70).  When a 

category produces less than 5 expected or observed values, RTSYS collapses the 
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category with the following category to ensure that the assumptions of χ2 testing are not 

violated. 

A Nonparametric Measure of Distribution Asymmetry 

A non-parametric measure of distribution asymmetry is provided by the 

standardised distance between the mean and median (i.e. (Mean - Median)/ Standard 

Deviation).  The measure is briefly discussed by Kendall, Stuart and Ord (1987, p. 106 

and Exercise 3.22, p. 116) and used by Ratcliff (1993).  It is bounded between -1 and 

1, with positive values indicating that the mean is greater than the median, as is 

commonly observed for RT distributions .  Ulrich and Miller (1994) point out that this 

measure should be less than 0.31 (the theoretical value for an exponential distribution) 

for RT distributions.   

A related measure, which replaces the median with the mode, has been studied in 

relation to the unimodal Pearson system of distributions (see Kendall, Stuart, & Ord, 

1987).  However,  RTSYS calculates the median version because the mode is difficult 

to estimate efficiently.  While values of the median form of the statistic, called 

nonparametric skew in RTSYS, cannot be used to produce estimates of the third central 

moment and hence estimates of parametric skew, they provide an alternative way of 

assessing skew in situations where the sample size is small.  Nonparametric skew's 

advantage over the method of moments estimate  is that it is not as sensitive to outliers.   

Summary.   

Estimation of skew using the method of moments has unacceptably high variance 

for sample sizes commonly used in experimental psychology.  RTSYS provides a more 

efficient way to determine skew through maximum likelihood estimation of the Ex-
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Gaussian distribution.  The researcher can choose either robust Simplex search with 

smaller samples, or more efficient but less robust Marquardt-Levenberg search with 

large samples (such as may be produced by simulations, e.g. Mewhort Braun & 

Heathcote, 1992), and assess the suitability of the Ex-Gaussian model with χ2 testing.  

For samples which are to small to allow fitting of the Ex-Gaussian (a  minimum of 

approximately 100 observations is recommended), RTSYS can calculate a 

nonparametric measure of distribution asymmetry.   Log and inverse transformations 

are also provided for use with small samples and inferential tests which assume 

normality.  An alternate solution to the problem of sparse data is given in the next 

section. 

Vincentising: What to do when data are sparse 

The most frequently encountered difficulty in dealing with skew arises from small 

data sets.  Even maximum likelihood estimates of skew are less efficient than the 

sample mean.  Hence, data sets sufficient to make reliable inference about the mean 

will not always be adequate for reliable inference about skew.  As samples become 

smaller sampling error leads to increasingly frequent missing values for skew 

estimates, further complicating inference.  Typically, experiments which attempt to 

measure skew have at least 100 observations, but in many paradigms 100 observations 

is an unrealistic goal.  Difficulties range from limited stimuli and limited time and 

attention on the part of subjects to confounding by practice effects.  The usual strategy 

adopted by the behavioural scientist when faced with low numbers of observations, and 

consequent variability in estimates, is pooling or mixing of observations from different 

conditions or subjects.  When measuring the shape of distributions, however, mixing 
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may lead to artefacts.  The artefacts can be illustrated with a simple example using the 

familiar gaussian or normal distribution. 

Suppose two experimental units (e.g. subjects or conditions) produce normally 

distributed data with different means and variances (Figure 6a).  Mixing the data over 

units results in a bimodal rather than normal distribution (Figure 6b).  Ideally we want 

a combination technique which preserves the component distribution's shape while 

averaging their parameters (Figure 6c).  However, when we do not know the 

underlying distribution (e.g. RT data), or we assume the distribution but cannot estimate 

its parameters with few observations (e.g. fitting the Ex-Gaussian fails), we cannot 

average parameters.   

--------------- 
Figure 6 

--------------- 
Ratcliff (1979) proposed that vincent averaging, a technique originally used to 

average learning curves (Vincent, 1912; Hilgard, 1938), provides the stabilising effect 

of averaging without distortion of distribution shape.  He demonstrated analytically that 

vincent averaging produces no shape distortion for several theoretical distributions 

(Exponential, Logistic, and Weibull) and by Monte Carlo techniques that distortion is 

minimal for the Ex-Gaussian.  He also analysed a large RT database with sufficient 

observations for stable fitting of the Ex-Gaussian distribution to individual subject's 

data.  Ex-Gaussian parameters found by fitting to vincent averaged distributions were 

close to the average of Ex-Gaussian parameters estimated from individual subject's 

data.  Hence, vincentising was able to produce average distributions with the same 

shape as component distributions and parameters which were the average of component 

distribution's parameters. 
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Vincent averaging is achieved in two stages.  First, quantiles are calculated for 

each component distribution.  If, for instance, five quantiles are required, calculate the 

times below which 10%, 30%, 50%, 70%, and 90% of observations fall for each 

component (e.g. subject).  Second, corresponding quantiles are averaged across 

components.  The intervals between adjacent averaged quantiles contain equal 

proportions (1/q, where q is the number of quantiles) of the average distribution's RTs.  

The intervals below and above the first and final quantiles each contain 1/(2nq) of the 

RTs.  

Ratcliff (1979) suggested a simple algorithm for calculating component quantiles.  

For n ordered reaction times and q quantiles, write an array containing q copies of each 

of the n RTs in turn.  If, for instance, the RTs (1,2,3) are observed and 2 quantiles are 

required, then the array contains (1,1,2,2,3,3).  Quantiles are obtained by averaging 

successive groups of n observations from the array (e.g. (1+1+2)/3 = 1.33 and 

(2+3+3)/3 = 2.66).  Dawson (1988) provides an implementation of the algorithm.  

RTSYS uses a modified version of Ratcliff's algorithm which addresses a problem 

arising with large data sets.  RTSYS can process a maximum of 2500 RTs and 100 

quantiles.  With each  RT being a 6 byte real, a direct implementation of the algorithm 

requires up to 1.5 megabytes of memory!  RTSYS avoids high memory loads with an 

algorithm which refills the same n element array after each quantile is calculated.  The 

slight book-keeping overhead is far outweighed by reduced memory requirements.  

The Ex-Gaussian distribution can be fit directly to the average quantiles because they 

form a representative sample from the average RT distribution (i.e. by definition, each 

average quantile RT is equally likely to be sampled).  An added advantage of vincentising 
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is increased speed in fitting the Ex-Gaussian, at least with data sets where q << n.  The 

speed up occurs because calculation of likelihood requires the pdf for individual 

observations to be evaluated q rather than n times.   

For good Ex-Gaussian fits, vincentising requires as few as 20 observations per 

condition, with the restriction that q < n (and preferably < n/3).  When small numbers of 

observations per condition are used, vincentising should be performed over more 

components to ensure a stable estimate.  Generally q is chosen large enough so that the 

shape of the distribution is preserved but small enough so that high frequency noise is not 

included (usually 5 ≤ q ≤ 20).   

--------------- 
Figure 7 

--------------- 
The choice of number of quantiles is aided by plotting a vincent histogram (see Figure 

7).  A vincent histogram is a graphical representation of the average distribution.  It is 

plotted as q-1 rectangles which span the intervals between adjacent average quantiles and 

with heights chosen so that their areas are (1/q)   (Ratcliff, 1979).  The vincent histogram 

is a discrete approximation to a pdf.  Like a pdf, the area under the vincent histogram in a 

range is the probability of sampling a RT in that range.  The shape of the vincent histogram 

can be used to judge whether sufficiently many quantiles have been chosen to provide a 

smooth estimate of the pdf without blurring its shape.  The best fitting Ex-Gaussian 

function can be superimposed on the vincent histogram to determine how well it models 

the data.  The suitability of the Ex-Gaussian model for vincentized data can also be 

assessed inferentially with a χ2 test. 

Standard Errors for Vincent Averages  
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A drawback of vincentising over subjects is that it removes subject variation.  Hence, 

inferential testing on the parameters of the fitted Ex-Gaussian cannot be performed.  

Ratcliff and Murdock (1976, p.200) provide a table of standard deviation estimates for a 

range of Ex-Gaussian  parameter values.   The table is derived using large sample 

properties of maximum likelihood estimators and may not be appropriate for small samples 

and parameter estimates derived by vincentising.   

A more satisfactory solution for small samples may be provided by resampling (e.g. 

Efron & Tibshirani, 1993).  Resampling involves creating a number (e.g. 100) of new data 

sets from the original data set by sampling with replacement (i.e. select an element of the 

data set at random, put it into the new data set then repeat the process until the new data set 

has the same number of elements as the original data set).  Vincentising is performed, for 

example over subjects, for each group of new data sets.  The Ex-Gaussian distribution is 

then fit to each of the vincentized versions of the new data sets.  The standard deviations of 

the parameter estimates over the new data sets can be used to perform inference.   

In the current version of RTSYS resampled data sets must be created externally 

then processed in the usual way by RTSYS, most conveniently with the resampling 

replications as a factor.  At present I am investigating the theoretical properties of 

resampling combined with vincentising.  Future versions of RTSYS will incorporate 

automatic resampling if the results are favourable.   

Summary.   

Vincent averaging allows RTSYS to determine skew even when as few as 20 

observations are available for each experimental unit in each cell of the design.  Vincent 

averaging combines data across subjects or conditions without distorting the shape of the 
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underlying distribution.  The Ex-Gaussian distribution can then be fit to the vincentized 

data to obtain a maximum likelihood estimate of skew.  A χ2  test allows assessment of 

the adequacy of the Ex-Gaussian as a model of the data.  The distribution of the vincent 

averaged data can be viewed by plotting a vincent histogram.  The vincent histogram also 

provides a visual summary of the average distribution of the data which is useful even 

when large numbers of observations are available for each cell.   

Censoring 

Typically RT data are used to investigate a particular psychological process.  The 

process of interest may not, however, be the only process to contribute to RT variation.  

Some confounds can be controlled by careful experimental design, but two confounds 

generic to RT data, anticipation and distraction, may require post-hoc measures.  

Anticipation produces fast RTs and distraction slow RTs.  An indirect solution is to use a 

robust measures of central tendency , such as the median, which is insensitive to extreme 

observations.  This does not, however, solve the problem when variance and skew are of 

interest.  A direct solution is to remove or censor uncharacteristically fast and slow RTs.  

Unfortunately, a poor choice of  censoring criteria can distort the nature of the process of 

interest by removing real observations .  The positive skew of RT distribution makes 

censoring criteria for slow RTs particularly problematic (see Ratcliff, 1993 and Ulrich & 

Miller, 1994 for extensive reviews of censoring methods for RT data).    

RTSYS supports three types of censoring  criteria:  absolute, standard deviation and 

percentile.  Censoring criteria can be specified separately for fast and slow RTs, allowing 

the asymmetry of RT distribution to be taken into account.   Absolute censoring allows 

specification of times above or below which observations are rejected.  Like all censoring 
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it should be used with caution as it may introduce bias.  Ulrich and Miller (1994) study 

absolute censoring extensively and provide a useful set of recommendations for how to 

safely use it.  Absolute censoring is most appropriate for rejecting fast RTs which occur 

through anticipation.  Experiments on simple RT to intense signals indicate that the 

residual (non-decision) component of RT is at  least 100 ms (Luce, 1986, Table 2.1, 

p.62).  Hence, routine use of an absolute fast RT censoring criterion of 100 ms seems 

justified.    

Standard deviation censoring rejects RTs which are a criterion number of standard 

deviations above or below the mean.  Percentile censoring rejects RTs above or below a 

criterion percentile point.  Percenti le and standard deviation censoring techniques are 

useful because they adapt to the scale of the data's distribution.  For instance, when 

comparing cells with different means, absolute censoring will affect means and 

proportions of observations censored differently, biasing comparisons between 

conditions.  Standard deviation censoring will adapt to different condition means and 

percentile censoring will ensure that equal numbers of observations are removed in each 

condition.    

Percentile censoring should be treated with care when comparing conditions in which 

outliers occur with different probabilities.  For example, an irritating or tedious condition 

is more likely than an enjoyable condition to produce slow outliers due to distraction.  In 

such a case, where it is inappropriate to remove the same percentage of slow data from 

both conditions, standard deviation censoring may be preferred.  RTSYS also calculates 

mean error RT so the predominant type of error (faster or slower than correct mean RT) 
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can be used to guide criterion setting (see Link, 1982 and Pachella, 1974, for a discussion 

of speed-accuracy trade-off). 

In a study of the effect of outliers on the power of ANOVA, Ratcliff (1993) 

recommends either an inverse transformation when variability among subject means is 

low or standard deviation censoring when subject variation is high.  He also suggests 

that the researcher try "... a range of cutoffs and make sure that an effect is significant 

over some range of nonextreme cutoffs" (p.519).  Censoring and rescaling facilities in 

RTSYS make it easy to implement his recommendation.   
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Compensating for Censoring with Maximum Likelihood Estimation 

Even when censoring is informed by the experimenter's expertise, it is still likely to 

reject some real data.  Fortunately, with samples large enough to fit a distribution, 

maximum likelihood estimation can be used to compensate for the unwanted effects of 

rejection of real data.  As when determining skew, the maximum likelihood technique 

requires assumption of a theoretical distribution.  The effect of censoring  r1 fast and r2  

slow observations from a sample of n RTs is incorporated into the likelihood function, L, 

of a theoretical distribution with pdf pd(RT) is :    

L pd RT dt
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(note that Π indicates a repeated product).  The integrals assess the probability of a RT 

less than a and greater than b respectively, where a and b are the lower and upper 

censoring criteria.  Hence, the first and last terms assess the probability of observing r1  

RTs less than a and r2 RTs greater than b.  The middle term is the likelihood of the (n- 

r1 - r2) uncensored observations.  Although other adaptations of the likelihood function 

are possible (cf.  Kendall & Stuart, 1967, Equation 32.36, p. 523), Ulrich and Miller 

(1994) found fitting with Equation 5 to be the most robust approach.   

Ulrich and Miller (1994) carried out a set of simulations to determine how fitting 

with  Equation 5 affects bias in estimating means and standard deviations.  They found 

good bias reduction properties with little decrease in efficiency, especially for mean 

estimates.  They recommend an Erlangian distribution for best recovery of the mean and 

the Ex-Gaussian for best recovery of standard deviation.  However, there is little to 

choose between the Erlangian and Ex-Gaussian for mean estimation (average relative 
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biases ranging  from -0.1 to 2.7 and -1.5 to 1.4, and maximum inefficiencies of 1.34 and 

1.81 respectively, see Tables 14 and 15, p.68-69).  RTSYS assumes an Ex-Gaussian 

pdf in Equation 5, and automatically fills in the values of r1, r2, a, and b implied by the 

censoring criteria selected.  Hence, RTSYS provides a convenient mechanism for 

implementing the approach recommended by Ulrich and Miller.     

Summary.   

RTSYS provides three criteria for censoring data: absolute, standard deviation, and 

percentile.  Criteria can be applied independently and in any combination for both slow 

and fast RTs.  The criteria are applied uniformly for each cell of the experimental design.  

The Ex-Gaussian likelihood function can be automatically adjusted depending on the 

number of observations censored in each cell.  This procedure entails increased 

computation2, but reduces bias introduced by censoring real RTs along with outlier RTs.   

The User Interface  

The RTSYS user interface consists of a Main menu and six sub-menus.  Each menu 

has options which can be selected either by pressing the capitalised letter of the option, 

or by moving a highlighted bar with the cursor keys and pressing enter when the desired 

option is highlighted.  Context-sensitive help can be obtained by pressing the F1 key 

when the highlighted bar is on the option in question.  

Main Menu 

The Main menu consists of options and status indicators.  Status indicators appear 

at the bottom of the screen and, if defined, include the names of  active files.  The Main 

menu options are sub-menus (except for Help and Quit) which have a similar format to 
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the main menu, but without the status indicators.  Sub-menus consist of options on the 

left of the screen and default settings on the right of the screen.  The defaults control the 

way in which the options are performed.  Selecting the Defaults option of the sub-menu 

causes the Defaults menu to appear.  Default values can then be changed, either by 

entering explicit values or toggling between possible states of the default.   

Defaults can also be changed through the Defaults sub-menu of the Main menu.  

Defaults set in this way are changed permanently through storage in a defaults file.  

RTSYS reads a defaults file on start up, and is distributed with a standard defaults file, 

rtsys.def, in its home directory.  Defaults files can also be stored by the user in data 

directories using the Store/Retrieve option of the Defaults sub-menu.  This should be 

done to customise RTSYS when performing a series of similar analyses.  When 

RTSYS is executed using the rt.bat file (see next section)  from a directory containing a 

defaults file it will automatically load that defaults file, allowing analysis to proceed 

with appropriate settings. 

Most options require information about the design of the experiment which you are 

analysing.  Design information is specified in the Files menu and stored in a design file.  

Options may also require that RTSYS has information about file names.  If a design file 

and file names are not specified, RTSYS will ask appropriate questions after you  

select an option.  Sometimes you may not know the answers to the questions,  

especially if file names are requested.  If this happens you can simply hit enter and you 

will be returned to the previous level.        

RTSYS sub-menus are used in a sequence to process data files and output results.  

In order to speed later calculation of statistics, experimental data files must be 
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combined with design information to create ordered files.  Ordered files are ascii and 

are created and manipulated in the Data Management menu.  Vincentising can also be 

performed in the Data Management menu.  Once ordered files are created, frequency or 

vincent histograms can be plotted in the Graphics menu to check the data's distribution.  

Statistics are calculated from ordered files and stored as (non-ascii) statistics files in 

the Analysis menu.  Once the Ex-Gaussian  parameters are calculated in the Analysis 

menu, the Graphics menu can be used to view the best fitting distribution superimposed 

on histograms.   The contents of statistics files can be viewed, printed, and saved to 

ascii parameter files in the View Statistics menu.  While both Data Management and 

Analysis menus create one file corresponding to each data file, the View Statistics 

menu creates, for each statistic, a single parameter file which combines results from 

between subject and within subject design cells.   The following sections provide an 

overview of the options and defaults of each sub-menu. 

Specifying File Names and Interacting with DOS:  The Files Menu 

To make finding out about files easier, the Files sub-menu is available from the 

Main menu and all sub-menus.  To facilitate single task usage under DOS, the Files 

menu allows you to interact with the operating system.  Options provided  allow you to 

list files (the DOS "dir" command), look at ascii files (the DOS "type 'file name' | 

more" command), edit ascii files (using the edlin editor), delete, rename, and copy files 

(the DOS del, ren, and copy commands) and create and remove directories (the DOS 

md and rd commands).  Under Windows, most of these functions are more easily 

accomplished with the File Manager.  The remaining Files menu options allow you to 

specify file names and design information. 
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RTSYS can be used in both single file and multifile modes.  In single file mode, 

operations are performed on a single files.  If a file required by an option is not defined 

the user will be asked to specify it on a command line.  The names of each type of file 

(a Data, Ordered, or Statistics files) can also be specified using options in the Files 

menu.  In multifile mode all operations are done on a set of files whose names are 

specified in a holding file.  The holding file is an ascii file containing one file name per 

line.  A holding file is specified using the Multiple Files option in the Files menu.  

Holding files allow large sets of files to be batch processed, and also allow 

specification of subjects and between subjects factors.  It is best to specify only the 

root names of files in the holding file.  In multifile mode, RTSYS attempts to append 

file extensions for data, ordered, and statistics files as required by the option.  This 

allows a holding file listing only the root names of the data files to be used to execute 

several different options without having to respecify the names on each occasion.   

Default extensions used are defined in the Files Defaults menu.   

A within subjects design must be specified by the user and stored in a design file.  

Each line of the design file contains the levels of each factor for a cell.  Levels are 

specified by integer designators.  You must specify factors in the same order as they 

occur in your data files and use the same designators as used in your data files.  Design 

files can be created from within RTSYS using the Get Design File option in the Files 

menu.  The Get Design File option generates factor level indicators 1,2,3 etc. by 

default, but allows re-coding to more meaningful (unique integer but not necessarily 

ordered) values if required.   
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This method of creating design files works only for fully factorial designs.  If you 

have a non-factorial design you can create a design file either directly us ing an ascii 

editor (access to DOS's edlin is given in the Files menu), or by creating the full 

factorial design of which your design is a sub-case and then editing out the cells (lines) 

which are not present.   

Once a design file is created it can be loaded from disk using the same option.  

Design files control the order in which cells are processed.  This is particularly useful 

when generating parameter files for input to other applications.  Design files can also 

be used to ignore cells by omitting the lines which designate them.  Operations in all 

sub-menus are performed only on cells specified in the design file. 

All Files options assume the Default Path, which you can set in the Files Defaults 

menu, unless you begin your specification with a "\".  For example, if  you set the 

Default Path is " \dat\exp1",  RTSYS will search for a file specified by new.dat, as 

"\dat\exp1\new.dat". 

Data File Format:  The Data Management Menu 

Two types of data files are accepted by RTSYS:  blocked and randomised.  

Blocked files use only one condition or cell of the within subjects design in a block of 

trials.  Randomised data files come from design in which different cells are mixed in a 

block.  

Blocked Data Files 

In a blocked data file, RTs from each block are preceded by a cell designator  

line.  The cell designator line begins with a block header designator (an  integer value 

which cannot equal an RT value) followed by integer values specifying the levels of 



RTSYS 

 

36 

 

each factor for a cell.  Following lines contain an integer correct/incorrect/discard trial 

indicator (in the default state 1 = correct,  2 = incorrect, 3 = discard trial) and an RT 

value (which can be real or  integer).  e.g.   

  
-3 5 3 2     {Cell designator line, Block header (-3), cell (5 3 2)} 
1 678        {Correct RT} 
1 735        {Correct RT} 
2 1111       {Error RT} 
... 
 
Note that comments in {  } are not in the actual file.   

If the data are not of the accuracy type (i.e. there are no correct and incorrect 

answers) the trial indicators before the RT can be omitted.  The type of data file 

assumed (accuracy or not) is controlled by the Accuracy Data default in the Data 

Management Defaults menu. 
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Randomised Data Files   

Each line in a randomised data file contains integer values designating the levels 

of each factor for a trial, a trial indicator and an RT value (real or integer). e.g. 

 
5 3 2 1 679   {Cell 5,3,2  Correct RT} 
3 2 2 1 699   {Cell 3,2,2  Correct RT} 
4 1 1 2 799   {Cell 4,1,1  Error RT  } 
... 

The type of data file to be used and the values of the different indicators can be set 

in the Defaults section of Data Management menu.  Again, assumption of either 

accuracy (final value before the RT is a trial indicator) or non-accuracy data formats is 

controlled by the Accuracy Data default in the Data Management Defaults menu.  

The user may specify that any number of values be ignored before a factor 

specification (after the Block Header Indicator in a blocked file or at the start of each 

line in a randomised file) and also before the trial indicator in a blocked file.  This may 

be useful if specific information about a trial such as a trial number is included in a 

data file.  The user can also specify collapsing by choosing which factors to ignore.  

Again, the Defaults section of the Data Management menu can be used to set these 

values.  Finally, header lines in the data file may be skipped using the Data File Header 

Line Skip option in the same defaults menu.   A maximum of 2500 (correct + error) RTs 

may be analysed in each design cell. 

RTSYS only does cursory analysis of error data (mean and percent).  This is  

appropriate in most RT paradigms because errors are kept low to avoid  speed-

accuracy trade-off.  When error rates are low even estimates of error variance are 

imprecise, let alone Ex-Gaussian parameters.  If, however, you want more extensive 

analysis of error data,  the data file can be processed with indicators for correct and 
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error data flipped (usually set in the Files Defaults menu as this is easier than changing 

the actual data file) so that RTSYS treats the error data as correct data and correct as 

error.  Alternatively, you can use correct/ incorrect as a factor in the design and disable 

the Accuracy Data default in the Data Management menu.   

Ordered Files 

In an ordered file RTs from each cell are collected together and listed from 

smallest to largest.  Given that most RT data sets consist of less than 1000 

observations, I follow Press et. al's. (1986, p. 227) recommendation and use Shell's 

Method of sorting.  RTs are also divided according to whether they are from correctly 

answered or error trials.  When creating ordered files, RTSYS allows RTs to be 

linearly rescaled to change time units.  RTs can also be transformed according to the 

resolution of the experimental apparatus which collected them.  Most RT measurement 

systems assume a measurement unit, usually 1 ms or the frequency of the monitor 

refresh (16.7 ms or 20 ms).  RTs are actually measured as the number of measurement 

units accumulated before a response is detected.  Hence the best estimate of the actual 

RT is one half a measurement unit greater than that actually recorded.  Although the 

difference is usually small, it can be important for order statistics, especially with low 

resolution measurements.   

In an ordered file, RTs for each cell are preceded by a cell designator line 

(similar to a blocked data file but with no block header designator).  Each line 

thereafter contains a single RT value.  The list of correct RTs is followed by an 

indicator (-1 as default value) and the error RTs are listed. The end of the error RTs is 

marked by another indicator (-2 default) and the next cell then begins, e.g.  
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1 1     {Cell 1,1} 
567 
784 
733 
-1      {End of Correct RTs} 
899 
-2      {End of error RTs}  
2 1     {Cell 2,1} 
967 
... 

Ordered files can be produced directly from single data files or by vincent 

averaging across a number of ordered files.  A holding file specifying the names of the 

ordered files to be vincentized over must be supplied (using the Files menu) as file 

names cannot be entered from the command line.   Ordered files can also be merged 

using the Join Ordered Files option of the Data Management menu.  For example, you 

may wish to join together the data from one subject collected over several days.  Once 

again, a holding file specifying the names of the files to be combined is required. 

Calculating Statistics: The Analysis Menu 

The analysis menu produces statistics files from ordered files.  Statistics files 

contain one record for each cell of the design.  Each record contains the statistics 

described above.  Input from the ordered files can be non-linearly rescaled (using 

inverse and log transformations) and/or censored.   Censoring and rescaling are 

controlled from the Analysis Defaults menu.  They have no permanent effect on the 

ordered files, only the results stored in the statistics files.  Similarly, factors may be 

collapsed in the Analysis menu and results stored in statistics files with no effect on the 

original ordered files.  For flexibility it is advisable to specify ordered files with the 

finest factor structure applicable to your data and collapse nuisance factors during 

analysis.   
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You will often wish to try different combinations of censoring, rescaling, and 

collapsing.  In multifile mode, you can use the same holding file for each combination 

but maintain separate file names for each combination by changing the default Statistics 

File Extension in the Data Management Defaults menu.  For example, you may wish to 

compare statistics for uncensored data (e.g. stored in *.sts files) with statistics for data 

with the upper 5% of observations removed (e.g. stored in *.su5). 

Analysis can be done with or without fitting the Ex-Gaussian distribution function.  

Not fitting the Ex-Gaussian is much quicker and may be appropriate for a first look at 

the data.  If the Ex-Gaussian is not fitted, its parameters will be set to the missing value 

in the statistics files. The following section describes how to fit the Ex-Gaussian.  

Although every attempt has been made to make fitting automatic, some data sets may 

require closer scrutiny.  Such scrutiny is aided by some knowledge of the fitting 

process. 

Search times for fitting the Ex-Gaussian may be slow, especially on  XT or AT 

machines.  In such cases, multifile mode can be used to perform overnight runs.  You 

should experiment with the tolerance parameter in the Analysis Defaults menu to 

determine what values give you an accurate fit for the least computation.  The 

Tolerance Default determines how small the relative decrease in minus log likelihood 

must be between steps of the fitting algorithm before it stops.  If you can increase the 

tolerance without changing the estimated parameters much do so as it will speed fitting.  

Do not set tolerance less than 10E-8 as fitting will converge slowly due to spurious 

variation introduced by rounding errors. 
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The search algorithm will abort after a number of iterations specified  in the 

Analysis Defaults menu, and continue fitting with the next cell.   This default avoids 

cases where fitting is not converging.  Set it to a large value to ensure that a reasonable 

attempt at fitting is made but not large enough so that multifile runs are unable to 

complete in a reasonable time.  

Viewing Results: The Graphics and View Statistics Menus 

RTSYS has two menus dedicated to viewing and output of the results of analyses.  

The Graphics menu is mainly designed to help fitting the Ex-Gaussian, although limited 

options for formatting and output of graphs are available. The View Statistics menu 

allows viewing of statistics and output either to a printer or a file. 

Graphics 

The Graphics menu allows you to look at the distribution of your data.  Two types 

of histograms can be plotted:  frequency histograms and, for vincentized data, vincent 

probability histograms.  Plotting histograms requires only that you have created ordered 

or vincentized files.  You can specify the scaling of the histograms, using the Graphics 

Defaults menu. Otherwise, RTSYS will automatically choose the scale to fit the 

available graphics.  If user specified scaling truncates the data a warning message will 

appear and the histogram will not be displayed.  User specified scaling is useful so that 

direct comparisons can be made between figures.   

Once the Ex-Gaussian distribution has been fit in the Analysis menu, and the 

resulting statistics files are available, a plot of the best fitting Ex-Gaussian distribution 

can be superimposed on either frequency or probability density histograms.  Note that 
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you must make sure that ordered and statistics files correspond to obtain correct 

results! 

You can also perform censoring in the Graphics menu using the Graphical Censor 

option.  Unlike censoring in the Analysis menu, graphical censoring creates a new copy 

of the ordered file (with extension ".cns" in multifile mode).  For each cell, histograms 

and lists of fast and slow RTs are displayed and you will be asked to supply a fast and 

slow RT censoring criterion.  The histogram is then re-displayed with the censored 

data removed and the cycle may be repeated as required.  Viewing the histogram gives 

a sense of the scale of the RT distribution and can be particularly useful for  removing 

outlying RTs due to recording errors. 

There are no direct facilities for exporting figures (e.g. the Windows clipboard is 

not supported), although some memory resident applications are available which 

directly dump a graphics screen to the printer.  Fortunately, many other applications 

allow you to plot a histogram using the contents of an ordered file.  However, it may 

not be easy to plot the Ex-Gaussian density based on the fitted parameter values. To 

circumvent this problem, RTSYS can save ordered files containing the value of the Ex-

Gaussian density corresponding to each RT observation. The saved file is identical to 

an ordered file except that each RT value is followed by a tab character and the 

corresponding Ex-Gaussian value. The two columns of RT and Ex-Gaussian values can 

be used in a graphics package to plot the Ex-Gaussian function.  It is also difficult to 

plot a vincent histogram.  RTSYS allows you to save file of coordinates for the corners 

of the vincent histogram  The file of tab delimited coordinates can then be used to plot 

the vincent probability histogram with a graphics package.   
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Note that appropriate Turbo Pascal font files (*.chr) and graphics driver files 

(*.bgi) must be resident in the RTSYS home directory if you invoke any of the options 

using graphics.  These files should be automatically copied during installation.  

Viewing Statistics 

The contents of statistics files can be  viewed on the screen, printed, or saved in 

an ascii file.  The output destination is determined by a default of the View Statistics 

menu.  In multifile mode averages across statistics from the same cell in different files 

are calculated.  The output format (including number of columns, decimal places, and 

missing value character, and delimiter for output to file) can be controlled from the 

View Statistics Defaults menu. 

Files appropriate for inferential statistical analysis can be generated in multifile 

mode.  The ascii file produced, called a parameter file, is a listing of values of a 

statistic for each cell for each subject.  The order of subjects (files) is determined by 

the holding file, usually with one subject's statistics per line.  Within subjects statistics 

are listed within a line, with cell order determined by the design file, and values 

separated by either a space or tab delimiter.  

Multifile operations in the View Statistics Menu can be slow with large factorial 

designs due to disk access time.  Greater speed can be obtained using the Multifile 

Speed default.  Usually RTSYS resets a statistics file and searches from the beginning 

for each design cell.  This allows the order of cell output to differ from the order of 

storage, and for different storage orders across different statistics files.  However, 

when the Multifile Speed: Fast (No Match) Default is selected, all statistics files are 
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assumed store cells in the same order as the design file.  Hence, statistics files do not 

have to be reset for each cell, resulting in a faster operation.   

Hardware and Installation 

RTSYS is distributed on a single 5.25" or 3.5" floppy disk.  It can be installed to a 

hard disk by typing a:\install from the DOS prompt or using  run a:\install in the 

Windows Program or File Manager.  RTSYS will be installed in the directory c:\rtsys, 

and example data will be stored in the directory c:\rtsys\testdat. The rt.bat file 

contained in c:\rtsys should be copied into a directory in you system path (e.g. c:\dos) 

so that you may invoke RTSYS from any directory.  From Windows either make a 

program item which executes c:\rtsys\rtsys.exe with the working directory c:\rtsys or 

choose run rt from the Windows file manager.  The latter method has the advantage that 

the File Manager working directory will be passed to RTSYS's Default Path.  In this 

way you can avoid having to type in the path to your data directory.  Under DOS, you 

will be automatically be moved to the directory specified in your  Default Path when 

you exit RTSYS.  Hence, using the rt.bat file under DOS, you can move in and out of 

RTSYS without having to leave the directory containing your data. You may put 

RTSYS in a directory other than c:\rtsys if you wish.  Only the rt.bat file and/or the 

program item directories need be changed. 

RTSYS was originally designed for use with slower (e.g. XT or AT) DOS 

machines. The range of DOS functions available in RTSYS allows single task usage on 

a non-windows DOS machine.  Because distribution fitting can be time consuming on 

slow hardware, RTSYS was designed for robust performance with overnight runs on 

large data sets.  With faster machines (e.g. 486) fitting is relatively rapid.  However, 
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disk IO with complex designs may still be a bottleneck as RTSYS hold information for 

only one design cell at a time in RAM to avoid exceeding the 64K data segment limit.  

If extra memory is available, a working directory on a RAM disk greatly speeds file 

manipulation,  especially for large factorial designs.  RTSYS 1.0 is configured with a 

maximum of 300 design cells and 2500 observations per cell.  If you routinely work 

with either more cells or more observations per cell, recompiled versions are 

available on request.  However, the two settings trade off, so exceeding both settings is 

not possible.  

Flexible parameter file formatting means that RTSYS works easily with most 

applications.  Tab delimited parameter files can be read into an ascii editor (such as 

the Notepad) and cut and pasted through the Windows clipboard to most spreadsheets.  

I routinely use RTSYS in conjunction with spredsheets in Minitab 9.2 and 10.0 and 

Word 2.0 and 6.0.  

   Future Directions and Availability 

The area of density estimation has undergone significant growth in recent years.  

Many of the techniques developed are beginning to emerge from the statistical research 

journals and find practical application.  Traditional parametric model based 

approaches, such as maximum likelihood estimation of the Ex-Gaussian, are being 

supplemented by nonparametric techniques which make less assumptions about the 

data.  For example, Silverman (1986) reviews kernel based methods which produce 

smoothed estimates of density.  Kernel methods use local, weighted averaging and are 

particularly suited for graphical display (the traditional histogram is actually a type of 

kernel estimate using a rather non-optimal rectangular kernel applied to disjoint 
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ranges).  Tarter and Lock (1993) review another approach, Fourier analysis, and its 

relationship to kernel techniques.  They point out that Fourier methods have an 

advantage over traditional techniques which use distributions based on elementary 

functions (such as sin(kx), xk, and ekx) as they use a generalised representation, 

capable of representing any reasonably well behaved function.  Greater generality 

allows  less assumptions to be made about the data.   

It should not be inferred that "nonparametric" techniques require no assumptions.  

Both Fourier and kernel methods require specification of the smoothness of the density 

estimate, a restriction on the complexity of the density akin to the Ockham's Razor 

heuristic successfully applied in most branches of science.  In the Fourier approach, 

smoothness is determined by the shape of a window on the frequency spectrum.  In the 

kernel approach it is usually determined by a parameter controlling the width of the 

kernel.  However, these assumptions are preferable to stronger assumptions made by 

traditional "parametric" approaches, unless, of course, the parametric assumptions are 

true.  

In the future it is hoped that a selection of these new techniques suitable for RT 

data will be implemented in RTSYS.  In particular, the Adaptive Epanechnikov Kernel 

seems suited to estimation of RT densities with long tails.  As each RT is paired with a 

density estimate, results of the analysis can be stored as an addition to an ordered file 

in the same way that Ex-Gaussian density estimates can be stored in an ordered file.  

Appropriately chosen kernel estimates are superior to histograms as estimates of 

density.  Hence, the graphics options can be extended to plot the kernel density 

estimate, allowing visual checking of the parametric estimate in different regions (e.g. 
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does a parametric tail estimate overestimate or underestimate the tail density).  

Nonparametric density estimates may also be useful in recovering estimates of the 

mode, by examining the derivative of the density estimate, and the median, mean and 

especially higher order central moments, through integration of the density.  Further 

investigation is required to determine the usefulness of these technique.    

Accurate nonparametric density estimation is also important for determining the 

hazard function.  Luce (1986) suggested that the tail of the hazard function is useful in 

discriminating between parametric models with similar densities.  The  Adaptive 

Epanechnikov Kernel has been used for hazard function estimation of empirical  

(Smith, in press) and simulation (Heathcote,  1995b) data.  However, Van Zandt and 

Ratcliff (1993) point out that hazard function estimation is sensitive to contamination 

from outliers and mixtures in general, especially in the critical tail region (see also 

Heathcote, 1995a).  Detection and modelling of mixtures is a difficult problem, except 

in extreme cases resulting in clear multimodal densities (e.g. Figure 6b).  Tarter and 

Lock's (1993, Chapter 5) Fourier approach shows some promise with this problem, but 

further investigation is necessary to determine if it is worthwhile implementing in 

RTSYS.   

As previously suggested, it is hoped that future versions of RTSYS will implement 

maximum likelihood fitting of a range of three parameter distributions including the 

displaced Gamma, Lognormal, Inverse Gaussian and Weibull.  As reviewed by 

Heathcote (1994, see also Luce, 1986; Ulrich & Miller, 1993) each distribution can be 

motivated by plausible psychological models, so selection of the best fitting 

distribution may stimulate the investigators intuition about the mechanisms underlying 
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RT in their paradigm.  Significance of differences in fit can be tested with likelihood 

ratio tests.  A potential extension involves fitting four parameter models such as the 

convolution of a normal and gamma distributions (Link, 1968) or the convolution of the 

normal and inverse gaussian distributions (Heath and Willcox, 1990).  The convolved 

normal component may be useful in accounting for additive measurement noise 

extrinsic to the stochastic dynamics of the psychological process of interest (Heathcote, 

1995a).  Likelihood ratio test can be used to determine if the extra parameter 

significantly improves fits.   

Fitting of parametric distributions may be improved by using the method of 

scoring.  The method of scoring replaces the raw matrix of second partial derivatives 

of log likelihood used in fitting algorithms such as Newton-Raphson (e.g. Dobson, 

1983, p. 30) and Marquardt-Levenberg with its expected value under the model .  

Further investigation is required to determine whether the method of scoring speeds 

fitting, especially with more sophisticated search algorithms such as Marquardt-

Levenberg.  An added advantage of the method of scoring is that the asymptotic 

variance-co variance matrix of the parameters is equal to minus the expected second 

derivative matrix at the maximum likelihood estimate (also called the Information 

matrix) .  Hence, the method of scoring provides estimates of parameter standard errors 

which allow inferential comparison of individual subject and vincentized distribution 

parameters. 

One criticism of likelihood ratio tests and standard error estimates given by the 

Information matrix is that they rely on large sample results.  With smaller samples they 

may, therefore, be misleading.  A recently developed solution is to use resampling and 
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jackknife procedures to estimate standard errors and confidence intervals (e.g. Efron & 

Tibshirani, 1993).  It is hoped that future versions of RTSYS will implement automatic 

estimation of these quantities.  As described in the section on vincetising, the present 

version of can be used for resampling with some preparation of data sets external to 

RTSYS.  Given the computational demands of this approach, efficient fitting becomes 

an even more pressing issue, reinforcing the need to investigate and implement 

approaches such as the method of scoring.  A parametric study using real data and 

simulated data to investigate the difference between resampled and asymptotic standard 

error estimates would also be of interest.   

In order to facilitate the reader's understanding of the Ex-Gaussian distribution, the 

Appendix contains Mathematica code for performing the convolution (Equation 4), 

plotting pdfs (Figure 2), sampling from the Ex-Gaussian, and calculating and plotting 

likelihood surfaces (Figure 3).  Similar graphics can be generated for other 

distributions defined in the Mathematica ContinuousDistributions package with minor 

alterations to the Mathematica code supplied.     

Copies of RTSYS, including a hardcopy of the manual, can be obtained by sending 

an international money order for US$25 (cheques drawn on non-Australian banks are 

expensive to cash, if you wish to send such a cheque please send US$30) or A$ 20 for 

orders within Australia.  While many of the improvements suggested above will be 

implemented in pursuit of research issues, distribution of documented, robust, and user-

friendly versions is time consuming and depends on the interest of members of the 

psychological research community.  Please send bug reports, suggested improvements, 
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and information on the use of RTSYS in research and teaching projects to 

rtsys@baal.newcastle.edu.au.     
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APPENDIX 

This appendix describes code used to perform the Ex-Gaussian convolution and 

produce Figures 2 and 3 using Mathematica Version 2.2.1 for Microsoft Windows on a 

25 MHz 486SL.  In order to access predefined functions for statistical distributions you 

must load the standard mathematica package ContinuousDistributions: 

 <<Statistics`ContinuousDistributions` 

Using this code as a template you can explore the properties of the Ex-Gaussian 

distribution (and other standard distributions defined in ContinuousDistributions).   

To define the Ex-Gaussian pdf you can either type in the function given in the text:  

 exgaus[x_,m_,s_,t_] := Exp[(s^2/(2*t^2))- 

                         ((x-m)/t)]*(t*(2*Pi)^0.5)^-1* 

                         Integrate[Exp[-y^2/2], 

                         {y,-Infinity,(((x-m)/s)-(s/t))}] 

or directly convolve the component normal and exponential distributions defined in the 

package ContinuousDistributions.   

pexg[m_,s_,t_,x_] :=                                                         

       Integrate[PDF[ExponentialDistribution[(1/t)],z]* 

       PDF[NormalDistribution[m,s],(x-z)],{z,0,Infinity}] 

Note that predefined exponential distribution parameter, b, is the inverse of τ.  Hence 

the parameter t of the function pexg is entered in the exponential density as 1/t . The 

integration is performed over values where the exponential has non-zero probability 

density ([0,∞]).  The integral in the output of both versions of the Ex-Gaussian density 

is expressed in terms of the error function (Erf), which can be efficiently approximated 

numerically.   
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Figure 2 was produced by plotting the predefined normal and exponential  

densities and the Ex-Gaussian density defined above:  

 Plot[PDF[NormalDistribution[500,50],x],{x,300,700}, 

     PlotRange->{0,0.01},PlotStyle->AbsoluteThickness[1]] 

 Plot[PDF[ExponentialDistribution[0.01],x],{x,1,500}, 

     PlotRange->{0,0.01},PlotStyle->AbsoluteThickness[1]] 

 Plot[pexg[500,50,100,x],{x,300,1000}, 

     PlotStyle->AbsoluteThickness[1]] 

Samples from the Ex-Gaussian were obtained as the sum of samples from the normal 

and exponential distributions:   

 randexg[m_,s_,t_]:= Random[NormalDistribution[m,s]] + 

                     Random[ExponentialDistribution[1/t]] 

The sample of ten values was obtained with the following commands (note that this 

command will produce different values each time it is invoked):   

 sample = Table[randexg[500,50,100],{i,10}] 

The Ex-Gaussian likelihood function was obtained by summing minus the natural log of 

the Ex-Gaussian density over the set of ten sample values: 

ll[m_,s_,t_,rtset_] := Apply[Plus,Log[pexg[m,s,t,rtset]]] 

Plots of the likelihood function in the neighbourhood of the sample generating function's 

parameters were obtained with the following commands.  Note that the plots were very 

computationally intensive, (e.g. several hours each for the three dimensional plots), so 

the two dimensional plots were saved and displayed using the Show function to allow 
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selection of the appropriate plot regions without recomputation.  Given the shape of the 

2D plot regions, the 3D plots were computed directly.  

 plotlltmu = Plot[ll[m,50,100,sample],{m,460,520}] 

 Show[plotlltmu,PlotRange -> {{460,520},{57,58}}, 

                  AxesOrigin -> {460,57}] 

 plotlltsig = Plot[ll[500,s,100,sample],{s,10,80}] 

 Show[plotlltsig,PlotRange -> {{10,80},{56,59}}, 

                   AxesOrigin -> {10,56}] 

 plotlltau = Plot[ll[500,50,t,sample],{t,40,120}] 

 Show[plotlltau,PlotRange -> {{40,120},{56.5,57.8}}, 

                  AxesOrigin -> {40,56.5}] 

 Plot3D[ll[500,s,t,sample],{s,10,80},{t,40,120}] 

 Plot3D[ll[m,50,t,sample],{t,40,120},{m,450,550}] 

 Plot3D[ll[m,s,100,sample],{s,10,80},{m,450,550}] 
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FOOTNOTES 
1 When fitting fails the barrier will usually cause search to converge to a value near too 

it (i.e. σ or τ ≈ Mean/200).  RTSYS interprets any converged value of σ  or τ less than 

twice the barrier (Mean/100) as indicating a failure and sets all Ex-Gaussian 

parameters to the missing value.  Not all failed calls to the log likelihood function 

occur due to zero or negative value of σ  or τ, they may also occur  for evaluations of 

the Φ(x) approximation when |x| > 7, or numerical evaluation of the integral on the left 

of Equation 5 is ≤ 0 or the integral on the right of Equation 5 is ≥ 1.  When such failures 

occur minus log likelihood is also set to a very large barrier value.  Fitting, however, is 

continued as excursions into these regions may occur on the way to an adequate fit.  

Numerical problems are reported in both interactive and normal fitting modes so that 

suspect fits containing many numerical problems may be identified.  When performing 

long fitting runs, the user is advised to echo fitting feedback to the printer so that 

suspect fits containing many numerical evaluation problems may be identified.   

 

2 Unfortunately the integrals in Equation 5 do not have closed form solutions or 

approximations and hence must be evaluated with computationally expensive numerical 

integration.  Fortunately, the  integration has to be performed only twice for each 

evaluation of L as the result does not vary with the value of each RT.  The integration is 

performed using Press et al's. (1986, p.116-118) Romberg integration on an open 

interval from 0 to a or b with an absolute accuracy of 1 in a 106.  A lower limit of 0 is 

used because computation is faster for a definite integral and little probability density 

occurs for RT< 0 in RT data.  Integration is performed using the midpnt function and 
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JMAX is set to 10 rather than the recommended 15 to save time on slowly converging 

integrals which occur when estimates of σ  and τ are very small.  If integration fails 

(JMAX is exceeded), -ln(L) is set to a large value.   
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Table 1.  

Method of moments and maximum likelihood estimates (assuming an Ex-Gaussian 

distribution) of the first three central moments and Ex-Gaussian parameters for an 

example data set.    

 
 
 $µ1  $µ2  $µ3

3  $µ  $σ  $τ  
Method of 
Moments 

569.5 87.7 102.9 487.8 32.0 81.7 

Maximum 
Likelihood 

569.5 77.5 92.9 495.8 24.0 73.7 
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FIGURE CAPTIONS 

Figure 1.  A histogram of  RT data exhibiting a skewed distribution and potential 

outliers. 

Figure 2.  Probability density functions for (a) a normal distribution with µ = 500, σ = 

50, (b) an exponential distribution with τ = 100, and (c) the resulting Ex-Gaussian 

distribution.  Parameter values are typical of those observed by Heathcote, Popiel, & 

Mewhort (1990).  Units: milliseconds. 

Figure 3.  Cross sections of minus natural log likelihood surfaces, where likelihood is 

on the vertical axis, with Ex-Gaussian parameters (µ,σ,τ) held constant at (500,50,100) 

except for (a) µ = 460-520, (b) σ  = 10-80, (c) τ = 40-120, (d)  σ = 10-80 and τ = 40-

120, (e) µ = 450-540 and τ = 40-120 , (f) µ = 450-540 and σ = 10-80. 

Figure 4. A two dimensional likelihood surface with a local minimum and a global 

minimum.   

Figure 5.  The histogram of RT frequency given in Figure 1 with the best fitting Ex-

Gaussian function (solid line) superimposed. 

Figure 6. (a) Two normal distributions with means 0 and 3 and variances 1 and 4  

respectively.  (b) The distribution resulting from pooling or mixing the two normal 

distributions.  (c) The distribution resulting from averaging the component parameters 

(mean = 1.5, variance = 2.5) 

Figure 7.  A vincent histogram with 20 quantiles.  Each rectangle has an area of 1/20 

and there are 19 rectangles.   
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