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Fitting Wald Distributions 

Abstract 

Schwarz (2001, 2002) proposed the Ex-Wald distribution, obtained from the convolution 

of Wald and Exponential random variables, as a model of simple and go/no-go response 

time. This paper provides functions for the S-PLUS package that produce maximum 

likelihood estimates of the parameters of the Ex-Wald, as well as for the shifted Wald and 

Ex-Gaussian distributions. A Monte Carlo study examined the efficiency and bias of 

parameter estimates. Results indicated that samples of at least 400 are necessary to obtain 

adequate estimates of the Ex-Wald, and that for some parameter ranges much larger 

samples may be required. For shifted Wald estimation smaller samples of around 100 

were adequate, at least when fits identified by the software as having an ill-conditioned 

maximum were excluded. The use of all functions is illustrated using data from Schwarz 

(2001). The S-PLUS functions, and Schwarz’s data, may be downloaded from the 

Psychonomic Society’s web archive, http://www.psychonomic.org/ARCHIVE/.  
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Fitting Wald Distributions 

 Schwarz (2001) proposed the Ex-Wald distribution, obtained from the 

convolution of Wald and Exponential random variables, as a model of Response Time 

(RT) distribution, particularly in simple RT and go/no-go choice RT tasks. This paper 

provides functions for the powerful commercially available S-PLUS package that 

produce maximum likelihood (ML) estimates (Edwards, 1972) of the parameters of the 

Wald and Ex-Wald distribution, and another distribution based on the Wald, the shifted 

Wald. Sufficient mathematical detail is also given in this paper to allow implementation 

in another suitable package. The efficiency and bias of the estimates obtained for the 

Wald distributions are examined in a Monte Carlo study, and the use of the functions 

illustrated using data from Schwarz’s (2001) participant A.  

Ex-Wald Convolution Components 

 Convolution provides the distribution of the sum of independent random 

variables, and so is useful in modelling response times that result from the sum of stages 

with independent and random completion times. Schwarz (2001) modelled decision time 

with a Wald random variable (W > 0) and non-decision time with an Exponential random 

variable (X ≥ 0), with RT being the sum of these two times: RT=W⊕X.  

An exponential random variable X has a density ( ) tx
tE etxf −= 1|  and cumulative 

density ( ) tx
E etxF −−= 1| , where t is the mean (κ1) of X1. The exponential distribution 

has variance, κ2=t2 and third central moment (i.e., ( ) ( )∫ − dxxfx 3
1κ , a measure of skew), 

κ3=2t3. The exponential density (dexp) and cumulative density (pexp) functions are built-

in features of S-PLUS, as is a function that generates exponentially distributed samples 

(rexp). For all of the distributions discussed here density, cumulative density and random 
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Fitting Wald Distributions 

functions are provided. Function definitions are given in Table 1, with function names 

given in italics (e.g., dwald) in the body of this paper. 

------------------------------ 
Insert Table 1 about here 
------------------------------ 

The Wald distribution can be derived from a sequential sampling evidence accrual 

model of the decision process in simple and go/no-go RT, as it is the distribution of first 

passage times (W) through a level a > 0 of a space and time homogenous Wiener 

diffusion process, with an initial value of zero, drift m > 0 and variance σ2 > 0 (see Luce, 

1986 for a discussion of sequential sampling models). In the RT context, a is a response 

threshold and m is the mean rate of evidence accrual. Without loss of generality, one of 

the Wald parameters can be fixed, so we use the conventional normalization σ = 1 and 

drop this parameter in the following.   

The Wald distribution has a density (dwald): 
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The Wald cumulative density function cannot be expressed in closed form, but can be 

expressed in terms of the cumulative normal distribution function, Φ (built-in function 

pnorm in S-PLUS), which has efficient numerical approximations: 
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Schwarz (2001) notes that the second summand in (2) can cause numerical errors 

when the arguments to the exponential and Φ functions are large. The pwald function 

avoids numerical errors in this case using Derenzo’s (1977) approximation to Φ, followed 

by algebraic simplification of the second summand, as suggested by Schwarz2. An S-
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Fitting Wald Distributions 

PLUS function that provides random samples from a different parameterisation of the 

Wald distribution is available on the web3. The function rwald is based on this function, 

but uses the parameterisation in Equations 1 and 2.  

The Wald distribution has mean a/m, variance, κ2 = a/m3 and third central 

moment, κ3 = 3a/m5. It is evident from the moments that a is a scale parameter, and that 

m affects all moments. The leading edge of the Wald distribution is fixed at zero (this is 

also true of the Ex-Wald), which makes it unrealistic as an exact model of RT, due to the 

minimum times required for post-decision processes. In simple RT, for example, Smith 

(1995) assumed a substantial shift (relative to overall RT) of around 66ms. This defect 

can be corrected by adding a parameter, s, which shifts the leading edge and causes the 

mean to become s + a/m, but leaves the other central moments unaffected. The Wald 

functions in Table 1 include the shift parameter, which is set to zero by default. Equations 

1 and 2 can be parameterised to include the shift by substituting (w – s) for w. For the 

random function, the shift parameter is added to the output. 

The shift parameter provides an alternative way of modelling post-decision time, 

as a constant rather than as exponentially distributed random variable in Schwarz’s 

(2001) Ex-Wald model. A constant for post-decision time is also unrealistic as an exact 

model of RT, as post-decision times are variable. Smith (1995) reviewed evidence that 

variability in post-decision times had a standard deviation of at most 14ms, and likely 

substantially less. For Wolf’s (2001) participant A data analysed below this means that 

less than 5% of the variability in RT is due to post-decision variability. Hence, a constant 

non-decision time may provide a good approximation; it was the approximation adopted 
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Fitting Wald Distributions 

by Smith, and the same assumption is commonly made in fitting sequential sampling 

evidence accrual models of choice RT (e.g., Ratcliff & Rouder, 1998).     

The Ex-Wald Distribution 

 Schwarz (2001) derives the density (function dexw) of an Ex-Wald random 

variable (R) for the case where m2 ≥2/t. Defining tmk 22 −= : 

( ) ( )( ) ( akrFe
t

tamrf W
kmatr

EW ,|1,,| −−−= )

)

   (3) 

Schwarz states that this case is of most interest in applications to RT. However, in 

practice, it is useful not to have to assume this bound, so the functions given here also 

work when m2< 2/t.  

Schwarz (2002) examines the case where m2< 2/t, which requires complex 

function theory. In this case, the Ex-Wald density involves the real part of the complex 

function, , where z=x+iy is a complex number with real part x 

and imaginary part y, and  is the complex error function. The real part of w(z) 

(function rew) can be derived from the real and imaginary parts of  erf(z)=u(x,y)+i v(x,y). 

Schwarz favours this method as series approximations exist for u(x,y) and v(x,y) that 

converge quickly for all x, y (Abramowitz & Stegun, 1965, 7.1.29, function uandv

( ) ( )( izerfezw z −−= − 1
2

( )zerf

4). 

Defining 22' mtk −= : 

( ) ( ) ( )( ) ( )[ ]riarkwe
t
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For both cases, the cumulative density (function pexw) can be derived from a 

general result for convolutions involving exponential random variables (e.g., Ashby & 
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Townsend, 1980), yielding an expression in terms of the Wald cumulative density and the 

Ex-Wald density:  

( ) ( ) ( )tamrftamrFtamrF EWWEW ,,|,|,,| ×−=   (4) 

Samples from the Ex-Wald distribution are obtained by summing samples from the Wald 

and Exponential distributions (function rexw). The Ex-Wald has mean t+a/m, variance, κ2 

= t2+a/m3 and third central moment, κ3 = 2t3+a/m5  

Maximum Likelihood Estimation 

 The log of the likelihood of a distribution f with parameter vector θ, given a data 

vector RT of length n, is:  

( ) (( )∑
=

=
n

i
iRTfl

1

|ln| θRTθ )   (5) 

Maximum likelihood parameter estimates are obtained by finding the maximum of 

Equation 5, or equivalently by minimising minus Equation 5 (functions negllwald, 

negllswald and negllexw for the Wald, Shifted Wald and Ex-Wald respectively).  

For Shifted Wald and Ex-Wald distributions, the minimum cannot be obtained 

analytically, but instead must be found by a search function. The search function is not 

guaranteed to find the minimum of the “objective” function (i.e., negllwald, negllswald or 

negllexw). A number of arguments to the search function must be appropriately set in 

order to gain good performance. These include bounds on the allowable parameter 

estimates, a starting point for the search, and ideally functions to calculate the derivatives 

of the objective function and the relative scales of each parameter.  
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Fitting Functions 

The functions fitwald and fitexw use the S-PLUS minimization function nlminb to 

obtain maximum likelihood estimates.  For example, typing: fit ← fitwald(rt) at the 

command prompt (note ←  is typed as a less than sign followed by a minus sign, and 

should be read as “gets”) in S-PLUS creates a list object called fit (any name may be 

used, fit will be used generically in the following to indicate the list object created by 

fitting). The fit object contains the estimated parameters for the Wald given a data vector, 

rt, as well as a number of other components. The components can be referenced using the 

syntax name$component. For example, fit$parameters is a vector of length 3 containing 

the estimated parameters in the order (m,a,s) for the shifted Wald and (m,a,t) for the Ex-

Wald.      

For both the Wald and Ex-Wald distribution all parameters are bounded below by 

zero5. For the Wald distribution the shift (s) parameter must be less than the minimum 

observed RT (min(RT)). A starting point for search can be supplied by the user as the 

start argument to the fitting functions. For example, fitwald(rt,start= c(0.2,70,100)) sets 

the starting point to m=0.2, a=70, and s=100. If no start argument is supplied the starting 

point is calculated automatically by the functions waldstpt or exwstpt.  Both functions 

estimate one parameter using a heuristic then solve for the other two parameters using the 

first two sample moments. Starting estimates based on the first three sample moments 

were found to perform poorly due to the high sampling variance of the third moment. For 

the Wald distribution the shift parameter is estimated by the heuristic s=p×min(RT), with 

p=0.9 by default. For the Ex-Wald distribution the exponential parameter is estimated by 

t=p×SD(RT), where SD is the sample standard deviation and p=0.5 by default. The 
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default values of p may be altered by specifying a single number as the start argument. 

For example, fitwald(rt, start=waldstpt(rt=rt,p=0.95)) sets p to 0.95. 

The nlminb search function is faster and converges more reliably if the gradient 

(first derivatives) vector and Hessian (second derivatives) matrix of the likelihood 

function are specified. Approximate standard errors and correlations among the parameter 

estimates can be obtained by inverting the Hessian (Bates & Watts, 1988). The gradient 

vector and Hessian matrix for minus the log likelihood are:  

( ) ( )( )∑
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∂
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∂
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For the Shifted Wald distribution the first and second derivatives of ln(fW) have 

straightforward analytic solutions, which are given in Table 2. The corresponding results 

for the Wald without a shift are obtained by setting s=0. Functions negllwald.gh and 

negllswald.gh calculate the gradient and Hessian for the Wald and Shifted Wald 

distribution respectively using these equations. Function fitwald calls these functions to 

aid fitting, and they are also used by function ser.nlminb, described in more detail below, 

to calculate approximate parameter standard errors and correlations.  For the Ex-Wald 

distribution, the gradient and Hessian are not so tractable. The nlminb function can still fit 

the Ex-Wald distribution using numerical finite differences, but it tends to be slower. 

------------------------------ 
Insert Table 2 about here 
------------------------------ 

Several conditions are used by nlminb to terminate search, as reported in 

fit$message. Normal termination occurs when the objective function decreases by only a 
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small proportion, by default max(10-10, .Machine$double.eps 2/3), where 

.Machine$double.eps is the double precision floating point tolerance of the computer on 

which S-PLUS is running. Achieving this criterion is reported as “Relative Function 

Convergence” by S-PLUS. Convergence can also occur when parameter estimates change 

by only a small amount between iterations of the search (.Machine$double.eps 1/2 by 

default), called “X Convergence”. Abnormal termination, indicating a failure of the 

minimization, occurs for a number of reasons, including exceeding a set number of 

objective function evaluations (200 by default) or search iterations (150 by default), or 

because the size of the finite differences used during search has become very small 

(100×.Machine$double.eps by default), called “False Convergence”.   

In the Monte Carlo study, False Convergence was a common problem with fits of 

the Ex-Wald, even when search was started at the true parameter values. Greatly 

improved performance in this regard was obtained by setting the relative scales of the 

different parameters to the inverse of the starting point estimate using the scale argument 

of nlminb. For example, for starting point (0.2, 70, 100), scale=(1/0.2,1/70, 1/100). The 

fitexw function uses this setting of scale by default, but this can be turned off using the 

argument scaleit=F. Scale does not need to be set for fitwald as it is calculated by default 

from the Hessian. More rarely, abnormal termination occurs because the function 

evaluation and search iteration limits are reached. This problem was avoided in the 

Monte Carlo study by doubling their default values in fitexw. All default values for 

nlminb can be changed using the S-PLUS function nlminb.control. 

The parameter variance-covariance matrix for the Ex-Wald, and hence 

approximate parameter standard errors and correlations, can be obtained by numerical 
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finite difference methods, using the function vcov.nlminb of the MASS library (Venables 

& Riply, 1999, the library is distributed with S-PLUS but must be loaded using the 

command library(MASS)). The function vcov.nlminb can also make use of analytic 

derivatives if they are supplied to nlminb. For convenience, all fitting functions call an 

augmented version of vcov.nlminb, called ser.nlminb, which outputs parameter 

correlations and standard errors and protects against numerical errors. It creates fit$se, a 

vector of length three containing the standard error estimates, in the same order as the 

fit$parameters. Similarly it creates, fit$cor, a vector of length three that contains the 

parameter correlations, in the order r(m,a), r(m,s), r(a,s) for the Wald and r(m,a), r(m,t), 

r(a,t) for the Ex-Wald. For some fits, ser.nlminb sets standard errors and correlations to 

missing (fit$se and fit$cor = (NA, NA, NA), where NA is the S-PLUS missing value 

symbol), either because the Hessian matrix cannot be inverted, because it is singular, or 

because variance estimates are negative.  

Monte Carlo Study 

A Monte Carlo study was performed with two aims: to refine the implementation 

of the S-PLUS functions so that they are numerically robust for small samples, and to 

determine the bias and efficiency of parameter estimates. A variety of parameters values 

were selected which span the range usually encountered in applications and also 

theoretically important cases, particularly for the Ex-Wald. Results for the shifted Wald 

are described first, followed by results for the Ex-Wald. 

Figure 1 shows the three Shifted Wald distributions investigated in the Monte 

Carlo study, and Table 3 supplies the corresponding parameters. Parameters were chosen 

so that the distributions were equated on location (mean=1000) and scale (SD=100), but 
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differed in skew. One thousand samples of sizes 40 to 120 were fit for each distribution. 

All shifted Wald fits in the Monte Carlo study used the analytic gradients and Hessian. 

Without them, some fits did not converge normally and estimates were sensitive to 

starting points, whereas in the Monte Carlo study all fits converged normally and 

produced identical parameter estimates for starting points generated by waldstpt  using p 

= 0.9, 0.95 and 0.99.   

------------------------------ 
Insert Table 3 about here 
------------------------------ 

As shown in Figure 1, for the Wald distributions examined here, skew was mainly 

determined by the left tail, with right tails having very similar shapes for all distributions. 

The longer left tail of distribution one caused the greatest problems with parameter 

estimates. Table 3 shows that Distribution 1 produced the greatest percentage of irregular 

fits (i.e., fits where the Hessian was either singular or produced negative parameter 

variance estimates). Irregular fits overestimated the m and a parameters, and 

underestimated the s parameter. The underestimates would have been much worse if s 

were not bounded below by zero.  

------------------------------ 
Insert Figure 1 about here 
------------------------------ 

Figure 2 shows the bias and efficiency of the parameter estimates as a function of 

sample size and distribution. Bias was measured by the mean deviation of the estimates 

from the true parameter values. Efficiency was measured by the standard deviation (SD) 

of the estimates. Bias decreases and efficiency increases with sample size, and as the 

distributions became more skewed. Much better estimates were obtained by removing 

irregular fits, resulting in bias that was relatively minor even for the smallest sample 
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sizes. However, parameter estimates were still quite variable for smaller sample sizes, 

particularly for the s and a parameters.  

------------------------------ 
Insert Figure 2 about here 
------------------------------ 

Figure 1 also shows the five Ex-Wald distributions investigated in the Monte 

Carlo study. Parameters, which are given in Table 4, were chosen to examine the effect of 

varying k2: Schwarz’s (2001) real solution applies for k2≥0, whereas solutions are 

complex for k2<0. Distribution 2 was chosen to be a reference with k2=0. Negative values 

of k2 were produced by decreasing m (Distribution 1) or t (Distribution 5). Positive values 

of k2 were produced by increasing m (Distribution 3) or t (Distribution 4). Where k2 was 

manipulated by changing m (Distributions 1 and 3), a was also altered to maintain a 

constant mean. For these parameters, the second and third central moments decreased as 

k2 increased when manipulated via m, whereas they increased when k2 was manipulated 

via t. Skew, as indicated by Fisher’s skewness measure, 23
23 µµγ = , always increased 

with k2.       

------------------------------ 
Insert Table 4 about here 
------------------------------ 

 One thousand fits were performed at each sample size in the Monte Carlo study of 

the Ex-Wald distribution.  These fits produced bimodal and in some cases multi-modal 

parameter distributions. Initially parameter sampling distributions were obtained for n = 

120 to 400. In order to check if sampling distributions become uni-modal for large 

sample sizes, sampling distributions were obtained for n=10000. For Distributions 3 and 

4, where the true value of k2>0, estimates of t were bimodal for n=400, but uni-modal and 

relatively symmetric for n=10000. Note that when the fitting algorithm was restricted to 
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searching parameter combinations where k2>0 the sampling distributions for n=400 were 

very similar to the unrestricted case, so bimodality was not due to allowing fits to sample 

the complex case.  

 For distributions where the true value of k2≤0, sampling distributions for m and t 

were not uni-modal even for n=10000. Restricting the fitting algorithm to search for 

parameter combinations where k2<0 did not help matters for Distributions 1 and 5, where 

the true value of k2<0, producing similarly shaped sampling distributions to the 

unrestricted case. Sampling distributions for the three cases were k2≤0 were obtained for 

n=50000. For Distribution 2, where the true value of k2=0, unimodality was not obtained 

even for n=50000. For Distribution 1, sampling distributions were fairly unimodal for 

n=50000, although a long right tail remained for the m parameter. For Distribution 5 

sampling distributions for m and t were trimodal for n=50000, with a sharp third peak 

appearing at the true parameter value.  

Fitting was also less tractable for the Ex-Wald than the Shifted Wald. Table 4 

shows that in many cases fits were irregular. In contrast to the Shifted Wald, excluding 

these fits did not reduce bias or increase efficiency. For Distributions 1 and 2, most fits 

were well-behaved for n=400. For the other distributions, a substantial proportion of fits 

had problems for n=400. These problems largely disappeared for Distributions 3 and 4, 

where the true value of k2>0, when n=10000. However, problems reappeared for 

Distribution 2 when n=10000, and both Distributions 2 and 5 still had a substantial 

proportion of irregular fits even for n=50000. Note that all Ex-Wald fits reported here 

used the true parameter values as the starting point for search. When starting values were 
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generated using the default heuristic in exwstpt similar results were obtained, but with a 

slightly increased percentage of irregular fits.  

Despite irregularity in fits and multi-modality in parameter estimate distributions, 

Figure 3 shows that bias decreased and efficiency increased with sample size for all 

distributions. However, overall performance was poor relative to results for the Shifted 

Wald, and for the t parameter in particular estimates remained variable even for the very 

large samples. Distribution 2 showed the greatest bias, and for smaller samples the bias 

for the t parameter was in the opposite direction to the other distributions. Distributions 1 

and 4 produced particularly variable estimates of t for smaller samples. Although 

variability decreased quickly with sample size for Distribution 4, the decrease was much 

slower for Distribution 1. 

------------------------------ 
Insert Figure 3 about here 
------------------------------ 

  The results of the Monte Carlo study indicate that maximum likelihood 

estimation in finite samples from the shifted Wald and Ex-Wald distributions does not 

always produce the uni-modal normally distributed parameter estimate distributions 

observed in regular cases, particularly in smaller samples and particularly for the Ex-

Wald. It is important to note that multi-modal parameter estimate distributions were not 

due to failures of search because of convergence to a local minimum. The same 

parameter estimates were obtained for a range of starting points, and profiles of the 

likelihood function (e.g., Figure 6) for particular samples had only one minimum. It was 

also not due to failures in the numerical approximations used here. Benchmarking against 

numerical integration found these approximations to be accurate, and slightly more 

accurate in some cases than Schwarz’s (2001) approximation (see Footnote 3).  
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Multi-modality in likelihood estimates is not unexpected theoretically; it occurs 

when distribution functions do not fulfil regularity conditions (Edwards, 1972). 

Evidently, likelihood estimation of the shifted Wald, and particularly the Ex-Wald, is 

irregular. However, Figures 3 and 4 display consistency, in that both the bias and 

standard deviation of parameter estimates decreased with sample size. Hence, estimation 

based on likelihood remains useful in practice, as long as sample sizes are sufficiently 

large. 

Example Application 

The application of the fitting functions is illustrated in this section using the data 

from participant A shown in Figure 3 of Schwarz (2001), and reproduced in Figure 4 

here. Schwarz also examined the fit of the Ex-Gaussian distribution to this data. As 

shown in Table 1, S-PLUS functions are supplied to fit the Ex-Gaussian, using similar 

notational conventions to the Wald and Ex-Wald functions. Analytic gradients are 

supplied by negllexggrad. Maximum likelihood estimation is regular for the Ex-Gaussian 

and gradients were sufficient for good performance. Heathcote’s (1996) Ex-Gaussian 

estimation program, RTSYS, can use analytic Hessians in fitting and performed similarly 

for this data. The function exgstpt estimates starting points using heuristics given in 

Heathcote, and usually performs well with the default values. 

------------------------------ 
Insert Figure 4 about here 
------------------------------ 

Schwarz’s (2001) data comes from a go/no-go paradigm, so the decision process 

might reasonably be modelled by a one barrier sequential sampling (Wiener) process, and 

hence a Wald distribution. Table 5 contains the parameter estimates for the Ex-Wald 

obtained from fitexw, and the estimated distribution functions are plotted as solid lines in 
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Figure 5. As predicted by the sequential sampling model, manipulation of the probability 

of a go trial (p=0.5 or 0.75) mainly effects the a (decision criterion) parameter, whereas 

manipulation of numerical distance (d=1 or 4) mainly effects the m (strength of evidence) 

parameter.  

------------------------------ 
Insert Table 5 about here 
------------------------------ 

The exponential component of the Ex-Wald models non-decision times, and 

corresponding parameter estimates (t) do not vary much across conditions, as expected. 

Estimates of the t parameter vary slightly from those reported by Schwarz (2001), 

especially in the p=.75, d=1 condition, where the fit at the minimum was so ill 

conditioned that the Hessian could not be inverted.  Some small differences are to be 

expected due to variation in the details of the numerical approximations and search 

algorithms used. Such numerical differences are magnified when the minimum of the 

objective function is ill defined, as appears to be the case for the p=.75, d=1 condition. 

Note also that the parameters found by fitexw are in the complex case (i.e., m2<2/t) 

examined by Schwarz (2002).  

------------------------------ 
Insert Figure 5 about here 
------------------------------ 

In order to explore the p=.75, d=1 case further, Figure 5 plots profiles of the 

objective function (negllexw) in the region of the solution by holding two parameters 

fixed at their estimated values and varying the third. The plots can be interpreted like a 

plot of sum-squared error in least squares regression, with smaller values of minus log-

likelihood, which is sometimes called the “deviance”, indicating a better fit.  Note that the 

deviance functions are smooth as changes in m and t cause a change from the real to 

 16



Fitting Wald Distributions 

complex solutions. The minimum is sharply defined as a function of m and fairly well 

defined for a, and in both cases the minium is approximately quadratic in shape, as 

assumed by the standard error and correlation estimates based on the Hessian. However, 

the minimum as a function of t is very poorly defined, and clearly non-quadratic as 

deviance rises dramatically as t approaches zero. Similar, although less marked, 

behaviour for t was found in the other conditions, and in these cases the estimates of t are 

within two standard errors of zero, indicating that there is no strong evidence for an 

exponential component.  

 Table 6 contains the results of fits of the Shifted Wald using fitwald. The deviance 

values indicate that fit is very slightly better than for the Ex-Wald and the Hessian is well 

behaved for all conditions. However, standard errors are quite large, especially for the 

estimated shift (s) parameters, which fall within one standard error of zero. Hence, there 

is no evidence that the shift parameter is non-zero. Figure 8 plots the best fitting Shifted 

Wald densities as dashed lines; in most cases they are indistinguishable from the Ex-

Wald densities, except for a very slight negative shift on the left of the peak.  

------------------------------ 
Insert Table 6 about here 
------------------------------ 

As standard errors for both the Shifted Wald and Ex-Wald models provide little 

evidence for a reliable non-decision (s or t) component, the simpler two-parameter Wald 

distribution, with shift fixed at zero, was fit. The resulting deviance values (Table 7) are 

only slightly larger than for the three-parameter distributions. As the Wald distribution is 

“nested” (i.e., is a special case of) the Shifted Wald and Ex-Wald distributions, the 

reliability of the reduction in deviance can be determined using a likelihood ratio test. 

Annotating the deviance for the nested (Wald) model as dn, and the deviance of the full 
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(Shifted Wald or Ex-Wald) model as df, the likelihood ratio statistic is λ=2(dn–df). The λ 

statistic is approximately distributed as χ2 with degrees of freedom equal to the difference 

in the number of parameters for the full and nested model: df=3–2=1.   

------------------------------ 
Insert Table 7 about here 
------------------------------ 

Table 7 shows that no reliable differences in deviance were found in any 

condition6. Hence, the two-parameter Wald distribution provides the most parsimonious 

model of this data. Further, its parameter estimates follow the pattern predicted by the 

sequential sampling model and have much smaller standard errors than in either of the 

three-parameter models. The estimated Wald densities are plotted in Figure 4 as solid 

lines. They are so close to the estimated Ex-Wald densities, which are also plotted as 

solid lines, that no difference is discernable. It appears that the small estimated vales of t 

have a negligible effect on the shape of the Ex-Wald.  

The results of χ2 tests based on the histograms in Figure 4 also indicate little 

difference in fit between the three distributions. Summing across conditions for the Ex-

Wald χ2(29) = 45.5, p = 0.026, for the shifted Wald χ2(30) = 46.6, p = 0.03, and for the 

Wald, χ2(29) = 45.5, p = 0.03. The χ2 statistic for individual fits was calculated by all 

fitting functions using a similar algorithm (chisq) to Schwarz (2001) and stored in 

fit$chisq. The Ex-Wald results are larger than reported by Schwarz (presumably due to 

numerical estimation differences and possibly differences in the aggregation of bins with 

an expected frequency of less than 5) and achieve significance at the 0.05 level. Note that 

interpretation of these χ2 statistics as measures of absolute fit is not recommended, both 

because their sampling distribution is often very poorly approximated by the χ2 
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distribution, and because they can vary depending on the choice of bin location and width 

(25ms in this case, following Schwarz).  

 Table 8 contains the results of fitting the data with the Ex-Gaussian distribution. 

In agreement with Schwarz’s (2001) results, the Ex-Gaussian clearly fits worse than the 

Wald distributions, both in terms of deviance, and the total histogram based χ2 over 

conditions: χ2(31) = 57.9, p = .002. As shown in Figure 4, which plots the estimated Ex-

Gaussian densities as dotted lines, they have heavier left tails and sharper peaks than the 

Wald distributions, but similar right tails. The Ex-Gaussian parameter estimates were, 

however, quite sharply defined, as indicated by small standard errors.  

------------------------------ 
Insert Table 8 about here 
------------------------------ 

The Ex-Gaussian parameter estimates were less correlated than was the case for 

any of the Wald distributions. Substantial correlation among parameter estimates can be 

problematic for fitting, but does not necessarily indicate that the model is inadequate. 

High correlations may arise because of the parameterisation adopted (“parameter effects 

curvature”, see Bates & Watts, 1988) and alternative parameterisations may reduce 

correlations. However, limited experimentation with different parameterisations of the 

Wald distribution, including the mean and dispersion parameterisation adopted by the 

invgauss distribution functions described in Footnote 4, did not result in any 

improvement, so the sequential sampling parameterisation was retained because of 

interpretability.      
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Discussion 

This paper provides S-PLUS functions to simulate and fit the Wald, Ex-Wald, 

shifted Wald and Ex-Gaussian distributions. The Ex-Wald and shifted Wald functions 

were extensively tested in a Monte Carlo simulation, which allowed automatic starting 

point estimates and details of the fitting algorithm to be fine-tuned in order to achieve 

robust numerical performance even with relatively small samples. The Ex-Wald functions 

cover both the restricted parameter case considered by Schwarz (2001) and the 

complementary case considered by Schwarz (2002), and so provide a complete 

estimation solution. 

The Monte Carlo study revealed that estimation of the shifted Wald and Ex-Wald 

distributions can be irregular, in the sense that parameter estimate distributions can be 

multi-modal, particularly for smaller sample sizes and particularly for the Ex-Wald 

distribution. However, for both distributions, bias decreased and efficiency increased with 

sample size, indicating that estimation was consistent, at least for the parameter values 

examined. Hence, likelihood estimation for these distributions remains useful despite the 

irregularity. However, caution should be exercised with smaller samples and even with 

larger samples when the complex case of the Ex-Wald applies. The S-PLUS software can 

then be used to investigate potentially problematic cases with the same Monte Carlo 

methods reported here. 

The Ex-Wald distribution required larger samples to obtain the same level of bias 

and efficiency as the shifted Wald. It is difficult to provide global recommendations for 

the minimum sample size required in applications, as estimation performance varies 

depending on the true parameter values. However, overall the Monte Carlo results 
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suggest a minimum sample size of at least 100 for the shifted Wald and 400 or more for 

the Ex-Wald. For samples of the minimum or greater size, useful Hessian based 

parameter standard error and correlation estimates are usually obtained for the shifted 

Wald, and for the Ex-Wald, al least in the real case. However, caution should be 

exercised in interpreting Hessian based estimates, as they assume estimation is regular. 

Likelihood ratio testing, as described in the example application section, can be used to 

provide more reliable inference. 

The example application confirmed Schwarz’s (2001) finding that Wald 

distributions provide a clearly superior model of go/no-go RT data compared to the Ex-

Gaussian. In particular, the Wald distributions both fit better and provided theoretically 

meaningful parameter estimates. The shifted Wald fit this data at least as well as the Ex-

Wald, indicating that it can also provide a viable approximation to simple and go/no-go 

RT distribution. The Ex-Wald and shifted Wald represent two extreme approaches to 

dealing with non-decision time; the shifted Wald assumes non-decision time is always 

greater than zero but is not variable, whereas the Ex-Wald assumes that non-decision 

time is usually close to zero, but is variable.  

Both approaches are approximations; in reality non-decision time must both have 

a lower bound greater than zero and be variable. Modelling both aspects of non-decision 

time would at the very least require one extra parameter, such as the shifted rectangular 

distribution used by Ratcliff and Tuerlinckx (2002). The greater complexity of this 

approach increases estimation difficulties, so both the shifted Wald and Ex-Wald remain 

useful as approximations that at least in some cases are likely sufficiently accurate.  
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Schwarz (2001) improved the efficiency of estimation by making theoretically 

motivated assumptions about constancy of parameters across conditions. This represents 

a superior approach compared to separate estimation of distributions for each condition, 

and underlines the advantages of using RT distribution models that are theoretically 

motivated. Likely the greater power of this approach would have led to non-decision time 

estimates significantly greater than zero, in contrast to the results obtained in the example 

application here. This application was given mainly to illustrate use of the S-PLUS 

functions, and in practice Schwarz’s approach should be used where possible.  

In order to fit models that fix parameters across conditions the functions provided 

here must be extended. The powerful S-PLUS environment makes this extension 

relatively straightforward, but requires some knowledge of the S-PLUS language. In 

particular a new objective function must be created with the appropriate parameterisation 

and ability to identify data from different conditions. The results of estimation on 

individual conditions can be used to obtain starting points for the estimation of such 

models, facilitating search, which must be performed in a higher dimensional parameter 

space. 
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Materials available from the Psychonomic Society web archive 

The following materials associated with this article are retrievable from the 

Psychonomics Society web archive, http://www.psychonomic.org/ARCHIVE/. 

FILE: rtfit.scc 

DESCRIPTION: This script file contains the S-PLUS functions described in Heathcote 

(2004), as a 17k ASCII file. Once the script file is saved its functions must be compiled 

(e.g., source(“rtfit.ssc”)). These functions work with both S-PLUS 2000 and S-PLUS 6, 

with the former having been tested more extensively, using both an NT4 and a Windows 

2000 system.  

FILE: schwarz-A.dat 

DESCRIPTION: This file contains the data from Schwarz (2001) participant A as a 

24K, three column, tab-delimited, ASCII file. Column names are on the first line, and 

each following line represents the results for one trial. The first column classifies the go 

probability for each trial (0.5 or 0.75), the second column classifies numeric distance (1 

or 4) and the final column contains the trial RT (ms).  

 

To access the above files or links, please visit http://www.psychonomic.org/ARCHIVE/ 

and search for this article using the journal (Behavior Research Methods, Instruments, 

and Computers), the first author's name (Heathcote) and the publication year (2004). 

 

Note that these files, and possible future extensions (e.g., extra distribution functions, 

updates for new versions of S-PLUS etc.), are also available on the author’s web site: 

http://www.newcastle.edu.au/school/behav-sci/ncl/
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Tables 

Table 1. Function definitions. 

Density Functions Comment 
dwald(w,m,a,s=0) Shifted Wald, w is RT 
dexw(r,m,a,t) Ex-Wald, r is RT 
dexg(x,m,s,t) Ex-Gaussian, t is RT, m=µ, s=σ and t=τ 

Cumulative Density Functions Comment 
pwald(w,m,a,s=0) p(W ≤ w) for Shifted Wald 
pexw(r,m,a,t) p(R ≤ r) for Ex-Wald 
pexg(x,m,s,t) p(T ≤ t) for Ex-Gaussian 

Random Functions Comment (n is number of samples) 
rwald(n,m,a,s=0) Shifted Wald  
rexw(n,m,a,t) Ex-Wald 
rexg(n,m,s,t) Ex-Gaussian 

Objective Functions Comment (minus loglikelihood, x is RT) 
negllswald(p,x) Shifted Wald, p = (m,a,s) 
negllwald(p,x) Wald with s = 0, p = (m,a) 
negllexw(p,x) Ex-Wald, p = (m,a,t) 
negllexg(p,x) Ex-Gaussian, p = (m,s,t) 

Objective Derivatives Comment 
negllswald.gh(p,x) Shifted Wald Gradient and Hessian 
negllwald.gh(p,x) Gradient and Hessian for Wald with s = 0 
negllexggrad(p,x) Gradient for Ex-Gaussian 

Heuristic Starting Points Comment (p=heuristic parameter) 
waldstpt(x,shift=T,p=0.9) Wald/Shifted Wald 
exwstpt(x,p = 0.5) Ex-Wald 
exgstartpt(rt, p = 0.8) Ex-Gaussian 

Fitting Functions Comment (rt is a response time vector) 
fitwald(rt,shift=T,p=0.9, 
 start=waldstpt(rt,shift,p)) 

Wald (shift=F)and Shifted Wald (shift=T)  

fitexw(rt,p=.5,start= 
      exwstpt(rt),scaleit=T) 

Ex-Wald, scaleit=T turns on scaling = 
1/start  

fitexg(rt,p=0.8,start= 
       exgstartpt(rt,p)) 

Ex-Gaussian 

Auxiliary Functions Comment 
uandv(x,y,firstblock=20, 
block=0,tol=.Machine$double.
eps^(2/3),maxseries=20) 

Used by dexw, series approximation to the 
real (u) and imaginary (v) parts of 
complex error function, erf(x + iy). 

rew(x,y,...) Used by dexw, real part of  
w(z) = exp(-z^2)[1-erf(-iz)] 

ser.nlminb(object,tol = 
1,scale=object$scale,eps=0.0
01,eps0=1) 

Modified vcov.nlminb, object = fit object 
produced by nlminb, called within fitting 
functions. 

chisq(rt,p,bin=25, minn = 5, 
dist = "wald") 

Chis square, bin=bin width, minn=minimum 
expected observations in a bin, dist= 
“wald”, “exw” (Ex-Wald) and “exg” (Ex-
Gaussian), called in fitting functions. 
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Table 2. First and second derivatives of ln(fW).   
 

( ) ( )swmamfW −−=∂∂ ln      

( ) ( )swaamafW −−+=∂∂ 1ln     

( ) ( ) ( ) 2ln 22
2

1
2
3 2 mswswsf a

W +−−−=∂∂ −−   

( ) wsmfw −=∂∂
22 ln      

( ) ( ) 1ln2 =∂∂∂ amfw       

( ) ( ) msmfw =∂∂∂ ln2       

( ) ( )swaafw −−−=∂∂ 11ln 222     

( ) ( ) ( )22 ln swasafw −−=∂∂∂     

( ) ( )( ) ( )212
2
322 ln swswasfW −−−=∂∂ −    
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Table 3. Shifted Wald parameters and percentages of irregular fits. 

Distribution 1 2 3 

m 0.18856 0.16262 0.14142 

a 70.711 44.721 28.284 

s 625 625 625 

Mean 1000 1000 1000 

SD 102.7 102 100 
31

3µ  66.6929 73.2623 79.3711 

Fisher Skew 0.2739 0.3708 0.5000 

Irregular fits, n = 40 12.3 5.0 1.4 

Irregular fits, n = 60 9.4 2.4 0.0 

Irregular fits, n = 80 6.4 0.6 0.0 

Irregular fits, n = 100 4.6 0.4 0.0 

Irregular fits, n = 120 2.4 0.1 0.0 
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Table 4. Ex-Wald parameters and percentages of irregular fits. 

Distribution 1 2 3 4 5 

m 0.15 0.2 0.25 0.2 0.2 

a 52.5 70.0 87.5 70.0 70.0 

t 50.0 50.0 50.0 115.0 35.0 

k2 -0.0175 0 0.0225 0.0226 -0.0171 

Mean 400 400 400 465 385 

SD 134.371 106.066 90 148.24 99.875 
31

3µ  98.006 77.681 69.768 148.284 67.276 

Fisher Skew 0.06292 0.07111 0.08171 0.08216 0.06740 

Irregular fits, n = 120 10.4 74.5 26.2 41.1 20.4 

Irregular fits, n = 160 42.0 20.5 18.6 17.9 11.7 

Irregular fits, n = 200 40.3 1.5 17.5 4.9 10.6 

Irregular fits, n = 300 4.9 0.3 17.7 13.0 15.4 

Irregular fits, n = 400 0.4 0.2 18.2 11.1 16.2 

Irregular fits, n = 10000 0.1 46.7 0.5 0.0 6.1 

Irregular fits, n = 50000 4.3 10.1 - - 15.2 

 

 30



Fitting Wald Distributions 

Table 5. Ex-Wald parameter estimates, standard errors (se), correlations (r) and minus 

loglikelihood (-l) for Schwarz’s (2001) participant A.  
 Ex-Wald 
Condition m a t se(m) se(a) se(t) r(m,a) r(m,t) r(a,t) - l 

p=.5, d=1 .321 108 22.5 .032 6.39 16.3 .94 .91 .73 2206.76
p=.5, d=4 .359 112 19.3 .040 7.57 15.5 .96 .93 .80 2146.22
p=.75, d=1 .316 96 19.3 NA NA NA NA NA NA 3279.50
p=.75, d=4 .349 98 20.8 .029 5.08 10.8 .95 .91 .76 3213.06
 

Table 6. Shifted Wald parameter estimates, standard errors (se), correlations (r) and 

minus loglikelihood (-l) for Schwarz’s (2001) participant A.  

 
 Shifted Wald 
Condition m a s se(m) se(a) se(s) r(m,a) r(m,s) r(a,s) - l 

p=.5, d=1 .284 88 49.3 .036 30.2 67.6 .981 -.957 -.99 2206.55
p=.5, d=4 .330 100 25.5 .043 35.7 69.6 .982 -.960 -.99 2146.15
p=.75, d=1 .307 99 0.2 .032 28.5 59.6 .981 -.959 -.99 3279.51
P=.75, d=4 .313 85 30.2 .032 23.5 48.0 .981 -.957 -.99 3212.88
 

Table 7. Wald parameter estimates, standard errors (se), correlations (r) and minus 

loglikelihood (-l) for Schwarz’s (2001) participant A, and likelihood ratio (λ) tests (p = 

probability under the null hypothesis of no difference) comparing the Wald and Ex-Wald 

(λ(ew)) and the Wald and Shifted Wald (λ(sw)).  

 
 Wald 
Condition m a se(m) se(a) r(m,a) - l λ(ew) p λ(sw) p 

p=.5, d=1 .308 111 .011 3.9 .972 2206.74 0 1 0.38 .54
p=.5, d=4 .344 114 .012 4.0 .975 2146.21 0 1 0.11 .74
p=.75, d=1 .307 100 .009 2.9 .969 3279.51 .02 .89 0 1
p=.75, d=4 .332 100 .010 2.9 .971 3213.03 0 1 0.31 .58
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Table 8. Ex-Gaussian parameter estimates, standard errors (se), correlations (r) and minus 

loglikelihood (-l) for Schwarz’s (2001) participant A. 

 
 Ex-Gaussian 
Condition m s t se(m) se(s) se(t) r(m,s) r(m,s) r(s,t) - l 

p=.5, d=1 318 46.5 41.6 6.62 4.17 6.54 0.76 -0.89 -0.77 2577.66 
p=.5, d=4 294 39.3 36.4 5.31 3.39 5.26 0.73 -0.87 -0.74 2515.87 
p=.75, d=1 285 44.1 39.2 4.73 2.95 4.66 0.71 -0.87 -0.72 3833.99 
p=.75, d=4 266 39.4 35.4 4.12 2.56 4.05 0.70 -0.86 -0.71 3768.00 
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Figure Captions 

Figure 1. (a) Shifted Wald and (b) Ex-Wald distributions used in the Monte Carlo study. 

For (a), mean and standard deviation are constant and skew increases with the number 

used to identify the distribution. For (b), distributions 3 and 4 are in the real case studied 

by Wolfe (2001) and distributions 1 and 5 are in the complex case studied by Wolfe 

(2002), with distribution 2 on the boundary. 

Figure 2. Shifted Wald parameter estimate mean bias (estimated – true) and efficiency 

(parameter standard deviations, SD) for all fits and for fits with ill-conditioned Hessian 

estimates censored. The abscissa is sample size (n), and each panel represents results for 

the m (mean rate of evidence accrual), a (response threshold) and s (shift or minimum) 

parameters respectively. 

Figure 3. Ex-Wald parameter estimate mean bias (estimated – true) and efficiency 

(parameter standard deviations, SD). The abscissa is sample size (n), on a log10 scale. 

Each panel represents results for m (mean rate of evidence accrual), a (response 

threshold) and t (exponential mean) parameters respectively.  

Figure 4. Probability histograms of Schwarz’s (2001) data for participant A, with fitted 

probability density functions for the Ex-Wald and Wald (solid lines), Shifted Wald 

(dashed lines) and the Ex-Gaussian (dotted lines). Each panel provides results for one of 

four experimental conditions, formed by the factorial combination of the probability of a 

go response (p_go = .5 or .75) and numerical distance (d = 1 or 4).  

Figure 5. Objective function (minus log likelihood) profiles around the fitted Ex-Wald 

parameter values for Schwarz’s (2001) participant A in the p_go=.75, d=1 condition. For 

each panel the abscissa label indicates the parameter varied (m, the mean rate of evidence 
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accrual, a, the response threshold, and t, the exponential mean) while holding the other 

parameters at their fitted values.  
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Footnotes 

                                                 

1All parameters are specified by exactly the same symbols in equations given in the text and the S 

functions. Consequently the usual convention of using Greek letters for parameters is not adopted. 

( ) wamw +

ame2

2 Schwarz (2001) suggests the approximation be applied when  ≥ 5.5. However, the pnorm 

function implemented in S much more accurate than the one used by Schwarz, and benchmarking against 

numerical integration results suggests that the second summand as expressed in Equation 2 using pnorm is 

more accurate than the approximation unless pnorm = 0, and/or = Inf, where “Inf” is the value 

assigned by S when a number is larger than can be represented in double precision floating point notation. 

Hence, pwald uses the approximation only when one or both of these conditions is true, in which case it 

yields results accurate to approximately 6 significant figures.  

3 http://www.statsci.org/s/invgauss.s, with help at http://www.statsci.org/s/invgauss.html. These functions 

are parameterised in terms of the mean of the distribution µ = a/m and its “dispersion”: λ=a2. For the Wald 

without a shift, these parameters have closed form maximum likelihood estimates, the arithmetic sample 

mean for µ and ( ) nx
n

i
i∑

=

−− −=
1

1
1

1 ˆˆ κλ1 . When this parameterisation is used, the Wald distribution is usually 

called the “Inverse Gaussian”. Note these functions are not built in to S. To access these functions they 

must be saved to a text file, e.g., invgauss.s, and compiled, e.g., source(“invgauss.s”).  

4 Because of the computational cost of memory allocation costs in S, calculating each term in the series 

sequentially with a check for convergence of the approximation at each step is much slower than 

calculating a larger number of terms as a vector. The uandv function allows vectors of terms to be 

calculated and can check for convergence after each set is calculated. The default setting, which calculates 

a vector of the first 20 terms and does not check for convergence, was accurate and fast in all cases 

examined in the numerical studies reported here. Using more than 20 terms can cause numerical problems 

in some cases.  

5 In the Monte Carlo study it was necessary to set the minimum values of (m,a,t) to (1e-8,1e-8,1) for the 

Ex-Wald in order to avoid occasional floating point errors. 
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6 In theory the full model should never have a greater deviance than the nested model. However, where the 

full model is not sufficiently constrained by the data, numerical problems can make it difficult for the 

search algorithm to find the minimum, and so slightly larger deviance values may be found for the full 

model. This was the case for all but one of the Ex-Wald fits. In these cases λ was set to zero. 
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