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Abstract 

 

A new approach to modeling response time is proposed, based on the activation 

dynamics of simplified neural units.   The proposed neuromorphic decision units are 

dissipative and have bounded activation, as do real neurons.  A decision is made either 

when the unit’s activation exceeds a threshold or when it converges, using a criterion 

based on the derivative of activation.  First, the relationship between varieties of 

neuromorphic and sequential sampling models is reviewed. Mathematical and 

simulation results are presented both for deterministic and random versions of the 

neuromorphic units. These results are used to highlight strengths and weaknesses of this 

new approach to dynamic models of decision making. 
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Neuromorphic Models of Response Time 

The models developed here were inspired by the similarity between sequential 

sampling models of choice and response time and first order approximations to neural 

dynamics, such as those used by Carpenter and Grossberg (1987) and Kohonen (1993).  

The term “neuromorphic” reflects the fact that the models are based on the (simplified) 

structure of biological nervous systems. The next section reviews sequential sampling 

models and a number of theoretical and empirical issues that have driven their 

development.  The following section motivates the structure of the neuromorphic 

models with reference to empirical issues and constraints from physical instantiation.  

The next two sections develop the mathematical detail of the models and the final 

section discusses their strengths and weaknesses.   

Sequential Sampling Models 

The following brief review can not do justice to the scope of sequential sampling 

models (c.f.  Busemeyer & Townsend, 1993; Laming, 1968; Link, 1992; Link & Heath, 

1975; Ratcliff, 1978; Smith, 1995). Instead, the review is selective with the aim of 

illustrating the many similarities of neuromorphic and sequential sampling models.  In 

some cases, versions of the neuromorphic models are special cases of the sequential 

sampling models, and in other situations they are more general.   

Sequential sampling is the dominant dynamic model of decision making (see Luce, 

1986 for a review).  Dynamic decision models predict not only which choice is made, 

but also response time (RT).  A decision is made when the sum of a series of samples 

from a signal exceeds a criterion.  Use of the sum promotes accurate decisions by 

averaging over sample-to-sample noise in the signal.  As more samples are taken, noise 

is suppressed but RT  is increased.  Hence, a tradeoff between speed and accuracy 

(Luce, 1986, Section 6.5) is a fundamental prediction of sequential sampling models. 

When the signal to noise ratio is small, slow responding promotes accuracy. Under time 

pressure fast decisions can be made, but the decision will be inaccurate unless the 

signal to noise ratio is large.   
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Noise, in the form of random sample-to-sample fluctuation in the signal, may be 

introduced from a number of sources. Link (1992) suggests that sample-to-sample noise 

is due to Poisson fluctuation in the transmission of signals in the nervous system. At a 

coarser temporal scale, Busemeyer and Townsend (1993) suggest that subjects switch 

attention between different consequences of the choice on each sample.  Decisions 

based on a sum of samples allow the subject to weigh a large range of alternatives 

without having to hold them in short-term memory simultaneously.   

Stone (1960) and Laming (1968) proposed early versions of sequential sampling 

models.  Subjects sample a signal with mean m at regular time intervals of length dt.  

Hence, each sample has mean size m and is added in exactly dt time units.  A response 

is made when the sum of samples exceeds a criterion, C.  In the following I will use the 

term “activation” to refer to the sum of samples.  RT equals the time per sample 

multiplied by the number of steps taken until the sum first equals or exceeds C.  The 

model is often called a random walk because the sum follows a jagged path 

reminiscent of a particle undergoing Brownian motion.   

The random walk is a discrete process.  As the time unit, dt, goes to zero it 

becomes equivalent to a continuous Wiener diffusion process.  Summation becomes 

integration with infinitesimal mean step size or drift, m, and infinitesimal variance or 

diffusion rate, σ2. The diffusion process, with normally distributed sample-to-sample 

noise, was first proposed as a model of simple RT  by Emerson (1970).  

When drift is normally distributed and C >> m, mean RT = C/m (C/m × dt for the 

discrete case), and overall RT  has an Inverse Gaussian distribution. This single 

criterion case can model simple RT, where the subject responds contingent only on the 

detection of a change in the stimulus.  Multiple criteria or barriers model more complex 

choice tasks.  In the two choice case, for example, an adaptation level can be subtracted 

from the signal so that samples from one class of stimuli have negative mean drift and 

the other class has positive mean drift (Link & Heath, 1975).  The choice made depends 

on which barrier is crossed first.  The RT distribution for the two-alternative Wiener 

diffusion model is given in Ratcliff (1978). It is more complex than the distribution for 
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the single barrier model because the RT distributions for each choice can be a mixture 

of correct and incorrect responses.  

Varieties of Sequential Sampling Models 

In Link and Heath’s (1975) Relative Judgement Theory, a random walk is driven 

by the difference between the signal and an adaptation level or referent.  Subjects can 

control the distance between response barriers, the starting position of the random 

walk, and magnitude of the referent.  This theory predicts not only RT, but is also able 

to account for variations of response probability modeled by static theories such as 

Signal Detection Theory (SDT) and finite state theories (see Green & Swets, 1966).   

Link and Heath (1975) demonstrated that their model can produce similar 

Receiver Operating Characteristics (ROCs) to SDT by changing the random walk’s 

starting point. Differences in the magnitude of mean drift rates (and/or their variances) 

from the two stimulus classes result in asymmetric ROC curves, assumed to be due to 

unequal variance in SDT. Increasing either the distance between the barriers or the 

magnitude of the drift rate causes increasingly curved ROCs associated with an 

increase in sensitivity in SDT. A more recent version of this model, Wave Theory, 

proposed by Link (1992), is consistent with an impressive list of psychophysical 

phenomena, including the psychometric function, the interval of uncertainty, Fechner’s, 

Weber’s, and Steven’s Laws, as well as ROC results.  

Despite the success of both Wave Theory and models based on the Wiener 

diffusion process, without elaboration both are unable to model an important finding 

related to speed-accuracy tradeoff, the conditional mean RT effect (Heath, 1992).  

Under speed instructions, mean error RT tends to be faster than mean correct RT, 

whereas, under accuracy instructions, errors tend to be slower than correct responses.  

Link and Heath (1975) showed that, when the moment generating function of a random 

walk’s step size is symmetric, correct and error mean RTs at the same barrier are 

equivalent.  As the Poisson moment generating function is symmetric (as are the moment 

generating functions of most commonly used noise distributions), Wave Theory cannot 
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account for the conditional mean RT effect.  The Wiener diffusion model for two 

choices also predicts equal error and correct mean RT. 

Two accounts of the conditional mean RT  effect have been proposed.  One account 

adds variability between trials to model parameters, the starting point and drift rate.  

Laming (1968) suggested that the starting point of a random walk might vary from trial-

to-trial under speed instructions due to sampling before the onset of the stimulus. Fast 

and inaccurate responses will occur when the starting point is near the barrier for the 

wrong choice. In contrast, slow errors are produced when between trial variability is 

introduced to the drift rate of a two alternative Wiener diffusion model (Ratcliff, 1978). 

If accuracy stress causes an increase in the inter-trial variability of drift rates, slow 

errors for accurate responding can be explained. Ratcliff (1988) notes that fast errors 

can also be obtained with drift distributions that have heavier tails than the normal 

distribution, although he did not pursue this approach.  

The second account introduces systematic changes in the signal strength over the 

course of a trial. Heath’s (1981) tandem random walk model, and his later 

generalization for temporally and spatially nonstationary inputs (Heath, 1992), can 

account for both aspects of the conditional mean RT effect. If a response is initiated 

when the input is increasing, mean error RT  is faster than mean correct RT.  If the 

response is made when the input is stationary, correct and error mean RTs are equal.  If 

a response is made when the input is decaying, mean error RT  is slower than mean 

correct RT .  Heath (1992) and Smith (1995) discuss the physiologically interesting 

case where a nonstationary input is the result of a deterministic cascade process.   

Another variety of sequential sampling model assumes that the process of sample 

integration, rather than the signal, changes over the course of a trial. For example, some 

signal strength might be lost in the summation or integration process. Unlike a random 

walk or diffusion, a “leaky integrator” is dissipative; it looses some of the signal 

strength in the process of integration.  Smith (1995) and Busemeyer and Townsend 

(1993) describe sequential sampling models in which the leakage is dependent on the 

activation of the unit. Consequently, the effective drift from a constant input signal 
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decreases to zero as activation grows, and so activation achieves equilibrium. 

Busemeyer and Townsend (1993) modulate state dependent leakage rates to model the 

finding that, in both animal and human decision making, avoidance-avoidance decisions 

take longer than approach-approach decisions. Busemeyer and Townsend's (1993) 

Decision Field Theory modulates state dependent leakage rates to model the finding 

that, in both animal and human decision making, avoidance-avoidance decisions take 

longer than approach-approach decisions. Decision Field Theory also accounts for a 

range of phenomena in risky decision making and matching. 

Activation dependent leakage can answer Heath’s (1992) “finite RT dilemma”: 

why can subjects not become arbitrarily accurate by sampling for a sufficient time?  

Accuracy for a lossless random walk model increases indefinitely as more samples are 

taken.  Hence, increased accuracy can always be obtained by placing the decision 

barriers further away from the starting point.  For a state dependent leaky integration 

model, in contrast, activation tends to an asymptote, so a decision criterion cannot be 

placed arbitrarily far from the asymptote.   

Mechanisms do exist within lossless random walk models that can address the 

finite RT  dilemma, for example, Ratcliff’s (1978) addition of trial-to-trial as well as 

sample-to-sample noise.  While continued sampling can arbitrarily reduce sample-to-

sample noise, it can do nothing to reduce trial-to-trial noise. When sufficient samples 

have been taken to reduce sample-to-sample noise below trial-to-trial noise, continued 

sampling has little effect on the overall accuracy of the decision. Ratcliff and Van Zandt 

(1995) discuss the roles of both sample-to-sample and trial-to-trial noise in a diffusion 

model of a signal detection task.  As Luce (1986) notes: “... the original wrinkle 

introduced [by Ratcliff (1978) which] ... has given the [diffusion] model a great deal of 

flexibility, is that rates are in fact random variables over otherwise identical trials. ... 

This added freedom is adequate to permit the model to mimic a great deal of somewhat 

surprising data.” (p. 439).   

Clearly, experimental data may contain both sample-to-sample and trial-to-trial 

noise. Sequential sampling models have tended to emphasise sample-to-sample noise, 
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perhaps because of its role in explaining speed-accuracy tradeoff.  In the next section 

we will explore why, in neuromorphic models, sample-to-sample noise is not 

necessary for this purpose. 

Motivating Neuromorphic Models of Choice 

The first order behaviour of a neuron is similar to a random walk process in that a 

neuron integrates inputs over time.  However, neurons are dissipative structures, so 

their integration is leaky.  In contrast to a random walk, where a constant input causes 

activation to increase indefinitely, activation in a neuron converges to a value that is a 

(usually monotonic) function of a constant input. When input is removed the neuron 

returns to baseline firing.  Both behaviours are characteristic of a unit with activation 

dependent leakage.  Secondly, the activation of a neuron is bounded; the unit's 

activation cannot be driven above a maximum value no matter how large the input 

because its sensitivity decreases as activation approaches the bound.  In the following 

we will discuss the implications of introducing these constraints to sequential sampling 

models of response time.   

State Dependent Leakage 

One important reason for introducing leakage into neuromorphic models is 

physical plausibility: state dependent leaky integration can attain only finite activation 

for finite inputs, whereas the activation of a lossless integrator diverges to infinity for a 

constant finite input. With leakage, activation also takes some time to fully reflect the 

input, a phenomenon commonly measured by a time constant in neural systems.  Hence, 

an activation dependent leaky integrator has bounded sensitivity, both in time and 

activation.   

Speed-accuracy tradeoff can be explained by the finite temporal sensitivity of 

activation dependent leaky integrators. A fast response is effectively based on a weak 

signal if it is made before activation has reached equilibrium.  Consequently, sample-

to-sample noise is not necessary to explain speed-accuracy tradeoff. While a complete 

lack of sample-to-sample noise is unlikely, it is an interesting question in many 
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experimental paradigms whether performance is dominated by sample-to-sample or 

trial-to-trial noise.  In a recognition memory experiment, for example, variations in 

study-test lag, and word stimuli, may cause considerable extrinsic noise in inputs over 

trials within an experimental condition. The neuromorphic models developed here 

assume that trial-to-trial noise dominates.  This was done mostly in the interest of 

mathematical tractability.  Having gained some results with the assumption of trial-to-

trial noise alone, we will return to the issue of  sample-to-sample noise in the final 

section. 

Leakage also results in decay of activation back to baseline when the input ceases.  

This is functionally useful for an autonomous decision system because decision units 

automatically reset between decisions.  In contrast, a random walk requires reset by an 

external controller.  Partial return to baseline between closely spaced trials may 

account for some patterns of sequential dependency in both accuracy and RT, although 

learning effects in adaptation levels and strategic probability matching are also likely to 

be important (e.g. Link, 1992, pp. 276-293). 

Representation 

Activation dependent leakage is useful because the decision unit’s asymptotic 

activation provides an estimate of the magnitude of the input.  Hence, the unit’s 

activation can be used to represent stimulus characteristics as well as to make 

decisions.  In a lossless model, the unit’s activation contains no information about the 

magnitude of the input, unless integration time is also known.  In an activation 

dependent dissipative model, in contrast, activation is a function of the input magnitude 

independent of integration time (once the unit has converged).  

Convergent activation provides a point of contact between dynamic and static 

models of choice.  Due to the static nature of SDT, RT predictions do not emerge 

naturally, although additional mechanisms, such as RT proportional to the difference 

between signal and criterion, have been suggested (Murdock & Dufty, 1972).  A state 

dependent leaky integrator model, in contrast, predicts both RT and accuracy. The static 

decision variable in SDT is identified with the static activation value of the 
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neuromorphic unit after convergence. Choice can be modeled in the manner of SDT, by 

comparing the converged activation value to a criterion.  RT predictions follow 

naturally from the time to detect convergence.   

Response Criteria 

The preceding discussion suggests a more radical departure from previous 

sequential sampling models: using detection of convergence as the criterion for 

response. Gregson (1992) suggests that a check on the stationarity of the Jabcobian for 

a system of units can be used in this way.  For a single unit, a simple way to detect 

convergence is to place a criterion on the derivative of activation with respect to time.  

In the discrete case, the criterion is placed on the size of each sample.  A criterion on 

the derivative is convenient for the neuromorphic models described below as they are 

defined by first order differential equations.  The derivative is not so convenient when 

the neuromorphic model contains sample-to-sample noise, as activation, while being 

almost everywhere continuous, is almost nowhere differentiable. 

In the following development, both activation and derivative criteria will be 

investigated.  The two criteria are not incompatible.  For example, an activation 

criterion may be used when a fast response is required and a derivative criterion when 

an accurate magnitude estimate is required.  Both criteria can be problematic for units 

with activation dependent leakage.  If the input is small, a derivative criterion may be 

satisfied immediately, whereas an activation criterion may never be satisfied.  Hence, 

there may be situations when both criteria are applied simultaneously.  

Activation Bounds 

Many neural network models bound a unit’s output activation with sigmoid 

transformation. The presence of bounds can be motivated by physical realisation: like 

any physical system, the unit can only take on states within a finite range. The particular 

choice of bounding function, a smooth sigmoid, is an idealisation for individual 

neurons, which often exhibit sensitivity thresholds.  However, the sensitivity of a 

collection of neurons, where thresholds vary randomly between neurons, is described 

by a smooth sigmoid function.    For the decision units discussed so far, activation was 
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unbounded.  State dependent leakage ensures that activation does not diverge with 

integration time, but the dynamic range of the unit remains unlimited. Bounds of some 

type seem called for on a priori grounds, but, as will be shown in the following 

development, they also impart functionally useful properties to the neuromorphic units.  

A second motivation for sigmoid bounds on activation comes from the suggestion 

that neuromorphic units can represent the input.  Backpropogation neural networks use 

sigmoid hidden units as they provide universal function approximation abilities 

(Hornik, Stinchcombe, & White, 1989).  One way, therefore, to provide general 

representational ability, is to make asymptotic activation a sigmoid function of input 

magnitude.   

Summary 

The preceding sections suggest that a neuromorphic model should have both 

activation dependent leakage and bounded activation.  They also suggest that 

asymptotic activation be used to represent the magnitude of the input, so neuromorphic 

units have the dual role of representation and decision.  In order to make the 

representation general, sigmoid bounds are useful.  In order to make the representation 

independent of integration time, a response criterion based on the derivative of 

activation was suggested, although an activation criterion may also be used in some 

situations.  Finally, emphasis was placed on trial-to-trial noise in the model’s 

parameters.  While the likely occurrence of sample-to-sample noise was 

acknowledged, it was argued that it could be dominated by trial-tot-trial noise, so that 

models with trial-to-trail noise alone are interesting, at least as a limiting case. 

Deterministic Models 

In this section we will examine the deterministic behaviour of models with a 

minimal structure motivated by the considerations in the previous section.  In the next 

section, we will examine the behaviour of these models with trial-to-trial noise in their 

inputs. We will consider two types of neuromorphic units based on deterministic 



Neuromorphic Models  

11 

models of first order neural dynamics used by Carpenter and Grossberg (1987) and 

Kohonen (1993).  

Kohonen Units 

Kohonen (1993) suggests that important aspects of dissipative neural dynamics are 

captured by the differential equation:   

( )&x I x= − γ    (1) 

where x is activation, &x  its derivative, I is an input, and γ(x) a loss function describing 

activation dependent leakage.   

For example, consider the simple case where the loss function is linear: γ(x) = β + 

αx. By definition, the system described by Equation 1 converges when &x  = 0.  By 

solving (1) with the latter condition we find that asymptotic or equilibrium activation 

equals (I-β)/α.  Hence, the final state of the unit is a linear transformation of the input.  

A solution for activation, x, at all times, t, is derived by solving (1) 

( ) ( ) ( )x t e x eI t at= −− − −β
α

α1 0+     (2) 

The activation of the unit at t = 0 is x(0) .  Unless otherwise stated, we will assume in 

the following that x(0) = 0.  Figure 1a illustrates the solution, with activation 

converging at an exponentially decreasing rate toward its asymptotic value.   
------------------------------- 

Insert Figure 1 about here 
------------------------------- 

Interestingly, the activation update function used by most PDP models, 

x w xj ij i= ∑  can be viewed as the equilibrium solution to Equation 1 with 

I w xij i= ∑ , and γ(x) = x.   Similarly, Cohen, Dunbar, and McClelland's (1990) 

cascade update equation used to predict RT in the Stroop paradigm, 

x x w xt t ij i+ = − + ∑1 1( )τ τ is an Euler's approximation to the same equation with a 

time constant τ:   

&x
x x

I xt t
t≈

−
= −+1

τ
.   

In Cohen et al.’s model, RT predictions were derived using a combination of the 

cascade update rule and a random walk decision unit attached to the output of the 
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network.   For a neuromorphic model, in contrast, the dynamics of the neural unit alone 

determine RT . 

RT predictions for the linear leakage Kohonen unit can be derived by determining 

the time, t, at which x = a (Equation 3), the activation criterion, and at which &x  = d 

(Equation 4), the derivative criterion.  
( )( ) ( ) ( )

( )( )ax
xx

aI
xIt −∞

−∞
−−

−− == 0101 lnln ααβ
αβ

α    (3) 

( )( ) ( ) ( )
( )( )dx

xx
d

xIt −∞
−∞−− == 0101 lnln α

αβ
α    (4) 

The second form of both equations specifies the solution in terms of the asymptotic 

value of activation x(∞) = (I-β)/α.    For both types of criteria, t decreases as the 

criteria become less strict.  Signal intensity, however, has opposite effects on t, with 

more intense signals decreasing t for the activation criterion but increasing t for the 

derivative criteria.  Empirical RTs from simple and choice paradigms are usually a 

decreasing function of signal intensity and an increasing function of response caution.  If 

we identify signal intensity with I-β and response caution with 1/a or 1/d, it is clear 

that the derivative criterion model is in error for signal intensity predictions: response 

time is predicted to be an increasing rather than decreasing function of signal intensity.     

In order to restrict activation within a given range for all input values, the loss 

function must be nonlinear.  Kohonen (1993) bounds activation in the range [-1,1] 

using:  

( )γ x c
x
x

=
+
−







ln
1
1

 

At equilibrium: 

( ) ( )x
e
e

I c
I c

I c∞ =
−
+

=
−

−

1
1

tanh     (5) 

Similarly, ( ) ( )γ x c x x= +ln ( )1  produces [0,1] bounded asymptotic activation 

following a logistic function.  Unfortunately, we cannot obtain an explicit expression 

for t for Kohonen's sigmoid equations as they are not soluble in closed form1.  Instead, 

we proceed by considering a second mechanism for bounding activation, shunting 

inputs. 
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Grossberg Units 

Grossberg and co-workers (e.g. Carpenter & Grossberg, 1987) often approximate 

neural dynamics with the differential equation:   

( ) ( ) ( ) ( )&x x I A x I B x AI BI x I I= − + − − + = − − + ++ − + − − +α α       (6) 

Inputs are separated into excitatory (I+)  and inhibitory (I-) components as is commonly 

observed in neural systems (note that all parameters and inputs in Equation 6 are 

positive).  The form of Equation 6 given on the right can be usefully contrasted with 

Equation 1.  The main difference is that the leakage term is a function of the inputs as 

well as the level of activation.  This dependence is called a shunting interaction.  The 

form of Equation 6 on the left makes it clear why activation is bounded in the range [-B, 

A]. The effect of excitation is scaled by the difference between the present level of 

activation and A, and the effect of inhibition is scaled by the difference between the 

present level of activation and -B.  Even when an external perturbation leads to x > A 

or x < -B the system will be attracted back within the bounds.   

The equilibrium solution to Equation 6 also shows that activation is bounded in the 

range [-B, A]:  

( )x
AI BI

I I
∞ =

−
+ +

+ −

− +α
  (7) 

To compare Equation 7 with Kohonen's tanh sigmoids, where I can be positive 

and negative, Figure 1b illustrates the case where I+= I, I-= 0 for I ≥ 0 and I -=  -I, I+= 

0 for I < 0 (i.e. ( ) ( )x I I∞ = +α ).  The slope of the shunting sigmoid is controlled by 

the rate constant α . For companion, three tanh sigmoids are also shown.  Note that the 

shunting sigmoid (thick line) tends to have a shorter linear range and is steeper around 

the origin than the tanh sigmoids which cover approximately the same dynamic range.   

Figure 1c illustrates the convergence behaviour of Equation 7.  Unlike the linear 

loss form of Equation 1 (see Figure 1a), time to convergence (approximately where the 

graphs become flat in Figure 1a and 1c), and hence RT under a derivative criterion, is 

inversely proportional to input intensity.   
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To obtain an explicit expression for activation as a function of time, we begin by 

solving Equation 6:   

( ) ( ) ( ) ( )x t
AI BI

I I
e x e

I I t I I t
=

−
+ +

−



 +

+ −

− +

− + + − + +− + − +

α
α α

1 0  (8) 

As with the linear version of Kohonen’s equation, activation converges at an 

exponentially decreasing rate toward its asymptotic value. Solving for x = a, the 

activation criterion, and &x  = d , the derivative criterion:   

( ) ( )
( )

t
I I

x x

x a
=

+ +

∞ −

∞ −









+ −

1 0

α
ln   (9)  

( ) ( )
t

I I
x x

d
=

+ +
∞ −







+ −

1 0
α

ln   (10) 

Equations 9 and 10 are similar to the solutions for the linear activation dependent 

leakage model (Equations 3 and 4).  This occurs because they are both solutions to the 

general equation: ( ) ( ) ( ) ( )( )x t x x x e Kt= ∞ − ∞ − −0 , where K determines the rate of 

leakage. 

As in the linear model, a stricter activation or derivative criterion causes a 

decrease in t.  The models differ in that the scaling factor in the linear model (1/α) 

becomes dependent on the inputs (1/(α+ I++ I-)), due to the shunting interaction. For 

the activation criterion, the shunting interaction further enhances the decrease in t with 

increases in signal intensity.   

The effect of increasing signal intensity on t, given the derivative criterion, 

depends on a balance between a hyperbolically decreasing tendency caused by the 

scaling factor and logarithmic increase identical to the linear model.  Figure 1d 

illustrates the tradeoff, plotting t as a function of the derivative criterion, d , and input 

intensity, I+(with I- = 0). Note that Equation 10 is valid only when d < (x(∞) - x(0)) as 

the difference between x at 0 and ∞ is the maximum rate of change of activation. Hence, 

the negative solutions in the figure are not valid. For larger input values, t is a 

negatively accelerated, decreasing function of I+, consistent with empirical evidence of 

a decrease in RT with increasing signal intensity.   For smaller2 values of I+, however, 
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t increases with signal intensity.  The increasing region reflects approximately linear 

sensitivity and associated behaviour approximated by Equation 4.   

The influence of the increasing region depends on the value of d.  Considering 

Equation 10 with parameters specified as in Figure 1d, for example,  

i) d = 0.01 (lax criterion, middle curve in Figure 1d): t at the point of inflection is 

11.57, activation at response is 0.41, and activation at asymptote is 0.46,  

ii) ii) d = 0.0001 (strict criterion, upper curve in Figure 1d): t at the point of 

inflection is 44.2, activation at response is 0.1835, and activation at asymptote 

is 0.184.   

For the strict criterion, the increasing region occurs for I < 0.023 and in less than 

20% of the domain of x ([0,1] for the parameters chosen). With the lax criterion, the 

increasing region occurs for I < 0.09 and covers almost 50% of the domain of x. The 

difference between activation at response ( &x  = d) and asymptote ( &x  = 0) also changes 

with the criterion.  For the strict criterion, the difference is only 0.3%, compared to 

almost 11% for the lax criterion.  

Overall, the similarity between asymptotic sensitivities shown in Figure 1b 

suggests that Kohonen’s and Grossberg’s models will act in a similar manner. We will 

now turn our attention to the behaviour of the model when the inputs have a stochastic 

component. It turns out that in this context we can make some progress with Kohonen’s 

bounded model as well as with Grossberg’s shunting model.  

 Random Models 

We will now explore the effect of trial-to-trial noise on the inputs to neuromorphic 

units.  The distribution of the input, I, is assumed to be gaussian, a plausible assumption 

in a neural network context as I is the sum of a large number of weighted inputs. We 

will characterise the model by determining the density function and hazard function for 

response time. RT  density is usually uni-modal and positively skewed, and increases in 

the mean are usually accompanied by increases in variance and skew (e. g. numerous 

examples in Luce, 1986, although distributions for very fast responses can be relatively 
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symmetric, see, for example, Luce, 1986, p.117 for simple RT to intense auditory 

stimuli). Examination of density functions will determine if the neuromorphic models 

share any of these characteristics. The hazard function is defined as probability density 

divided by the one minus cumulative density, and denotes the chance of an event 

occurring at time t given it has not already occurred. Luce (1986) suggests that hazard 

functions can help to differentiate models with similar density functions.  For simple 

RT , empirical hazard functions rise to a peak and then descend, especially for intense 

stimuli. The neuromorphic model hazard functions will be compared to this pattern.  

We will begin by obtaining analytic results for the lossless integrator with an 

activation criterion. Only the distribution of t is of interest as x is, by definition, a 

constant equal to the criterion.  Analytic results were also obtained for asymptotic 

activation in the Kohonen and Grossberg models.  However, the distribution of t for 

these models must be investigated by Monte Carlo techniques. 

Lossless Integrator: Analytic Results for t 

Before examining the dissipative models, we will explore the lossless integrator 

with normally distributed input, I, and a one-barrier activation criterion, B.  For this 

model, t = B/I is inversely proportional to input intensity and proportional to response 

caution (B). Distribution functions with only trial-to-trial noise are easily obtained 

because the relationship between barrier crossing time, t, and the random variable, I is 

monotonic and has a differentiable inverse (see DeGroot, 1986, p.152-154). Given that 

the density of I, f(I), is normal with mean µ and standard deviation σ, the density of t,  

g(t), is: 
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e
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Figure 2 illustrates the effect of varying µ  and σ relative to a reference distribution 

with µ = 10, σ = 3 (B = 3000 in all cases). Note that the reference distribution is the 

curve with the second highest peak in all panels of Figure 2.  A decrease in µ causes an 

increase in the mode, mean, variance, and skewness and a decrease in the order and 

peakedness of the hazard function. An increase in σ causes a decrease in the mode, and 
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increase in mean variance, and skewness.  The hazard function spreads at the same 

location with increases in σ, as does the density function.   
------------------------------- 

Insert Figure 2 about here 
-------------------------------    

Kohonen and Grossberg Units: Analytic Activation Distributions 

Closed form results for the distribution of asymptotic activation in both Kohonen 

and Grossberg units can be obtained because the tanh, logistic, and shunting sigmoid 

functions are monotonic and have a differentiable inverse. For Kohonen units with a 

derivative ( &x  = d) criterion, the activation distribution function is the same as for the 

asymptotic case, with the exception that the mean, µ, is reduced by d. Hence, we will 

develop results only for the asymptotic case for Kohonen units.   

For a Kohonen unit with tanh leakage, and given that the density of I, f(I), is 

normal with mean µ and standard deviation σ, the density of x, g(x), is: 
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Figure 3 illustrates the properties of g(x) as a function of the mean and standard 

deviation of the input for c = 1.   When µ  = 0 and σ is small, the distribution is 

approximately normal, but as σ increases the distribution flattens and eventually 

becomes U shaped as probability mass from the tails builds up at either bound (see 

Figure 3a).  When µ is non-zero, the activation distribution becomes skewed, with the 

degree of skew strongly dependent on σ (see Figures 3b and 3c). A similar result holds 

for the logistic bound as the logistic function is a linear transformation of the tanh 

function. 
------------------------------- 

Insert Figure 3 about here 
-------------------------------    

The effect on of varying d  can be seen in Figure 3c, because a stricter convergence 

criterion is equivalent to increased mean signal strength.   If accuracy equals the 
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proportion of the activation distribution passing a criterion in x (e.g. below the origin in 

Figure 3c), then accuracy is inversely proportional to d . 

The separation of excitatory (positive) and inhibitory (negative) inputs in 

Grossberg’s shunting equation makes it difficult to determine the distribution of 

activation across the entire range [-B,A].  We will instead consider the case where 

there is negligible probability of I ≤ 0, and solve for the derivative criterion, &x = d.   

Note that variation in the criterion, d, for a Grossberg unit is not equivalent to 

variation in the mean signal strength as it was for a Kohonen unit, due to the shunting 

interaction.  Hence, we must derive an expression for the distribution of activation 

which includes d. Given that the density of the input signal I, f(I), is normal with mean 

µ and standard deviation σ, the density of x, g(x), is: 

( ) ( )( ) ( )
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Figure 4 illustrates that the behaviour of asymptotic Grossberg unit activation is 

similar to that of asymptotic Kohonen unit activation shown in Figure 3, and that µ  and 

d act similarly (note that d  is varied over a smaller range than µ).  Once again, if 

accuracy equals the proportion of the activation distribution passing a criterion in x 

(e.g. above x = 0.5 in Figure 4b), then accuracy is inversely proportional to d .  
------------------------------- 

Insert Figure 4 about here 
-------------------------------    

In summary, we have found closed form solutions for activation at a derivative 

criterion, d , for both Kohonen and Grossberg units.   We have also shown that variation 

in d can be used to model speed-accuracy tradeoff as a decrease in d produces more 

accurate responding.  The deterministic results for time to satisfy the derivative 

criterion indicate that the increase in accuracy will be accompanied by a decrease in 

RT , as found empirically.  
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Kohonen and Grossberg Units: Monte Carlo RT Distributions 

In order to obtain results for t in Kohonen and Grossberg units we must resort to 

Monte Carlo techniques. For Grossberg units, the distribution of t can be sampled by 

calculating Equation 9 or 10 with I drawn from an appropriate random variable.  For 

Kohonen units, t must be evaluated by numerical integration. We used Euler’s method, 

which approximates the integral in the same way a random walk approximates a 

diffusion process, in small linear steps.  Each step was set at &x /10, so the effective 

value of d in the following is an order of magnitude larger the actual value of d  given. 

Note that noise was not added on each step of the solution process. Rather, inputs were 

constant within a trial but varied randomly between Monte Carlo replications.  We 

performed simulations using only the derivative criterion. 

In order to compare Grossberg and Kohonen units, we choose the parameters of 

their sigmoid bounds so they had a similar shape (α = 0.1 and c = 0.2 respectively) and 

were sensitive to inputs in the range [-1,1].  Inputs varied normally with σ= 0.1, so that 

activation remains uni-modal, and µ was chosen so that the input was usually greater 

than 0, avoiding the fast convergence region on the left of Figure 1d.   

Figure 5a shows density estimates for the Kohonen unit. One thousand solutions for 

each of six values of µ were calculated, and density estimated by adaptive time domain 

filtering with an Epanechnikov kernel. The distribution of t is positively skewed and 

uni-modal as desired for larger values of µ .  For smaller values, it become symmetric 

then negatively skewed. For the smallest value of µ (0.2), the distribution becomes U 

shaped with t = 0 for some solutions. 

Figure 5b illustrates the results for Grossberg units.  Unlike the Kohonen units, t is 

always positively skewed, with skew decreasing as mean input increases.  Note that on 

the left of Figure 5b, t  = 0 solutions occur for µ = 0.2. 
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------------------------------- 

Insert Figure 5 about here 
-------------------------------    

Hazard functions were obtained for the simulated Grossberg t values by integrating 

densities smoothed by the Epanechnikov kernel (hazard functions were not determined 

for Kohonen unit due to computational cost).  The estimated hazard functions are shown 

in Figure 5c.  A clear peak occurs and is most evident for stronger inputs.    Hence the 

hazard functions from both the lossless integrator and Grossberg units with a derivative 

criterion conform to the pattern seen in simple RT data, rising to a peak and then 

descending, especially for strong inputs. 

The results of the Monte Carlo studies favor the Grossberg over Kohonen units as 

models of RT .  The shallow sigmoid slope of Kohonen units for small inputs produces 

negatively skewed response time distributions that are not observed empirically.  For 

Grossberg units, mean, variance, and skew decreases with increasing input intensity, a 

common empirical finding, and hazard functions are appropriately shaped. 

Discussion 

The work that reported here represents only a preliminary examination of 

neuromorphic models.  Higher order differential equations can be used to provide 

greater fidelity to the neural substrate, although the first order characterizations used 

here may be adequate, especially when the “unit” represents the average behaviour of a 

tightly coupled system of neurons. The neuromorphic models also need to be extended 

to cover decisions with two or more choices.  Such an extension might use one unit to 

represent each choice, with units linked in a winner-takes-all network to ensure that 

only one response is produced.  While closed form solutions for such a model are 

unlikely, the extra complexity may be useful in modeling behaviour. Heathcote (1994) 

discusses the activation dynamics of such a unit and uses them to model signal detection 

results in recognition memory paradigms (see also Grossberg & Gutowski, 1987). 

The neuromorphic models can also be extended to model response confidence by 

the asymptotic value of activation. Categorical response confidence can be modeled by 
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the same mechanism as SDT: placing multiple criteria on asymptotic activation (see 

Link and Heath, 1975; Link, 1992; Vickers 1979 for other approaches to response 

confidence in sequential sampling models). Clearly, nonlinear bounds will modify the 

usual SDT assumption of gaussian noise in the decision (activation) variable. 

However, such nonlinear effects may be useful in modeling cognition.  For example, 

Heathcote (1993, 1994) discusses a case where bounded activation explains puzzling 

SDT results from recognition memory paradigms. 

An important innovation in the present work is the use of a derivative criterion for 

response initiation. The intuitive motivation for a derivative criterion is that, in tasks 

emphasizing accuracy, there appears to be a natural scale for RT.  It is possible that 

subjects respond when they feel that continued sampling will not result in accrual of 

further information.  The latter rule approximately corresponds to a criterion on the 

derivative. However, mathematical analysis revealed an important shortcoming of the 

derivative criterion: weak signals may result in convergence after very few time steps 

(see Figure 1d).  Clearly this is undesirable model behaviour, unless it is associated 

with paradigms where fast guesses occur (Ollman, 1966). Competitive dynamics, and 

perhaps a derivative criterion on the activation of the entire winner-takes-all network, 

may be necessary to remove this shortcoming. Another solution might be to not allow a 

decision before a lower time limit.  

One important issue is the way in which noise enters the decision.  As modeled 

here, random variation in the input occurs over trials rather than being added to the 

change of activation on each step. As one reviewer noted, why is there a need for 

repeated samples at all if there is no sample-to-sample noise?  In seems likely that 

given the noisy nature of neurons, and fluctuations in attention and input selection within 

a trial, that sample-to-sample noise is necessary (however see Dzhafarov, 1992, for 

another approach to simple RT  using only trial-to-trial variability).  Sample-to-sample 

noise will force a change in the derivative criterion because a single sample criterion 

is too vulnerable to the effects of sample-to-sample noise. The criterion may have to be 
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placed on a moving average of activation changes, or the change may have to be 

consistently less than a criterion for several time steps.   
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Footnotes 

1Some progress can be made using a first order Taylor series approximation to the 

leakage function, ( ) ( )− ≈ ++
−ln 1

1
32 3x

x x x  for -1< x < 1, which gives a differential 

equation in Bernoulli’s form.  However, the approximation is inaccurate near the 

bounds. 

2The point of inflection dividing increasing and decreasing relationships can be 

determined from the roots of the derivative of Equation 10.  In the simple case where 

inhibitory inputs are zero, x(0) = 0,  and A = 1, the equation to be solved is 

( )1 0+ + =α
I

k
Iln .  No closed form solution exists, but, for the five functions depicted in 

Figure 1d, numerical methods give the points of inflection as I = 0.0226, 0.0379, 0.086, 

0.216, and 0.359 for k = 0.0001, 0.001, 0.01, 0.05, and 0.1 respectively.   
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Figure Captions 
Figure 1.  (a) The growth in activation (x) as a function of time (t) for Equation 1 with 
linear leakage, α=0.1, β=0, x(0)=0, and a range of inputs (I).  Note the convergence to 
asymptotic values (I/α  = 1, 0.5, and 0.1).  (b) Asymptotic activation as a function of 
input intensity for a shunting sigmoid (thick line α=0.1, A=B=1) and tanh sigmoids, 
c = 0.08, 0.2, and 0.333 (from steeper to flatter curves respectively).  (c) Activation 
growth over time with positive inputs, I, for Equation 7, α=0.01, A=B=1, I- =0  . (d) t 
(plotted as the ordinate) from Equation 10 as a function of I+ (the abcissa), α=0.1, 
x(0)=0, A=B=1, and I-= 0, for five values of d. 

Figure 2. (a, b) Probability density functions and (c, d) Hazard functions (with support 
on t = 200-700, except t = 150-700 for µ  = 10, σ = 5 in (d)) for normal input to a 
deterministic single barrier random walk, B = 3000, (a, c) σ = 3, µ = 12, 10, 8 and 
(b, d) µ = 10, σ = 2, 3, 5 (iterating over curves from upper to lower).  

Figure 3.  Asymptotic activation distributions for a Kohonen unit with c = 1, x = tanh(N(
µ,σ2)) and  σ = 0.5, 1, 1.5, 2, 3, for (a) µ = 0, and (b) µ = -1, and  (c) σ = 0.5 for µ = 
0, -0.5, -1, -1.5.   

Figure 4. Asymptotic activation distributions for a Grossberg unit with x = ((I(µ,σ2)-
k)/(α+ (I(µ ,σ2)), α = 0.1, σ = 0.1, and  (a) k = 0, µ = 0.1, 0.2, 0.3, 0.4 (curves from 
left to right) and (b) µ = 0.3, k = 0.05, 0.025, 0.01, 0.0 (curves from left to right). 

Figure 5. (a) Probability density of t for Kohonen units with tanh leakage (c=0.2) and a 
derivative criterion (d  = 0.0001).  Inputs were normal with, σ = 0.1, µ = 0.2, 0.3, 0.4, 
0.5, 0.6 and 0.7 (for curves from right to left in the figure). (b) Probability density of t 
for Grossberg units with shunting bounds (α=0.1) and a derivative critieron, d = 
0.0001.  Inputs were normal with, σ = 0.1, µ = 0.5, 0.4, 0.3, and 0.2 (for curves from 
left to right in the figure). (c) Grossberg unit hazard functions with µ  = 0.5, 0.4, 0.3, and 
0.2 (for peaks from left to right respectively).   

 

 

 

 



Figure 1 

I = I I = 0.1

I = 0.05

I = 0.01

t

x

 

(a) 

I

x

 

(b) 

I=0.1

I=0.01

 I=0.001
 t

 

(c) 

 

(d) 



Neuromorphic Models  

1 

Figure 2 

 

 
t 

(a) 

 
t 

(b) 

 
t 

(c) 

 
t 

(d) 

 



Neuromorphic Models  

2 

Figure 3 

 

(a)

pd

x
 (b) x

pd

 
x

pd

(c)  



Neuromorphic Models  

3 

Figure 4 

 

x

pd

 

(a) 

x

pd

 

(b) 

 

 



Neuromorphic Models  

4 

Figure 5 

 

 

pd 

150100500

400

300

200

100

0

t (a)  
  5004003002001000

0 .02

0 .01

0 .00

pd

 
(b) 

 

pd 

 

 

t 
5004003002001000

0.05

0.04

0.03

0.02

0.01

0.00

  t
(c) 

 


