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CUNTZ-KRIEGER ALGEBRAS
OF INFINITE GRAPHS AND MATRICES

IAIN RAEBURN AND WOJCIECH SZYMAŃSKI

Abstract. We show that the Cuntz-Krieger algebras of infinite graphs and
infinite {0, 1}-matrices can be approximated by those of finite graphs. We
then use these approximations to deduce the main uniqueness theorems for
Cuntz-Krieger algebras and to compute their K-theory. Since the finite ap-
proximating graphs have sinks, we have to calculate the K-theory of Cuntz-
Krieger algebras of graphs with sinks, and the direct methods we use to do
this should be of independent interest.

The Cuntz-Krieger algebras OA were introduced by Cuntz and Krieger in 1980,
and have been prominent in operator algebras ever since. At first the algebras
OA were associated to a finite matrix A with entries in {0, 1}, but it was quickly
realised that they could also be viewed as the C∗-algebras of a finite directed graph
[33]. Over the past few years, originally motivated by their appearance in the
duality theory of compact groups [22], authors have considered analogues of the
Cuntz-Krieger algebras for infinite graphs and matrices (see [21], [27], [10], [13],
[1] and the survey articles [18], [24]). The class of Cuntz-Krieger algebras now
encompasses a vast array of important C∗-algebras, including Toeplitz algebras,
O∞ and AF -algebras, as well as those arising in duality theory.

A directed graph E consists of a vertex set E0, an edge set E1, and range
and source maps r, s : E1 → E0. A Cuntz-Krieger E-family consists of mutually
orthogonal projections {Pv : v ∈ E0} and partial isometries {Se : e ∈ E1} satisfying

(0.1) S∗eSe = Pr(e) and Pv =
∑

{e : s(e)=v}
SeS

∗
e whenever v is not a sink;

the graph algebra C∗(E) is the universal C∗-algebra generated by a Cuntz-Krieger
E-family {se, pv}. The equations (0.1) make sense as they stand for row-finite
graphs, in which the index set {e ∈ E1 : s(e) = v} for the sum is always finite.
If a vertex v emits infinitely many edges, the sum does not make sense in a C∗-
algebra, because infinite sums of projections cannot converge in norm. However, it
was observed in [13] that the general theory of Cuntz-Krieger algebras carries over
to arbitrary countable graphs if one simply removes the relations involving infinite
sums from (0.1), and requires instead that the range projections SeS∗e are mutually
orthogonal and dominated by Ps(e).

Exel and Laca have described a different generalisation of the Cuntz-Krieger al-
gebras for infinite matrices A [10]. Their defining relations are complicated: loosely
speaking, one has to include a Cuntz-Krieger relation whenever a row-operation
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on A yields a finitely non-zero vector. The resulting Exel-Laca algebras include
the graph algebras of [13] (and the results of [10] are used in [13]), but there exist
matrices A for which OA is not a graph algebra (see Remark 4.4). The analysis of
[10] is deep, and depends on the machinery of partial actions [12]; Szymański has
shown that Exel-Laca algebras can also be analysed using Pimsner’s results on the
Cuntz-Pimsner algebras of Hilbert bimodules [30].

We show here that the Exel-Laca algebras are direct limits of C∗-algebras of
finite graphs, and that this approximation process can be used to derive the main
theorems about them. We hope that, since the theory of algebras of finite graphs
is by now relatively elementary (see [1] and §1 below), this provides a more friendly
route to the Exel-Laca theory. We also believe that the approximation process we
describe is itself a powerful tool, which will be helpful, for example, when working
with K-theory.

It is an intrinsic feature of our construction that the approximating graphs have
sinks. (In the language of {0, 1}-matrices, we need to allow rows of zeros.) It
is understood in principle how to adapt the general theory to cover graphs with
sinks [1, §1], but calculating the K-theory requires some work. Our approach to
the computation of K-theory is new: we use the skew-product graphs of Kumjian
and Pask [19] to avoid much of the usual chasing through stable isomorphisms and
duality [8], [25], [23]. Thus this approach should be of interest even to those who
only encounter graphs without sinks.

We begin in Section 1 by describing our approximation procedure for the graph
algebras of infinite graphs, which is based on the isomorphism between the C∗-
algebra of a graph and that of its dual. In Section 2, we describe the analogous
approximation of Exel-Laca algebras, which is based on the usual isomorphism of
a Cuntz-Krieger algebra with a graph algebra. Once we have the approximation,
we can easily deduce the uniqueness theorems for Exel-Laca algebras; our gauge-
invariant uniqueness theorem is apparently new, even for the algebras of infinite
graphs. In Section 3, we calculate the K-theory of C∗(E) when E is a row-finite
graph with sinks, and in Section 4 we show how to apply this to Exel-Laca algebras.
We close with a section of concluding remarks, in which we consider questions of
finiteness, stable rank and approximate finite-dimensionality.

1. The C∗-algebras of infinite graphs

Let E = (E0, E1, r, s) be a (countable) directed graph. A Cuntz-Krieger E-
family consists of mutually orthogonal projections {Pv : v ∈ E0} and partial isome-
tries {Se : e ∈ E1} with mutually orthogonal ranges satisfying

(G1) S∗eSe = Pr(e),
(G2) SeS∗e ≤ Ps(e),
(G3) Pv =

∑
s(e)=v SeS

∗
e if s−1(v) is finite and non-empty.

The C∗-algebra C∗(E) of E is the universal C∗-algebra generated by a Cuntz-
Krieger family {se, pv}; there are various ways of showing that there is such a C∗-
algebra, either by direct arguments [15], [20] or by appealing to general machines
[2], [13]. If {Se, Pv} is a Cuntz-Krieger family, we denote by πS,P the representation
of C∗(E) such that πS,P (pv) = Pv and πS,P (se) = Se. The universality of C∗(E)
implies that there is a gauge action γ : T→ AutC∗(E) such that γz(pv) = pv and
γz(se) = zse.
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The key idea in what follows is to approximate the dual of a graph rather than
the graph itself. The dual is by definition the graph Ê with Ê0 = E1,

Ê1 = {(e, f) ∈ E1 × E1 : r(e) = s(f)},

r̂(e, f) = f and ŝ(e, f) = e. The embeddings of the approximating graph algebras
which we describe in Lemma 1.2 below are modelled on the isomorphism of C∗(Ê)
onto C∗(E) constructed in [1, Corollary 2.5].

To construct our approximations, we start with a finite subgraph F of E, and
form its dual F̂ . We then look at the vertices in r(F 1) which emit in E both edges
in F and edges which are not in F : for each such vertex v we add a sink to F̂ , and
for each edge e in F ending at v we add a new edge to F̂ going from the vertex
e in F̂ to the sink. For example, if E is the following infinite graph and F is its
subgraph consisting of the edges labelled 1, 2, and 3,
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then our procedure yields the following finite graph:
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More formally, we make the following definition.

Definition 1.1. Let E be a directed graph without sinks and let F ⊂ E1 be a
finite set. Let EF denote the finite directed graph in which

E0
F = F ∪ (r(F ) ∩ s(F ) ∩ s(E1 \ F )),

E1
F = {(e, f) ∈ F × E0

F : r(e) = s(f)},

s(e, f) = e, and r(e, f) = f .

When E is a finite directed graph without sinks and F = E1, we have EF = Ê,
but in general EF may have many sinks even if E has none. We think of the
vertices in EF as representing projections in the C∗-subalgebra of C∗(E) generated
by {se : e ∈ F}: the projection corresponding to a vertex e ∈ F is the range
projection ses∗e, and the one corresponding to a vertex v ∈ r(F )∩ s(F )∩ s(E1 \F )
is pv−

∑
{sfs∗f : f ∈ F, s(f) = v} (which is a minimal projection in C∗(se : e ∈ F )).

The next lemma makes this precise.
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Lemma 1.2. Let E be a directed graph without sinks and let F ⊂ E1 be a finite
set of edges. Then C∗(EF ) is naturally isomorphic to the C∗-subalgebra of C∗(E)
generated by {se : e ∈ F}.

Proof. Let A denote the C∗-subalgebra of C∗(E) generated by {se : e ∈ F}. The
projections

{ses∗e : e ∈ F} ∪
{
pv −

∑
f∈F, s(f)=v

sfs
∗
f : v ∈ E0

F ∩ E0
}

and the partial isometries

{sesfs∗f : e, f ∈ F, r(e) = s(f)}

∪
{
se

(
pr(e) −

∑
f∈F, s(f)=r(e)

sfs
∗
f

)
: e ∈ F, r(e) ∈ E0

F \ F
}

form a Cuntz-Krieger EF -family in A. Since every se is a finite sum of elements of
this family, the family generates A. Thus the universal property of C∗(EF ) gives a
surjective homomorphism φ : C∗(EF )→ A which carries generators to generators.
Let α, γ be the gauge actions of T on C∗(EF ) and C∗(E), respectively. Since A is
γ-invariant and φ ◦ αz = γz ◦ φ for z ∈ T, the gauge-invariant uniqueness theorem
[1, Theorem 2.1] implies that φ is an isomorphism. �

When E is the graph with one vertex and infinitely many edges, C∗(E) is the
Cuntz algebra O∞, and Lemma 1.2 yields the description of O∞ as a direct limit
of Toeplitz-Cuntz algebras T On used in [7]. However, the approximation tech-
nique based on Lemma 1.2 is substantially different from the one used by Pask and
Raeburn in [25].

It will be important later that the process of passing from E to the finite ap-
proximation EF preserves the loop structure. As in [20], an exit from a loop L is
an edge e ∈ E1 \ L whose source s(e) is also the source of an edge in the loop.

Lemma 1.3. Let E be a directed graph without sinks and let F ⊂ E1 be a finite set.
If L = (x1, . . . , xn) is a loop in EF , then there exists a unique loop L′ = (e1, . . . , en)
in E such that {ei}ni=1 ⊂ F , xi = (ei, ei+1) for i = 1, . . . , n− 1 and xn = (en, e1).
Furthermore, L has an exit if and only if L′ does.

Proof. Since different edges in EF come from different edges in E, any exit for L
in EF comes from an exit for L′. On the other hand, if L′ has an exit, then there
is a vertex in F which emits two edges e, f in E, at least one of which, say f , is in
F . If e ∈ F too, then e is an exit in F ; if e 6∈ F , then there is an edge from s(e) to
a sink which leaves L. �

We need to know how to relate the C∗-algebras of arbitrary graphs to those of
graphs with neither sinks nor sources. As was shown in [1, Lemma 1.2] for row-
finite graphs, we can add tails at sinks without substantially changing C∗(E). An
obvious analogue of this procedure for dealing with sources was described in [13]:
by adding a head at a vertex w we mean extending E to a graph F , in which

F 0 = E0 ∪ {vi : −∞ < i ≤ −1}, F 1 = E1 ∪ {ei : −∞ < i ≤ −1},
and r, s are extended to F 1 by r(ei) = vi+1 (and r(e−1) = w) and s(ei) = vi. The
proof of the following lemma is almost identical to that of [1, Lemma 1.2], and
hence is omitted.
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Lemma 1.4. Let E be a directed graph and let F be the graph obtained by adding
a tail at each sink in E and a head at each source in E. Then:

(1) for each Cuntz-Krieger E-family {Se, Pv} on a Hilbert space HE, there is
a Hilbert space HF = HE ⊕ HT and a Cuntz-Krieger F -family {Te, Qv}
such that Te = Se for e ∈ E1, Qv = Pv for v ∈ E0, and

∑
v 6∈E0 Qv is the

projection on HT ;
(2) if {Te, Qv} is a Cuntz-Krieger F -family, then {Te, Qv : e ∈ E1, v ∈ E0} is

a Cuntz-Krieger E-family. If w is a sink (source) in E such that Qw 6= 0,
then Qv 6= 0 for every vertex v on the tail (head) attached to w;

(3) if {te, qv} are the canonical generators of C∗(F ), then the homomorphism
πt,q corresponding to the Cuntz-Krieger E-family {te, qv : e ∈ E1, v ∈ E0}
is an isomorphism of C∗(E) onto the C∗-subalgebra of C∗(F ) generated by
{te, qv : e ∈ E1, v ∈ E0}, which is the full corner in C∗(F ) determined by
the projection p :=

∑
v∈E0 qv.

Exactly how the sum
∑
v∈E0 qv defines a projection p in M(C∗(F )) is explained

in [1, Lemma 1.1]. We are now ready to give our proof of the Cuntz-Krieger
uniqueness theorem for C∗-algebras of arbitrary graphs. This result was originally
proved in [13, Theorem 2] using the machinery of [10].

Theorem 1.5. Suppose that E is a directed graph in which every loop has an
exit, and that {Se, Pv}, {Te, Qv} are two Cuntz-Krieger E-families in which all the
projections Pv and Qv are non-zero. Then there is an isomorphism φ of C∗(Se, Pv)
onto C∗(Te, Qv) such that φ(Se) = Te and φ(Pv) = Qv for all e ∈ E1 and v ∈ E0.

Proof. We first claim that it suffices to prove the theorem for graphs without sinks
or sources. Indeed, given this, the general case follows from Lemma 1.4, as in the
first paragaph of the proof of [1, Theorem 3.1]. So assume that E has no sinks or
sources. We shall prove the theorem by showing that the representations πS,P and
πT,Q of C∗(E) are faithful; then φ := πT,Q ◦ π−1

S,P is the required isomorphism. By
symmetry, it is enough to show that πS,P is faithful.

Write E1 =
⋃∞
n=1 Fn as the increasing union of finite subsets Fn, and let Bn

be the C∗-subalgebra of C∗(E) generated by {se : e ∈ Fn}. By Lemma 1.2 there
are isomorphisms φn : C∗(EFn) → Bn which respect the generators. Since all
loops in Fn have exits by Lemma 1.3, [1, Theorem 3.1] implies that πS,P ◦ φn
is an isomorphism, and hence is isometric. Thus πS,P is isometric on the dense
∗-subalgebra

⋃
nBn of C∗(E), and hence on all of C∗(E); in particular, it is an

isomorphism. �

2. The Cuntz-Krieger algebras of infinite matrices

Let I be a countable set and let A =
(
A(i, j)

)
be an I × I matrix with entries in

{0, 1}, in which no row is identically zero. The Exel-Laca algebra OA is by definition
the universal C∗-algebra generated by a family of partial isometries {si : i ∈ I}
satisfying the following relations:

(EL1) s∗i si and s∗jsj commute for all i, j ∈ I;
(EL2) s∗i sj = 0 whenever i 6= j;
(EL3) (s∗i si)sj = A(i, j)sj for all i, j ∈ I; and
(EL4) for every pair X,Y of finite subsets of I such that

S(X,Y ) := {k ∈ I : A(i, k) = 1 for all i ∈ X and A(j, k) = 0 for all j ∈ Y }
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has at most finitely many elements,( ∏
i∈X

s∗i si
)( ∏

j∈Y
(1− s∗jsj)

)
=

∑
k∈S(X,Y )

sks
∗
k.

(It is easiest to think of the 1 in (EL4) as the identity of the multiplier algebra of
OA.) As in [15] and [1, §1], the uniqueness of the universal object OA implies the
existence of a gauge action γ : T → AutOA such that γz(si) = zsi for z ∈ T and
i ∈ I.

For finite matrices, the Exel-Laca algebras are the usual Cuntz-Krieger algebras,
and hence are precisely the C∗-algebras of finite directed graphs without sinks.
While we cannot always realise the Cuntz-Krieger algebra OA of an infinite matrix
as a graph algebra (see Remark 4.4), we can always construct a directed graph EA
from a {0, 1}-matrix A by taking E0

A := I,

E1
A = {(i, j) ∈ I × I : A(i, j) = 1},

and defining s(i, j) = i and r(i, j) = j; this graph played an important role in
Exel and Laca’s analysis of OA [10]. For finite A, the identification of OA with
C∗(EA) takes a generating family {si} to the Cuntz-KriegerEA-family {t(i,j), qi} :=
{sisjs∗j , sis∗i }. Our approximation of OA by graph algebras uses the same idea: we
start with a finite subset F of the index set, and aim to view {sisjs∗j , sis∗i : i, j ∈ F}
as a Cuntz-Krieger family of a finite graph. In general si could be strictly larger
than

∑
j∈F sisjs

∗
j ; to recover si, we need to include other summands of the form

sip. From our point of view, the sets S(X,Y ) of (EL4) arise because we have to
include such a term whenever p is a minimal projection in the C∗-subalgebra of OA
generated by {si : i ∈ F}, and these minimal projections turn out to be{( ∏

i∈X
s∗i si

)( ∏
j∈F\X

(1− s∗jsj)
)(

1−
∑
k∈F

sks
∗
k

)
:

∅ 6= X ⊂ F satisfies S(X,F \X) 6⊂ F
}
.

The extra vertices in our approximating graph are in one-to-one correspondence
with these minimal projections. It is important to note that the extra vertices X
are all sinks, and that if A(i, j) = 1 only for j ∈ F , then there are no edges of the
form (i,X).

Definition 2.1. For each non-empty finite subset F of the index set I we define a
finite directed graph E(A,F ) by

E(A,F )0 = F ∪ {X : ∅ 6= X ⊂ F satisfies S(X,F \X) 6⊂ F},
E(A,F )1 = {(i, j) ∈ F × F : A(i, j) = 1} ∪ {(i,X) : i ∈ X}.

Proposition 2.2. If {Si} is a family of partial isometries satisfying the relations
(EL1–4), then

Qi := SiS
∗
i , QX :=

( ∏
i∈X

S∗i Si

)( ∏
j∈F\X

(1− S∗j Sj)
)(

1−
∑
k∈F

SkS
∗
k

)
,

T(i,j) = SiQj and T(i,X) = SiQX form a Cuntz-Krieger E(A,F )-family which
generates C∗(Si : i ∈ F ). If every Si is non-zero, then every projection Qv is
non-zero.
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The proof of this proposition requires a simple lemma.

Lemma 2.3. Suppose P1, · · · , Pn are commuting projections on a Hilbert space H.
Then

1 =
∑

Y⊂{1,··· ,n}

(∏
i∈Y

Pi

)(∏
i/∈Y

(1 − Pi)
)
.

Proof. By induction on n: multiply the formula for n = k by Pk+1 +(1−Pk+1). �
Proof of Proposition 2.2. The projections Qi are mutually orthogonal by (EL2),
and are orthogonal to QX because of the factor 1−

∑
k∈F SkS

∗
k . The other factors

in the QX ensure that they are mutually orthogonal. Since A(i, j) = 1 implies
S∗i Si ≥ Qj , we have T ∗(i,j)T(i,j) = Qj = Qr(i,j), and since S∗i Si ≥ QX whenever
i ∈ X , we have T ∗(i,X)T(i,X) = QX = Qr(i,X). If A(i, j) = 1 only for j ∈ F , then
there are no edges of the form (i,X), and∑

(i,j)

T(i,j)T
∗
(i,j) =

∑
{j:A(i,j)=1}

SiSjS
∗
j S
∗
i = Si(S∗i Si)S

∗
i = SiS

∗
i

follows from the usual Cuntz-Krieger relation (which is (EL4) for the combination
X = {i} and Y = ∅). When there do exist edges of the form (i,X), we use
Lemma 2.3 and (EL3) to compute

∑
{X: i∈X}

QX = S∗i Si

( ∑
Y⊂F\{i}

( ∏
j∈Y

S∗j Sj

)( ∏
j∈(F\{i})\Y

(1−S∗jSj)
)(

1−
∑
k∈F

SkS
∗
k

))(2.1)

= S∗i Si
(

1−
∑
k∈F

SkS
∗
k

)
= S∗i Si

(
1−

∑
{k∈F :A(i,k)=1}

SkS
∗
k

)
.

Now we have∑
(i,j)

T(i,j)T
∗
(i,j) +

∑
X

T(i,X)T
∗
(i,X) =

∑
{j∈F :A(i,j)=1}

SiSjS
∗
j S
∗
i +

∑
{X⊂F : i∈X}

SiQXS
∗
i ,

which equals SiS∗i by (2.1). Thus {Te, Qv} is a Cuntz-Krieger E(A,F )-family.
Equation (2.1) also implies that we can recover Si as

(2.2) Si =
∑
(i,j)

T(i,j) +
∑

{X: i∈X}
T(i,X) = Si

( ∑
{j∈F :A(i,j)=1}

SjS
∗
j +

∑
{X: i∈X}

QX

)
,

so the operators Te and Qv generate C∗(Si). For the last comment, note that
S(X,F \X) 6⊂ F implies QX ≥ SkS∗k for some k /∈ F , and hence that QX 6= 0. �
Corollary 2.4. Let A be an I × I matrix with entries in {0, 1} and no zero rows.
Then for every non-empty finite subset F of I, the graph algebra C∗(E(A,F )) is
naturally isomorphic to the C∗-subalgebra of OA generated by {si : i ∈ F}.
Proof. Applying the proposition to the canonical generating family {si} of OA
gives a Cuntz-Krieger E(A,F )-family {Te, Qv} which generates C∗(si : i ∈ F ),
and in which each of the projections Qv is non-zero. Since the gauge action on
OA leaves C∗(si : i ∈ F ) invariant, it follows from the gauge-invariant uniqueness
theorem of [1, Theorem 2.1] that πT,Q is an isomorphism of C∗(E(A,F )) onto
C∗(si : i ∈ F ). �
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Remark 2.5. This corollary allows us to realise OA as a direct limit of graph alge-
bras, and hence to replace the axioms of Exel and Laca by a sequence of Cuntz-
Krieger relations for finite graphs. In the proof of Proposition 2.2, however, we
made no obvious use of the relations (EL4) except in the special case X = {i} and
Y = ∅. So it is reassuring to observe that we can recover the full strength of (EL4)
from the graph relations.

To see this, suppose Z and Y are finite subsets of I such that S(Z, Y ) is finite,
and choose a finite subset F of I which contains Z, Y and S(Z, Y ). Let {Te, Qv}
be a Cuntz-Krieger E(A,F )-family; we want to show that the partial isometries Si
defined by (2.2) satisfy (EL4) for the pair Z, Y . Since

S∗i Si =
∑
k∈F

Qk +
∑

{X⊂F : i∈X, S(X, F\X) 6⊂F}
QX ,

and since S(Z, Y ) ⊂ F , we have
(2.3)(∏
i∈Z

S∗i Si
)( ∏

j∈F\Z
(1− S∗j Sj)

)
=

∑
k∈S(Z,Y )

Qk +
∑

{X:S(X,F\X) 6⊂F, Z⊂X, Y⊂F\X}
QX .

But Z ⊂ X and Y ⊂ F \X imply that S(X,F \X) ⊂ S(Z, Y ); thus there are no
subsets X of F which satisfy all the requirements of the second sum in (2.3), and
(2.3) gives the required version of (EL4).

Example 2.6. Let Γ = 〈g1〉∗ 〈g2〉∗ . . . be a countably infinite free product of cyclic
groups with generators gi. The group Γ has a boundary ∂Γ, which is a compact
Hausdorff space on which Γ acts naturally [31]. The crossed product C∗-algebras
C(∂Γ) × Γ were investigated in [31], [32], and it was suggested in [31] that they
could be viewed as the Cuntz-Krieger algebras of certain infinite {0, 1}-matrices.
The work of Exel and Laca [10] has provided the necessary machinery to formalise
that intuitive statement: C(∂Γ) × Γ is OA, where A has all entries 1 except for
square blocks Ri along the diagonal, which are 2× 2 identity matrices when gi has
infinite order, and (mi − 1) × (mi − 1) zero matrices when gi has finite order mi.
The approximations from [31, Propositions 3.2 and 4.4] and [31, Remark 4.7] served
as a prototype for our construction.

The following is an analogue of the gauge-invariant uniqueness theorem of [15,
Theorem 2.3] and [1, Theorem 2.1].

Theorem 2.7. Let A be an I×I matrix with entries in {0, 1} and no zero rows, let
{Ti : i ∈ I} be a family of operators on a Hilbert space H satisfying (EL1)–(EL4),
and let π be the representation of OA such that π(si) = Ti. Suppose that each Ti is
non-zero and that there is a strongly continuous action β of T on C∗(Ti) such that
βz ◦ π = π ◦ γz for z ∈ T. Then π is faithful.

Proof. Let F be a finite subset of I. Then C∗(si : i ∈ F ) is isomorphic to the
graph algebra C∗(E(A,F )) by Corollary 2.4, and this isomorphism is equivariant
for the gauge actions. The projections in B(H) corresponding to vertices of E(A,F )
are all non-zero: Qi because Ti is, and QX because (EL4) implies the existence
of j such that TjT ∗j ≤ QX . Thus applying [1, Theorem 2.1] to the correspond-
ing representation of the graph algebra C∗(E(A,F )) shows that π is faithful on
C∗(si : i ∈ F ), and hence is isometric there. Thus π is isometric on the dense
subalgebra of OA generated by {si}, and hence on all of OA. �
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Theorem 2.8 (Exel and Laca [10, Theorem 13.1]). Suppose that A is an I × I
{0, 1}-matrix in which no row is identically zero, and that all loops in the asso-
ciated graph EA have exits. If {Si : i ∈ I} and {Ti : i ∈ I} are two families of
non-zero partial isometries satisfying the relations (EL1)–(EL4), then there is an
isomorphism φ of C∗(Si) onto C∗(Ti) such that φ(Si) = Ti for all i.

Proof. For each finite subset F of I, we consider the graph E(A,F ). By applying
Proposition 2.2 to the families {Si} and {Ti}, we obtain two Cuntz-KriegerE(A,F )-
families in which the projections are all non-zero. Since the extra vertices X in
E(A,F ) are all sinks, every loop in E(A,F ) comes from a loop in EA, and hence
has an exit. Thus we can apply Theorem 3.1 of [1] to these Cuntz-Krieger families,
and obtain an isomorphism φF of C∗(Si : i ∈ F ) onto C∗(Ti : i ∈ F ) such that
φF (Si) = Ti for i ∈ F . These combine to give a ∗-algebra isomorphism φ of⋃
F C

∗(Si : i ∈ F ) onto
⋃
F C

∗(Ti : i ∈ F ) such that φ(Si) = Ti for all i; this
isomorphism is isometric because each φF is, and hence extends to the completion
C∗(Si : i ∈ I) of

⋃
F C

∗(Si : i ∈ F ). �

3. K-theory for graphs with sinks

Every graph algebra and Cuntz-Krieger algebra carries a canonical gauge action γ
of T. As in [25], we compute K-theory using the dual Pimsner-Voiculescu sequence
for γ. In general, if α : T → AutA is an action of T on a C∗-algebra A, then the
dual Pimsner-Voiculescu sequence is a six-term exact sequence

(3.1) K0(Aoα T)
1−α̂−1

∗ // K0(Aoα T) // K0(A)

��

K1(A)

OO

K1(Aoα T)oo K1(Aoα T)
1−α̂−1

∗oo

in which α̂ is the generator of the dual action of Z. That there is such a sequence is
proved, for example, in [3, Section 10.6]. We shall need to know that this sequence is
functorial in the sense that an equivariant homomorphism φ : (A,T, α)→ (B,T, β)
induces maps Ki(A)→ Ki(B) and Ki(Aoα T)→ Ki(B oβ T) which make a com-
mutative cube with the dual Pimsner-Voiculescu sequences of (A,α) and (B, β) on
opposite faces. This functoriality is not made explicit in the original papers. How-
ever, Connes’ treatment of the Thom isomorphism [6] emphasises naturality of the
isomorphism, so functoriality of the original Pimsner-Voiculescu sequence follows
from the naturality of the various isomorphisms used to deduce it from Connes’
theorem (see [6, Section V]). Since the Takesaki-Takai duality isomorphism is also
natural, we can deduce the naturality of the dual Pimsner-Voiculescu sequence.

It was pointed out in [19] that the C∗-algebra of a skew-product E ×c G is a
crossed product C∗(E)o Ĝ by an action of the dual group Ĝ. We need a converse:
we want to realise the crossed product by the gauge action γ as the C∗-algebra of
the skew-product E ×1 Z, in which

(E ×1 Z)0 = E0 × Z, (E ×1 Z)1 = E1 × Z,
s(e, n) = (s(e), n−1) and r(e, n) = (r(e), n). This skew product carries a canonical
action of Z by translation, which in turn induces an action β : Z→ AutC∗(E×1Z)
characterised by

(3.2) βm(p(v,n)) = p(v,n+m) and βm(s(e,n)) = s(e,n+m).
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To establish the identification of C∗(E) oγ T with C∗(E ×1 Z), we have to find
a Cuntz-Krieger (E ×1 Z)-family inside C∗(E) oγ T. To do this, it is helpful
to note that applying the integrated form of the canonical embedding u : T →
M(C∗(E)oγ T) to the functions z 7→ zn in L1(T) gives a family {χn} of mutually
orthogonal projections in C∗(E)oγ T.

Lemma 3.1. Let {se, pv} be the canonical Cuntz-Krieger family in C∗(E). Then
t(e,n) := seχn, q(v,n) := pvχn form a Cuntz-Krieger (E ×1 Z)-family, and the
canonical homomorphism πt,q : C∗(E ×1 Z) → C∗(E) oγ T is an isomorphism
which carries the action β of Z by translation on C∗(E ×1 Z) into the dual action
γ̂.

Proof. The formula χn =
∫
znuz dz and the defining relations uzse = zseuz, uzpv =

pvuz imply that χnse = seχn+1 and χnpv = pvχn, and an easy calculation using
these relations shows that {t(e,n), q(v,n)} is a Cuntz-Krieger (E ×1 Z)-family. Since
the graph E ×1 Z has no loops, Theorem 1.5 implies that πt,q is injective. An
application of the Stone-Weierstrass Theorem shows that the functions z 7→ zn

span a ‖ · ‖1-dense ∗-subalgebra of C(T), and it follows that the elements {sµs∗νχn :
µ, ν ∈ E∗, n ∈ Z} span a dense subspace of C∗(E)oγT. Hence πt,q is surjective. The
defining relation γ̂1(uz) = zuz implies that γ̂1(χn) = χn+1; since γ̂ fixes {se, pv},
the last assertion follows easily. �

Since the skew-product has no loops, its C∗-algebra C∗(E ×1 Z) is AF by [20,
Theorem 2.4] (see §5.4 below). Thus K1(C∗(E)oγ T) = 0, and the six-term exact
sequence (3.1) collapses to
(3.3)

0 −→K1(C∗(E)) −→ K0(C∗(E)oγT)
1−γ̂−1

∗−→ K0(C∗(E)oγT) −→K0(C∗(E)) −→ 0.

We can now formulate the main result of this section.

Theorem 3.2. Let E be a row-finite graph, let W be the set of sinks in E, and let
V = E0 \W . The E0 × E0 vertex matrix

M(v, w) := #{e ∈ E1 : s(e) = v and r(e) = w}

has block form

M =
(
B C
0 0

)
with respect to the decomposition E0 = V ∪W . We define K : ZV → ZV ⊕ ZW by
K(x) =

(
(1 − Bt)x,−Ctx

)
, and φ : ZV ⊕ ZW → K0(C∗(E) oγ T) in terms of the

usual basis by φ(ev) = [pvχ1]. Then φ restricts to an isomorphism φ| of kerK onto
K1(C∗(E)), and induces an isomorphism φ of cokerK onto K0(C∗(E)) such that
the following diagram commutes:
(3.4)

kerK //

φ|
��

ZV
K //

φ

��

ZV ⊕ ZW //

φ

��

cokerK

φ

��

K1(C∗(E)) // K0(C∗(E)oγ T)
1−γ̂−1

∗ // K0(C∗(E) oγ T) // K0(C∗(E)).
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The proof of this theorem will occupy most of this section. We begin by noting
that, because (C∗(E)oγ T,Z, γ̂) ∼= (C∗(E×1 Z),Z, β), it is enough to compute the
kernel and cokernel of

1− β−1
∗ : K0(C∗(E ×1 Z))→ K0(C∗(E ×1 Z)).

For integers m ≤ n we denote by E ×1 [m,n] the subgraph of E ×1 Z with
vertices {(v, k) : m ≤ k ≤ n, v ∈ E0} and edges {(e, k) : m < k ≤ n, e ∈ E1}.
We allow m = −∞, with the obvious modification of the definition. Since any
path in E ×1 [m,n] has length at most n − m, we can use the arguments in the
proofs of Proposition 2.1, Corollary 2.2 and Corollary 2.3 of [20] to deduce that
C∗(E ×1 [m,n]) is a direct sum of copies of the compact operators (on spaces of
varying dimensions), indexed by the set of sinks in E×1 [m,n], and that each direct
summand contains precisely one projection p(v,k) associated to a sink as a minimal
projection. Thus K0(C∗(E ×1 [m,n])) is the free abelian group with generators

{[p(v,n)] : v ∈ V } ∪ {[p(v,k)] : v ∈W, m ≤ k ≤ n}.

By continuity of K-theory we can let m→ −∞ and deduce that

K0(C∗(E ×1 (−∞, n])) =
(⊕
v∈V

Z[p(v,n)]
)⊕( ∞⊕

k=0

⊕
v∈W

Z[p(v,n−k)]
)

∼= ZV ⊕ ZWn ⊕ ZWn−1 ⊕ . . . ,

where each copy Wj of W is labelled to indicate its place in the direct sum.
Next we need to see how the inclusions ın and ın of C∗(E ×1 (−∞, n]) in

C∗(E ×1 (−∞, n+ 1]) and C∗(E ×1 Z) behave at the level of K0. If v ∈ V , then in
K0(C∗(E ×1 (−∞, n+ 1])) we have

[p(v,n)] =
∑

e∈E1: s(e)=v

[s(e,n+1)s
∗
(e,n+1)] =

∑
e∈E1: s(e)=v

[s∗(e,n+1)s(e,n+1)]

=
∑

e∈E1: s(e)=v

[p(r(e),n+1)] =
∑
w∈E0

M(v, w)[p(w,n+1)].

For k ≤ n and v ∈ W , [p(v,k)] is still a generator in K0(C∗(E ×1 (−∞, n + 1])).
Thus the induced map from ZV ⊕ZWn ⊕ZWn−1 ⊕ · · · to ZV ⊕ZWn+1 ⊕ZWn ⊕ · · ·
is given by the matrix

D =


Bt 0 0 0 ·
Ct 0 0 0 ·
0 1 0 0 ·
0 0 1 0 ·

· · · · . . .

 ,

and K0(C∗(E ×1 Z)) is the direct limit of the system

ZV ⊕ ZW ⊕ ZW ⊕ · · · D−→ ZV ⊕ ZW ⊕ ZW ⊕ · · · D−→ · · · .

From the formulas (3.2) characterising β = β1 we can deduce that

β−1 : C∗(E ×1 (−∞, n])→ C∗(E ×1 (−∞, n]),
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and that the restriction of β−1
∗ to K0(C∗(E ×1 (−∞, n])), viewed as a map on

ZV ⊕ ZW ⊕ · · · , is just multiplication by D. Since the diagram

C∗(E ×1 (−∞, n])
ιn //

1−β−1

��

C∗(E ×1 (−∞, n+ 1])

1−β−1

��

ιn+1
// C∗(E ×1 Z)

1−β−1

��

C∗(E ×1 (−∞, n])
ιn // C∗(E ×1 (−∞, n+ 1]) ιn+1

// C∗(e×1 Z)

commutes, we have the following commutative diagram:
(3.5)

ZV ⊗ ZW ⊕ ZW ⊕ · · · D //

1−D
��

ZV ⊕ ZW ⊕ ZW ⊕ · · ·
ιn+1
∗ //

1−D
��

K0(C∗(E ×1 Z))

1−β−1
∗

��

ZV ⊕ ZW ⊕ /zW ⊕ · · · D // ZV ⊕ ZW ⊕ ZW ⊕ · · ·
tn+1
∗ // K0(C∗(E ×1 Z))

We can therefore realise K0(C∗(E ×1 Z)) as the group of equivalence classes [(xi)]
of sequences in

∏∞
i=1(ZV ⊕ ZW ⊕ · · · ) which eventually satisfy xi+1 = Dxi, where

two sequences are equivalent if they eventually coincide. The natural map ın∗ takes
x ∈ ZV ⊕ ZW ⊕ · · · to the class of the sequence (xi), where

xi =
{

0 if i < n, and
Di−nx if i ≥ n.

Lemma 3.3. The homomorphism ı1∗ restricts to an isomorphism of ker(1−D) onto
ker(1− β−1

∗ ), and induces an isomorphism ı1∗ of coker(1−D) onto coker(1− β−1
∗ ).

Proof. Since x ∈ ker(1−D) if and only if x = Dx, ı1∗ maps each x ∈ ker(1−D) to
the class of the constant sequence (x). In particular, ı1∗ is injective on ker(1 −D),
and maps it into ker(1− β−1

∗ ). If z = ın∗ (y) ∈ ker(1− β−1
∗ ), then we can assume by

increasing n that y = Dy. But then z = ı1∗(y), and we have proved the first claim.
The commutativity of (3.5) implies that ı1∗ maps the image of 1−D into the image

of 1− β−1
∗ , so ı1∗ induces a map ı1∗ on cokernels. To see that ı1∗ is injective, suppose

(zi) = ı1∗(x) ∈ im(1−β−1
∗ ), say [(zi)] = [(yi−Dyi)] for some (yi) ∈ K0(C∗(E×1Z)).

Then for large k we have Dk−1x = zk = yk −Dyk. But then

x = x−Dk−1x+Dk−1x = (1 −D)(1 +D +D2 + · · ·Dk−2)x+ (1 −D)yk
belongs to im(1 −D). To show that ı1∗ is surjective, let ın∗ (y) ∈ K0(C∗(E ×1 Z)).
By commutativity of (3.5), we have

ın∗ (y)− ın∗ (Dy) = ın∗ ((1 −D)y) = (1− β−1
∗ )(ın∗ (y)),

so ın∗ (y) and ın∗ (Dy) define the same class in coker(1− β−1
∗ ). But this implies that

ı1∗(y) = ın∗ (Dn−1y) defines the same class as ın∗ (y), and hence that ı1∗ is surjective.
�

Lemma 3.4. Let i and j be the inclusions of ZV and ZV ⊕ ZW as the first coor-
dinates of ZV ⊕ ZW ⊕ · · · . Then the following diagram commutes:

ZV
K //

i

��

ZV ⊕ ZW

j

��

ZV ⊕ ZW ⊕ · · ·
1−D

// ZV ⊕ ZW ⊕ · · · ,
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i is an isomorphism of kerK onto ker(1 −D), and j induces an isomorphism j of
cokerK onto coker(1−D).

Proof. It is straightforward to check that the diagram commutes. In particular, i
maps kerK into ker(1 −D), and it is trivially injective. To see that i maps kerK
onto ker(1 −D), let (n,m1,m2, . . .) ∈ ker(1−D). Then

(1−Bt)n = 0,(3.6)

−Ctn+m1 = 0,(3.7)
−mk +mk+1 = 0 for k ≥ 1,

and we have mk = m1 for all k. Since (n,m1,m2, . . .) belongs to the direct sum,
mk is eventually 0, and hence mk = 0 for all k. Thus (3.6) and (3.7) imply that
n ∈ kerK and (n,m1,m2, . . . ) = i(n).

The commutativity of (3.5) implies that j induces a well-defined map j : cokerK
→ coker(1 −D). To see that j is injective, suppose that j(n,m) = (n,m, 0, . . .) ∈
im(1−D). Then there exists (n′,m′1, . . .) ∈ ZV ⊕ ZW ⊕ · · · such that

(1−Bt)n′ = n,

−Ctn′ +m′1 = m,

−m′k +m′k+1 = 0 for k ≥ 1.

Again, because we are working in a direct sum, we must have m′k = 0 for all k ≥ 1.
Thus (n,m) = K(n′), and (n,m) defines the zero class in cokerK.

To show that j is surjective, let (n,m1,m2, . . .) ∈ ZV ⊕ ZW ⊕ · · · . We need to
find (n′,m′) and (n′′,m′′1 , . . .) such that

n
m1

m2

...

 =


n′

m′

0
...

+


(1−Bt)n′′
−Ctn′′ +m′′1
−m′′1 +m′′2

...

 .

But we know that mk = 0 for large k, say k > K; then we can take n′′ = 0,

m′′k =

{
−
∑K
j=k+1 mj for k < K,

0 for k ≥ K,

m′ = m1 −m′′1 , and n′ = n. �

Proof of Theorem 3.2. Consider the following diagram:
(3.8)

ker(1−D) //

ι1∗|
��

ZV ⊕ ZW ⊕ · · ·
1−D

//

ι1∗
��

ZV ⊕ ZW ⊕ · · · //

ι1∗
��

cokerK

ι1∗
��

K1(C∗(E)) // K0(C∗(E)oγ T)
1−γ̂−1

∗ // K0(C∗(E)oγ T) // K0(C∗(E))

This diagram commutes by naturality of K-theory, and the first and fourth vertical
arrows are isomorphisms by Lemma 3.3. Now Lemma 3.4 says we can replace the
top row by

kerK → ZV K−→ ZV ⊕ ZW → cokerK,
and the result follows. �
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4. The K-theory of Exel-Laca algebras

We shall now use Theorem 3.2 to compute the K-theory of an Exel-Laca algebra
OA = C∗(si). For each non-empty subset F of the index set I, let EF denote the
graph E(A,F ) of Definition 2.1, so that C∗(EF ) is naturally isomorphic to the C∗-
subalgebra C∗(si : i ∈ F ) of OA by Proposition 2.2. Combining these isomorphisms
gives a realisation of OA as the direct limit limC∗(EF ) over the finite subsets of
I directed by inclusion. Since K-theory is continuous, and we have just computed
K∗(C∗(E)) for a class of graphs which includes every EF , we have in principle
computed

(4.1) K∗(OA) = limK∗(C∗(EF )).

To make this useful, we have to be able to compute the direct limit on the right; we
shall explain how the fine print in Theorem 3.2 makes this possible, and illustrate
this with some interesting examples.

For each non-empty finite subset F of I, let

WF := {X ⊂ F : X 6= ∅ and S(X,F \X) 6⊂ F}

be the set of sinks in EF , and denote by AF the F × (F ∪WF ) vertex matrix of
EF . Then Theorem 3.2 gives a commutative diagram
(4.2)

ker(1−AtF ) //

φ|
��

ZF
1−AtF //

φ

��

ZF ⊕ ZWF //

φ

��

coker(1−AtF )

φ

��

K1(C∗(EF )) // K0(C∗(EF )o T)
1−γ̂−1

∗ // K0(C∗(EF )o T) // K0(C∗(EF ))

in which φ| and φ are isomorphisms, and φ sends a basis element ei or eX to the
class of the corresponding projection qiχ1 or qXχ1 in C∗(EF ) oγ T. To compute
the direct limit in (4.1), we need to consider a subset G of I such that F ⊂ G. The
naturality of the dual Pimsner-Voiculescu sequence gives a commutative diagram
(4.3)
K1(C∗(EF )) //

��

K0(C∗(EF )o T) //

��

K0(C∗(EF )o T) //

��

K0(C∗(EF ))

��

K1(C∗(EG)) // K0(C∗(EG)o T) // K0(C∗(EG)o T) // K0(C∗(EG))

in which the vertical arrows are induced by the (equivariant) inclusion of
C∗(si : i ∈ F ) = C∗(EF ) in C∗(si : i ∈ G) = C∗(EG). The main theorem in
the form of (4.2) says that we can replace the middle box by

(4.4) ZF
1−AtF //

ψF,G

��

ZF ⊕ ZWF

φF,G

��

ZG
1−AtG // ZG ⊕ ZWG ,
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provided this diagram commutes, provided

(4.5) ZF ⊕ ZWF
φF,G

//

φ

��

ZG ⊕ ZWG

φ

��

K0(C∗(EF )oγ T) // K0(C∗(EG)oγ T)

commutes, and provided an analogous diagram for ψF,G commutes. The projection
qiχ1 associated to a vertex i ∈ F ⊂ E0

F lies in the subalgebra C∗(EF ) oγ T of
C∗(EG)oγ T, so ψF,G and φF,G both inject ZF as a summand of ZG. To compute
φF,G on ZWF , we need to see how the projection qX associated to a sink X in EF
decomposes in C∗(EG).

Recall that a sink X in EF is a non-empty subset of F such that the projection

qX :=
( ∏
i∈X

s∗i si
)( ∏

j∈F\X
(1− s∗jsj)

)(
1−

∑
k∈F

sks
∗
k

)
is non-zero. Any indices ` in G such that A(i, `) = 1 for i ∈ X and A(i, `) = 0 for
i ∈ F \ X (in other words, such that ` ∈ S(X,F \ X) ) satisfy qX ≥ s`s

∗
` . After

removing all such `, the remainder of the set S(X,F \ X) may split into several
sets S(Y,G \ Y ) for subsets Y of G with Y ∩ F = X . In C∗(si : i ∈ G) = C∗(EG),
the projection qX decomposes as

qX =
∑

`∈S(X,F\X)∩(G\F )

q` +
∑

{Y⊂G : Y ∩F=X, S(Y,G\Y ) 6⊂G}
qY .

Thus if we write eFi , eFX for the usual basis elements of ZF ⊕ ZWF , the necessary
map φF,G : ZF ⊕ ZWF → ZG ⊕ ZWG is defined by

φF,G(eFi ) = eGi for i ∈ F , and

φF,G(eFX) =
∑

`∈S(X,F\X)∩(G\F )

eG` +
∑

{Y⊂G : Y ∩F=X, S(Y,G\Y ) 6⊂G}
eGY .

(4.6)

The description of the inclusion maps φ shows that the diagram (4.5) commutes.
By recalling that AF (i,X) = 1 precisely when i ∈ X , and chasing a generator ei for
ZF through the diagram, we can verify that (4.4) commutes. Thus ψF,G restricts
to a homomorphism

ψF,G : ker(1−AtF ) ∼= K1(C∗(EF ))→ ker(1−AtG) ∼= K1(C∗(EG)),

and φF,G induces a homomorphism

φF,G : coker(1−AtF ) ∼= K0(C∗(EF ))→ coker(1−AtG) ∼= K0(C∗(EG));

the commutativity of (4.5) and its analogue for ψF,G shows that these homomor-
phisms agree with the maps induced by the inclusion of C∗(Si : i ∈ F ) = C∗(EF )
into C∗(Si : i ∈ G) = C∗(EG).

We sum up our calculations:

Theorem 4.1. Suppose A is an I × I matrix with entries in {0, 1} and with no
zero rows. For each finite subset F of I, define AF and WF as above. If G is a
finite subset of I containing F , define φF,G : ZF ⊕ ZWF → ZG ⊕ ZWG using (4.6),
and define ψF,G : ZF → ZG by ψF,G(eFi ) = eGi . Then we have

K1(OA) ∼= lim
(

ker(1−AtF ), ψF,G
)

and K0(OA) ∼= lim
(

coker(1 −AtF ), φF,G
)
.
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Example 4.2. Define an N× N matrix A by

A(i, j) =

{
1 if i = j, or i = j + 2, or i ∈ {1, 2} and j ≥ 3, and
0 otherwise;

in other words,

A =



1 0 1 1 1 ·
0 1 1 1 1 ·
1 0 1 0 0 ·
0 1 0 1 0 ·
0 0 1 0 1 ·

· · · · · . . .


.

We use the cofinal family of subsets Fn := {1, . . . , 2n} to compute the direct limits.
For each n, the only subset X of Fn with S(X,Fn \ X) 6⊂ Fn is Xn = {1, 2}, so
EFn has exactly one sink Xn, and

AFn(i,Xn) =

{
1 if i = 1 or 2, and
0 otherwise.

When we embed Fn in Fn+1, the map φFn,Fn+1 sends eXn to e2n+1 +e2n+2 +eXn+1,
so

φFn,Fn+1(m,mXn) = (m,mXn ,mXn ,mXn) for (m,mXn) ∈ Z2n ⊕ Z.
Since (1 −AtFn)(m) is

−(m3,m4,m5 +m1 +m2, . . . ,m2n +m1 +m2,m1 +m2,m1 +m2,m1 +m2),

the kernel of (1−AtFn) is spanned by (1,−1, 0, . . . ) and

im(1−AtFn) = {(k, kXn) : k2n−1 = k2n = kXn}.
The map ψFn,Fn+1 is therefore an isomorphism of ker(1 − AtFn) ∼= Z onto
ker(1 − AtFn+1

) ∼= Z, and K1(OA) ∼= Z; on the other hand, the range of φFn,Fn+1

is contained in im(1− AFn+1), so the induced map on cokernels is 0, and K0(OA)
vanishes.

Remark 4.3. Since we consider only countable graphs and matrices, the algebras
C∗(E) and OA are all separable. By the Takesaki-Takai duality theorem, every
graph algebra C∗(E) is stably isomorphic to a crossed product (C∗(E)oγ T)oγ̂ Z
of an AF -algebra by Z, and hence is nuclear (see [4, Corollary 3.2] and [5, Propo-
sition 6.8]) and satisfies the Universal Coefficient Theorem (see [29, Theorem 1.17]
and [3, Chapter 23]). The same holds for Exel-Laca algebras, since they are direct
limits of graph algebras.

For the matrix A in Example 4.2, OA is unital: indeed, we have s∗1s1 + s2s
∗
2 = 1.

Since the graph EA is transitive, OA is purely infinite by [10, Theorem 16.2] and
simple by [10, Theorem 14.1]. We can therefore deduce from the classification
program (see [17, Theorem 9] or [26, Theorem 4.2.4]) that OA is the unique pi-sun
algebra with K0 = 0 and K1

∼= Z, which is usually denoted P∞. In other words,
P∞ can be realised as an Exel-Laca algebra.

Remark 4.4. The algebra OA ∼= P∞ of Example 4.2 is not a graph algebra. To see
this, suppose E is a graph such that OA ∼= C∗(E). Because C∗(E) is spanned by
elements of the form sµs

∗
ν , the sums pG :=

∑
v∈G pv as G runs through the finite

subsets of E0 form an approximate identity for C∗(E). Since OA has an identity,



CUNTZ-KRIEGER ALGEBRAS OF INFINITE GRAPHS AND MATRICES 55

so does C∗(E), and then ‖1 − pG‖ → 0; since ‖p− q‖ =
√

2 whenever p and q are
distinct projections, we deduce that 1 = pG for some G, and that E0 is finite. Now
Theorem 3.2 gives us an exact sequence

0→ K1(C∗(E))→ ZV → ZV ⊕ ZW → K0(C∗(E))→ 0

in which V andW are finite, and it follows that rankK0(C∗(E)) ≥ rankK1(C∗(E)).
But we just saw that K0(OA) = 0 and K1(OA) has rank 1.

Example 4.5. (This is Example 5.3 of [11].) Let A be the chequerboard N × N
matrix defined by A(i, j) = i− j mod 2; thus

A =


0 1 0 1 ·
1 0 1 0 ·
0 1 0 1 ·
1 0 1 0 ·

· · · · . . .

 .

Each Fn := {1, 2, . . . , 2n} has two subsets X such that S(X,Fn \X) 6⊂ Fn, namely
the subsets Xn

1 of even numbers and Xn
2 of odd numbers. So the graph EFn has

two sinks, and the vertex matrix AFn is the truncation of A: for example

AF2 =


0 1 0 1 0 1
1 0 1 0 1 0
0 1 0 1 0 1
1 0 1 0 1 0


(we chose the ordering Xn

1 , X
n
2 to make AFn look nice). The map φFn,Fn+1 :

Z2n ⊕ Z2 → Z2(n+1) ⊕ Z2 is given by

φFn,Fn+1(m,mX1 ,mX2) =
(
(m,mX1 ,mX2),mX1 ,mX2

)
.

On the other hand, (1−AtFn)(m) is

(
m1 −

n∑
i=1

m2i,m2 −
n∑
i=1

m2i−1,m3 −
n∑
i=1

m2i, . . . ,

m2n −
n∑
i=1

m2i−1,−
n∑
i=1

m2i,−
n∑
i=1

m2i−1

)
,

so ker(1 −AtFn) = {0} and

qn : (k, kX1 , kX2) 7→
( n∑
i=1

k2i−1 − nkX1 + kX2 ,

n∑
i=1

k2i − nkX2 + kX1

)
induces an isomorphism of coker(1 − AtFn) onto Z2. A calculation shows that we
have qn+1 ◦ φFn,Fn+1 = qn, and hence φFn,Fn+1 induces the identity map on Z2.
Thus K1(OA) = 0 and K0(OA) ∼= Z2.

To recover Exel and Laca’s description of K∗(OA), we need to relate our target
spaces ZF ⊕ZWF to the target space RA used in [11], which is the subring of `∞(I)
generated by the rows ρi of A and the point masses δi. From our point of view,
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the subsets X of F which parametrise the sinks in EF are precisely the sets X for
which

ρX :=
( ∏
i∈X

ρi

)( ∏
j∈F\X

(1− ρj)
)(

1−
∑
k∈F

δk

)
is non-zero. Thus the map ei 7→ δi, eX 7→ ρX extends to a group isomorphism
of ZF ⊕ ZWF onto the additive group of the subring RA(F ) of RA generated by
{δi, ρi : i ∈ F}. These isomorphisms carry the maps φF,G into the inclusions of
RA(F ) in RA(G), and thus induce a group isomorphism of lim(ZF ⊕ ZWF ) onto
the underlying additive group of RA (which is what appears in the statement of
[11, Theorem 4.5]). If i ∈ F , the image of δi ∈ RA(F ) under transformation with
matrix AtF is the row vector ρi, written as a sum of {δj, ρX}; thus the maps 1−AtF :
ZF → ZF ⊕ ZWF combine to give the map of ZI = limZF into lim(ZF ⊕ ZWF )
which Exel and Laca call 1−At. Theorem 4.1 therefore gives:

Corollary 4.6 (Exel and Laca [11, Theorem 4.5]). Suppose A is an I × I matrix
with entries in {0, 1}, and suppose that A has no zero rows. Then there is an exact
sequence

0→ K1(OA)→ ZI 1−At−→ RA → K0(OA)→ 0.

5. Concluding remarks

5.1. We assumed in Section 1 that our graphs did not have sinks, but we did so
only to make things clearer: with just minor modifications it is possible to consider
arbitrary graphs. For each finite subset F of E1 ∪ E0, we define EF as before,
and then enlarge the set of vertices of EF by adding the sinks in F ∩ E0. The
constructions of Section 1 then carry over, and in particular there is a version of
Lemma 1.2. Thus we can, at least in principle, calculate the K-theory of C∗(E) for
an arbitrary countable graph E by writing C∗(E) as a direct limit of C∗-algebras
of finite graphs.

5.2. In Remark 4.4, we saw, rather indirectly, that not every Exel-Laca algebra is
a graph algebra. It is therefore natural to ask how OA is related to the C∗-algebra
of the graph EA with vertex matrix A. While the answer is not fully clear to us,
we can say this much:

Proposition 5.1. Let A be a {0, 1}-matrix with no zero rows. Then there is an
isomorphism of C∗(EA) onto a C∗-subalgebra of OA.

Proof. We verify that S(i,j) := SiSjS
∗
j for (i, j) ∈ E1

A and Pi := SiS
∗
i for i ∈ I

defines a Cuntz-Krieger EA-family inside OA. (EL3) implies (G1), and (G2) is
obvious. Fix i ∈ I, and suppose there are only finitely many j ∈ I for which
SiSjS

∗
j 6= 0 or, equivalently, for which A(i, j) = 1. Then S∗i Si =

∑
A(i,j)=1 SjS

∗
j by

(EL4), and (G3) holds. The universality of C∗(EA) gives a homomorphism πS,P :
C∗(EA) → OA. To see that πS,P is injective, let {Fn}∞n=1 be an increasing family
of finite sets such that

⋃∞
n=1 Fn = E1

A ∪ E0
A. We denote by φn the embedding of

C∗(EFn) in C∗(EA) given by Lemma 1.2. The gauge-invariant uniqueness theorem
[1, Theorem 2.1] implies that each πS,P ◦ φn is injective, and it follows that πS,P is
injective, as required. �
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5.3. The condition “every loop has an exit” identifies the graphs whose C∗-algebras
satisfy a Cuntz-Krieger uniqueness theorem; all of these algebras are infinite. We
can use our approximation technique to sharpen this statement: a graph C∗-algebra
is finite if and only if no loop has exits. The proof uses a simple lemma which is
essentially contained in [20, Section 2].

Lemma 5.2. Let E be a finite directed graph in which no loop has exits. Then there
are finite-dimensional C∗-algebras D and B such that C∗(E) ∼= D ⊕ (B ⊗ C(T)).

Proof. Let v1, . . . , vd be the sinks in E, and L1, . . . , Lb the distinct loops in E in
which no edge is traversed twice (d or b could be 0). Since the loops have no exits,
the sets L0

i are pairwise disjoint. We set

Di = span{sµs∗ν : µ, ν ∈ E∗, r(µ) = r(ν) = vi},
Cj = span{sµs∗ν : µ, ν ∈ E∗, r(µ) = r(ν) ∈ L0

j},

and note that Di, Cj are mutually orthogonal ideals in C∗(E). Corollary 2.2 of
[20] implies that each Di is a matrix algebra, and the last part of the proof of [20,
Theorem 2.4] shows that each Cj ∼= Mnj(C) ⊗ C(T) for some nj. Thus we take
D =

⊕d
i=1Di and B =

⊕b
j=1 Mnj(C); if one of d or b vanishes, we just take that

factor to be {0}. �

From Lemma 1.2 (as modified in §5.1), Lemma 1.3 and Lemma 5.2 we deduce:

Corollary 5.3. Suppose E is a directed graph in which no loop has exits. Then
there is an increasing sequence of subalgebras An of C∗(E) such that C∗(E) =⋃∞
n=1An and each An has the form Dn ⊕ (Bn ⊗ C(T)) for finite-dimensional C∗-

algebras Dn and Bn.

A C∗-algebra is called infinite if it contains an infinite projection; that is, if it
contains a partial isometry s such that ss∗ is a proper subprojection of s∗s. It was
observed in the proof of [20, Theorem 2.4] that every loop of E which has exits
gives rise to an infinite projection in C∗(E). A C∗-algebra is stably finite if it is
finite after tensoring with the compacts or, equivalently, with Mk(C) for every k.
A C∗-algebra has stable rank 1 if the invertible elements are dense in its minimal
unitisation. The property of having stable rank 1 is preserved under tensoring with
Mk(C) [28, Theorem 3.3] and passing to direct limits [28, Theorem 5.1]. Algebras
of the form D ⊕ (B ⊗ C(T)) with D, B finite-dimensional have stable rank 1 [28,
Section 3]. Any C∗-algebra with stable rank 1 is stably finite [28, Proposition 3.1].
Thus Corollary 5.3 and Lemma 1.4 imply the following.

Proposition 5.4. Suppose E is a countable directed graph. Then C∗(E) is finite
if and only if no loop in E has exits, in which case it is stably finite and has stable
rank 1.

For row-finite graphs this was proved in [16, Theorem 3.3]. Using our approx-
imation technique from Section 2 and similar reasoning gives a parallel result for
Exel-Laca algebras:

Proposition 5.5. Let A be a {0, 1}-matrix with no zero rows. Then OA is finite if
and only if no loop in EA has exits, in which case it is stably finite and has stable
rank 1.
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5.4. We have just seen that the conditions “every loop has an exit” and “no loop
has exits” characterise those graph C∗-algebras for which there is a Cuntz-Krieger
uniqueness theorem, and those which are finite, respectively. Graphs which belong
to both classes have no loops at all. It was proved in [20, Theorem 2.4] that a
row-finite graph E has no loops if and only if C∗(E) is AF , and that argument
extends almost unchanged to arbitrary countable graphs. One can also deduce this
from Lemma 1.4 and the argument of Lemma 5.2. Using the approximations of
Section 2 this result can be extended to Exel-Laca algebras: OA is AF if and only
if EA has no loops. (This result has been obtained by Hjelmborg using different
methods [14, Theorem 3.6].)

5.5. Yet another way of calculating the K-theory of OA might be to imitate the
proof of Theorem 3.2, as follows. Define a new {0, 1}-matrix A ×1 Z on the index
set I ×Z by (A×1 Z)((i, n), (j,m)) = δn,m−1A(i, j). As in Lemma 3.1, the crossed
product OA oγ T is canonically isomorphic to OA×1Z, and the latter is an AF -
algebra since EA×1Z has no loops (see §5.4 above). Thus the key idea behind the
proof of Theorem 3.2 carries over.
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