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Performance Degradation in Feedback Control
Due to Constraints

Tristan Perez, Graham C. Goodwin, and Maria M. Serón

Abstract—In this note, we present a method to characterize the degrada-
tion in performance that arises in linear systems due to constraints imposed
on the magnitude of the control signal to avoid saturation effects. We do this
in the context of cheap control for tracking step signals.

Index Terms—Antiwindup, cheap control, constrained performance.

I. INTRODUCTION

The presence of constraints on inputs, in general, produces a
degradation in the achievable closed-loop performance. Therefore, it
is of practical importance to quantify and understand the fundamental
aspects of this performance degradation. In this note, we take an initial
step by proposing a way to characterize the closed-loop performance
degradation that arises in single-input–single-output (SISO) linear
feedback systems due to constraints on the magnitude of the control
signal.

We analyze a suboptimal cheap control strategy that simply satu-
rates the unconstrained cheap controller. We propose as a measure of
performance theL2-norm (“energy”) of the tracking error when a uni-
tary reference is applied with the system initially at rest. The results
also apply for output rejection if we measure the performance by the
L2-norm of the output when a step output disturbance is applied since
the two problems are analogous. The analysis yields analytical expres-
sions for the cost that describes the degradation in performance and
provides a benchmark against which the performance of other control
strategies can be assessed. A preliminary version of these results has
been presented in [8].

II. PRELIMINARIES: LINEAR LIMITING OPTIMAL CONTROL

In this section, we review some results of linear quadratic optimal
control. These results will be used as a basis for the subsequent analysis
of the performance of constrained systems.

Consider a linear time-invariant system

_x = Ax +Bu; x 2
n; u 2

y = Cx; y 2 ; x(0) = x0 (1)

which is assumed to be stabilizable and detectable. Consider also the
problem of regulating the output to a constant set-pointr starting from
zero initial state. Let us define the error variables

e = y � r ~x = x� �x ~u = u� �u (2)

where the “bar”-variables denote the steady state values corresponding
to the set-pointr. Then, the optimal constant set-point tracking problem
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consists of finding the stabilizing feedback control law that minimizes
the following cost:

JTRACK(") =
1

0

(e2(t) + "
2~u2(t))dt: (3)

The control law that achieves zero steady-state error in the original
variables is [6]

u = �K"x+ �K"r (4)

where

K" =
1

"2
B
T
P (") �K" = C(BK" �A)�1B (5)

andP (") satisfies

A
T
P (") + P (")A+ C

T
C �

1

"2
P (")BBT

P(") = 0: (6)

The cheap control framework assumes" ! 0. The optimal value
of JTRACK for this case can be obtained by transforming the system
into its normal form or zero dynamics form [5], i.e.,~x is transformed
to [�T zT]T by a linear transformation that takes the system into the
following form:

_� = A0� +B0z1

_z = A1� + A2z +B1u

y = z1: (7)

In (7), � 2 m; z = [z1; z2; . . . ; zn�m]T 2 n�m, and the eigen-
values ofA0 are them zeros of the system transfer functionG(s) =
C(sI � A)�1B. The �-subsystem is called the zero-dynamics sub-
system. Then, the optimal cost is [11]

J
OPT

TRACK = ~�(0)TP0~�(0) (8)

whereP0 is the solution of the following Lyapunov equation:

A
T

0 P0 + P0A0 = P0B0B
T

0 P0: (9)

Suppose that all the zeros are non minimum phase (NMP). Then,A0 is
nonsingular and the initial condition for the zero-dynamics subsystem
is ~�(0) = A�1

0
B0r. Using this value in (8), and assumingr = 1, we

obtain

J
OPT

TRACK = B
T

0 A
T

0

�1

P0A
�1

0 B0

= 2 trace A�10 = 2

m

i=1

1

qi
(10)

whereqi; i = 1; . . . ; nq , are the NMP-zeros of the system.
This result was originally obtained in [9] for the case of output dis-

turbances using feed-forward control law.

A. Input–Output Characteristics and Classical Control Loops

An interesting aspect of the cheap control problem is its asymptotic
input–output behavior. It was shown in [1] (and analyzed in detail in [6]
and [7]) that, as"! 0, some closed-loop poles converge to the reflec-
tion of the nonminimum phase zeros about the imaginary axis, while
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Fig. 1. Standard SISO loop.

the remaining poles tend to infinity in Butterworth patterns. These re-
sults are summarized in the following.

Let the transfer function of (1) be

G(s) = �

m

i=1
(s� qi)

n

i=1
(s� pi)

; � 6= 0: (11)

Using (4) in closed loop with the system (1), and taking" ! 0, it
was shown in [6] that the closed-loop transfer functionT (s) from the
referenceR(s) to the outputY (s) approaches

TCHEAP(s)!
1

�n�m
s

!

m

i=1

� s

q
+ 1

� s

q̂
+ 1

!0 =
�2

"

(12)
where

q̂i =
qi; if Re(qi) � 0

�qi; if Re(qi) > 0
(13)

and�n�m is a Butterworth polynomial of ordern�m and radius 1,!0
is the asymptotic radius of the Butterworth configuration of then�m

closed loop poles that tend to infinity, andqi; i = 1; . . . ; m, are the
zeros of the open-loop transfer function (11). In (12), we can also see
that there is a two-time scale behavior of the closed loop system, since
the all-pass factors have slow dynamics and the poles in the Butterworth
pattern have fast dynamics. In the limit, as" ! 0, no matter what
the initial condition(�(0); z(0)) is, the state(�(0+); z(0+)) is on a
singular hyperplane given byy + BT

0 P0� = 0, and evolves inside
this subspace thereafter. The initial fast response of the state is singular
and so is the control that takes the state from the initial condition into
the hyperplane. Once the state is on the hyperplane, it presents a slow
evolution given by the dynamics according to_� = P�10 AT0 P0� with
y = �BT

0 P0�. For systems of higher relative degree, a similar analysis
holds [10].

The results presented so far deal with the cheap control problem for
state feedback; however, for standard SISO control loops (see Fig. 1)
similar results hold [2]. One way to obtain such results is by using ex-
pression (12) and the affine parametization of all stabilizing controllers,
see for example [3] or [4]. Specifically, (12) can be expressed as

TCHEAP(s) = G(s)QCHEAP(s) (14)

whereQCHEAP(s) is a stable proper transfer function satisfying

QCHEAP(s) = G
�1

MP (s)F (s) F (s) =
1

�n�m
s

!

(15)

where�n�m is as in (12), andGMP (s) has the same poles ofG(s)
and the reflection of the nonminimum phase zeros ofG(s) through the
imaginary axis. If the plantG(s) is stable, the controllerC(s) in Fig. 1
can be parameterized as

C(s) = Q(s)�1(1�G(s)Q(s)): (16)

For the case of unstable plants, an alternative parameterization to (16)
can be used; see, for example, [4]. However, for ease of exposition, we
consider open-loop stable plants. Under these conditions, we have the
following result for the standard single-loop case.

Proposition I.1: Assuming that the standard control loop is inter-
nally stable, and thatC(s) provides integral action, then for unitary
step reference

inf
1

0

e
2(t) dt = 2

n

i=1

1

qi
(17)

wherefqi: i = 1; . . . ; nqg is the set of zeros in the ORHP ofL(s) =
C(s)G(s).

Proof: By parameterizingC(s) as in (16) withQ satisfying (15),
thenT (s) = TCHEAP(s) in the limit as"! 0; and thereforeY (s) =
YCHEAP(s) and the tracking errors of both single loop and state feed-
back compensator schemes are the same. Finally, it follows that the
latter controller provides integral action from (4), and (17) is imme-
diate from (10).

The simple proof for Proposition I.1 highlights the link between the
single loop structure and the state feedback compensator, and serves as
a basis to extend the results to the constrained cases. However, it should
be noted, that this Proposition can also be demonstrated directly using
quadratic optimal synthesis to obtainQ(s); see, for example, [2].

III. CONSTRAINED CHEAP CONTROL PERFORMANCE

In this note, we address the problem of tracking step references. We
propose as a measure of the performance limitations in the presence of
input constraints the value of theL2-norm of the tracking error for the
cheap antiwindup scheme shown in Fig. 2 [4], where

sat�(z) = minfz;�sign(z)g; � > 0: (18)

Antiwindup schemes, such as the one shown in Fig. 2, provide the
simplest solution to avoid excessive performance degradation due con-
strains, and have been thoroughly analyzed in the literature; see, for
example, [4] and the references therein. This motivates us to use this
scheme to quantify the performance degradation.

The controllerC(s) in Fig. 2 is the biproper cheap controller pa-
rameterized as in (16) withQ(s) satisfying (15) andc1 is its high
frequency gain. It is easily seen that when the system is not saturated,
the inner loop in Fig. 2 reduces toC(s); and therefore, the closed-loop
transfer function without saturation equals that given in (12). It is also
worth noting that the antiwindup scheme shown in Fig. 2 is equivalent
to saturating the state feedback cheap controller scheme. We will com-
ment on this later.

The performance for SISO systems subject to the constraintju(t)j �
�8twill then be measured by the value of the cost function given in (3)
when a unit step reference is applied with the system initially at rest.
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Fig. 2. Simplified antiwindup control loop.

Fig. 3. Antiwindup open-loop equivalent control.

To evaluate the cost (3), we assume that input saturation only occurs
in the first part of the evolution of the system.

Assumption 1 (A.1):There exists timetsat 2 [0+;1), such that
the control of the closed-loop system switches between the saturation
levels fort < tsat, and never thereafter.

Note that this is a reasonable assumption given the high gain nature
of the cheap controller. Under Assumption (A.1), the cost (3) can be
separated into two components; one corresponding to the period of time
where the control saturates and the other corresponding to the period
of time starting when the control leaves saturation until it reaches the
final steady-state valueu(1), i.e.,

J = lim
"!0

t

0

(e2(t) + "
2
u
2(t))dt

+ lim
"!0

1

t

(e2(t) + "
2
u
2(t))dt: (19)

1) Cost During Saturation:In order to evaluate the first term of
the cost (19), we will use the affine parameterization of the controller
[cf., (14) and (16)]. For stable plants, the cheap antiwindup scheme in
Fig. 2 can be analyzed using the equivalent open-loop scheme shown in
Fig. 3, i.e., the latter scheme reproduces the control and output signals
of the scheme in Fig. 2. In Fig. 3,Q(s) is the biproper transfer function
given by (15), andq1 is its high frequency gain. It is easily seen that
when the system is not saturated, the loop in Fig. 3 reduces toQ(s).

From Fig. 3, we see that after applying a unit step signal inr(t),
the controlu(t) typically saturates since the gainq1 is usually large
for small values of". We thus assume, without loss of generality, that
u(0+) = �. The control will then switch between� and�� until
t = tsat when it leaves saturation to continue with a linear evolution.
The crucial step in this analysis is then to evaluate the switching times
during the saturated regime. We will illustrate the ideas by taking the
cases with, at most, one switch in the saturation regime. In these cases,
during the saturation period[0+; tsat); û(t) (i.e., the signal at the input
of the saturation function; see Fig. 3) is given by

û(t) = q1 1� L�1 Q(s)�1 � q
�1

1

�

s
(20)

whereL�1f � g denotes the inverse Laplace transform operator. In ad-
dition, the control signal leaves saturation when the following condition
is satisfied:

û(tsat) = �: (21)

Using (20) and (21), we can determine the time instanttsat at which
the control leaves saturation. Also, from Fig. 3, we see that the tracking
error during the saturation interval can be calculated as

e(t) = y(t)� r = L�1 G(s)
�

s
� 1:

With the aforementioned expressions fore(t) andtsat, all the ingredi-
ents to evaluate the first term of (19) are available. After performing
the limits and the integration, we can obtain an analytical expression
for the first term of the cost.

2) Cost After Saturation:Once the control signal leaves saturation,
the problem reduces to the unconstrained cheap control problem. To
find the associated cost we will use the properties of the slow evolution
of the state in the singular hyperplane. The first step is to recognize
that when the system leaves saturation, the state of the system is on the
singular hyperplane. This is easy to show by contradiction: Suppose
that the system leaves saturation and never saturates again, and also that
the state is not on the singular hyperplane. Then as the control is not
saturated the system behaves like the unconstrained problem, and since
the state is not on the singular hyperplane there will be a singularity
in the control that will make the control saturate. Therefore, once the
control leaves saturation, the state must be on the singular hyperplane.

Consequently, once the control leaves saturation att = tsat, the
state of the system follows the same trajectories that the unconstrained
state would have followed if it had started from the initial condition
[�(tsat)z(tsat)]

0. Hence, the cost after saturation is

1

t

e
2(t)dt = �(tsat)

0

P0�(tsat) (22)
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Fig. 4. Cost versus� for Example 2.

where�(tsat) is determined from

�(tsat)

z(tsat)
= eA t �(0)

z(0)
+

t

0

eA (t��)Bn� d� (23)

whereAn andBn are given by

An
4

=
A0 [B0 0 0]

A1 A2
Bn

4

=
0

B1

Cn
4

= [1 0 � � � 0]: (24)

Equation (22) allows us to complete the calculation of the cost by eval-
uating the second term of on the right-hand side of (19).

For systems with only one nonminimum phase zero, the evaluation
of the cost once the system leaves saturation can be considerably sim-
plified since it is not necessary to solve (23). If the system has only
one nonminimum phase zero, the singular hyperplane becomes a line
in n. Since the singular hyperplane is a line, the outpute = ~z1 after
saturation has the same evolution as the unconstrained output shifted
in time. As a consequence, we can evaluate the cost after saturation of
the constrained cheap control problem using a partial cost of the un-
constrained cheap control problem as

1

t

e2 dt �
1

t

1� L�1
� s

q
+ 1

s

q
+ 1

1

s
dt

2

=
2

q
e�2qt : (25)

The approximation in (25) comes from neglecting the high frequency
poles in the Butterworth arrangement in (12). The valuet� is deter-
mined from the condition

L�1 G(s)
�

s
t = L�1

� s

q
+ 1

s

q
+ 1

1

s
t

:

Specifically, if we callkt sat = L�1[G(s)(�=s)]jt , then

t� = �1

q
ln

1� kt sat
2

: (26)

Comparing (25) with (10) for the case of a single nonminimum phase
zero, we see that the partial cost (25) is smaller than the total uncon-
strained cost (10). However, whereas the transition to the singular hy-
perplane is costless in the unconstrained case, it has a nonzero cost in
the constrained case since the state cannot “jump” to the singular hy-
perplane but has a slow evolution to the hyperplane while the control is
saturated. The combination of the two partial costs yields a cost larger
than the unconstrained cost (10), as we will see in the examples.

A. Examples

Example 1: Consider the following system:

G(s) =
1

�s+ 1
:

Then, the equivalent open-loop cheap controller is given by

Q(s) =
�s+ 1

�s+ 1

where� =
p
�. It also follows that,q1 = �=� and

Q(s)�1 � q�1
1 =

(� � �)

� (�s+ 1)
: (27)

Using (27) in (20), we have

û(t) =
�

�
1� (� � �)

�
1� e� � :

This last expression is valid untiltsat. Using (21), and taking the limit
as� ! 0; tsat is found to be

tsat ! �� ln �� 1

�
: (28)

Also, until tsat the tracking error is

e(t) = � 1� e� � 1: (29)

Finally, since the system is minimum phase, and using (29) and (28),
we obtain the following expression for the cost (19):

J = �
3

2
(1��)2 + (�2 � 2� + 1)

� log
�

�� 1
� 3

2
�2 + 2� : (30)

It should be noted that for the set point value of the control signal to
be feasible, we need� > 1. Since this system is minimum phase, the
limiting cheap cost for� ! 1 is zero. Also, as expected, the slower
the plant (i.e., larger� ), the higher the cost, since slow plants require
more control effort that contribute to saturation in this case.

Even though the results are in agreement with intuition, the
expression for the cost (30) is far from trivial. This indicates, that
even for a simple case, the structural characteristics of the system
and its dynamics combine in a rather involved manner to contribute
to the degradation of performance.

Example 2: Consider the following system:

G(s) =
2(1� �s)

(s+ 1)(s+ 2)
: (31)
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In this case, the equivalent open-loop cheap controller is given by

Q(s) =
(s+ 1)(s+ 2)

2(1 + �s)(1 + �s)
: (32)

It then follows thatq1 = 1=2��, and

Q(s)�1 � q�1
1

=
2 [(� + � � 3��)s+ (1� 2��)]

(s+ 1)(s+ 2)
: (33)

Using (33) in (20) we have that, as� ! 0

tsat ! ln
(1� 2�)

��(1 + �)� �2(� + 1)2 +�(1� 2�)(1��)
:

(34)

The tracking error on the interval[0+tsat) is

e(t) = � 1� 2(1 + �)e�t + (1 + 2�)e�2t � 1: (35)

The value ofkt sat given by

kt sat = � 1� 2(1 + �)e�t + (1 + 2�)e�2t
t

(36)

andtstar is given in (26).
Using (34)–(36), (25), and (26), we can evaluate the cost. The results

are shown in Fig. 4. Note that as�!1 the limiting cost approaches
2�, which is consistent with the results of unconstrained cheap con-
trol. The results shown in Fig. 4 give insight into the effect of the input
constrained achievable performance. It is interesting, for instance, to
note that a constraint� = 5 (which is five times the steady state input
necessary in this case) changes the performance limit associated with
a non minimum phase zero at10 (� = 0:1) to be equivalent to the per-
formance limit achievedwithout constraintsfor a non minimum phase
zero at five. This illustrates the fact that, depending on conditions, the
effect of input constraints can swamp linear effects due to right-half
plane zeros. This is in accord with intuition.

IV. CONCLUSION

In this note, we have presented a method to evaluate the degrada-
tion in performance of the closed-loop system when constraints are
added. We have focused our analysis on open-loop stable SISO sys-
tems tracking step references, and used as performance index the value
of theL2-norm of the error.

We have obtained analytical expressions for the cost (performance
index) that show how system dynamics and constraints interact to de-
teriorate the performance. Even for simple cases, the obtained expres-
sions indicate that this interaction is far from trivial. In addition, for
some cases, tight constraints can swamp limitations associated with
system dynamics.

The information provided by the analysis has implications on the
choice of actuator authority and on the need for using tactical strategies
to address the problem of constraint handling. Indeed, it is a common
practice to ignore constraints in previous stages of control design and
then evaluate the performance in the presence of constraints. The pro-
posed method not only can help to assess whether this approach leads
to good results but also to decide whether to upgrade the actuator or
alternatively to consider more sophisticated control strategies.

Although the presented method has only been illustrated for systems
with at most one switch, the path to follow for extending the results to
multiswitching systems is clear. However, depending on the dynamics
of the system, the calculations of the time switchings can be rather
involved.
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Performance Limitations of Nonlinear Periodic
Sampled-Data Controllers for

Disturbance Rejection

Robert Schmid and Cishen Zhang

Abstract—This note presents a performance analysis of periodic
nonlinear sampled-data controllers for the rejection of specific and
uniform disturbances. Earlier results on the performance of linear
periodic controllers are extended to nonlinear controllers. For a given
periodic controller, a time invariant controller is constructed which in
general gives strictly better disturbance rejection performance than
the periodic controller.

Index Terms—Disturbance rejection, space, nonlinear systems, peri-
odic systems, sampled-data systems.

I. INTRODUCTION

Time-varying and nonlinear feedback control is often applied to
systems for which conventional linear time invariant control cannot
achieve the desired system performance. The use of periodic linear
and nonlinear control to achieve particular performance specifications
has been actively studied for the last two decades. Periodic control has
been shown to have advantages over time-invariant control in a number
of areas, including simultaneous stabilization of a number of plants
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