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Abstract. In many geotechnical problems it is vital to consider the geometrical non-linearity 
caused by large deformation in order to capture a more realistic model of the true behaviour.  
The solutions so obtained should then be more accurate and reliable, which should ultimately 
lead to cheaper and safer design.  The Arbitrary Lagrangian-Eulerian (ALE) method originated 
from fluid mechanics, but has now been well established for solving large deformation 
problems in geomechanics.  This paper provides an overview of the ALE method and its 
challenges in tackling problems involving non-linearities due to material behaviour, large 
deformation, changing boundary conditions and time-dependency, including material rate 
effects and inertia effects in dynamic loading applications.  Important aspects of ALE 
implementation into a finite element framework will also be discussed.  This method is then 
employed to solve some interesting and challenging geotechnical problems such as the 
dynamic bearing capacity of footings on soft soils, consolidation of a soil layer under a footing, 
and the modelling of dynamic penetration of objects into soil layers. 

1. Introduction 
The finite element method plays an important role in solving non-linear problems of geomechanics in 
cases where an analytical solution cannot be obtained due to complexity, which often arises because of 
the non-linear nature of the problem.  Non-linear material behaviour, large deformations, changing 
boundary conditions, and time dependency of behaviour are the main sources of non-linearity in 
geotechnical problems.  Conventional finite element methods, such as the Updated-Lagrangian 
method, often fail in the analysis of such non-linear problems, mainly due to mesh distortion.  In order 
to tackle these problems successfully, two main strategies, viz., h-adaptivity and r-adaptivity, have 
been introduced into the finite element approach. 

The h-adaptive finite element method can overcome mesh distortion by generating a new mesh 
based on further sub-division of the area of basic elements where the interpolation should be improved 
or where mesh distortion occurs.  Zienkiewicz and Huang [1] presented a successful application of the 
h-adaptive finite element method which they used to analyse the localisation occurring in 
geomechanics problems such as footings and slopes.  Hu and Randolph [2] also suggested a numerical 
procedure which combined the conventional small strain finite element method with an automatic 
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mesh generation algorithm and a linear stress interpolation technique to deal with mesh distortion.  
They used this method to study plane strain and axi-symmetric problems such as cavity expansion and 
the bearing capacity of footings.  They found this technique to be a practical approach which  makes 
good use of well established small strain finite element code and yet provides accurate solutions for 
problems that involve large strains and deformations. 
 The r-adaptive finite element method, on the other hand,  attempts to eliminate the mesh 
distortion by relocating the nodes in the finite element domain. Unlike the h-adaptive technique, the r-
adaptive strategy retains the advantage of not changing the number of nodes or the connectivity of the 
elements.  The Arbitrary Lagrangian-Eulerian (ALE) method is probably the most well-known r-
adaptive technique, and it is based on the concept of separating the mesh displacements from the 
material displacements.  The Arbitrary Lagrangian-Eulerian method has been well developed for many 
geotechnical applications such as general large deformation problems [3], consolidation problems [4], 
dynamic analysis [5] and the dynamic penetration of objects into soil [6].  This paper summarises 
some of the recent developments of the ALE method, specifically in geotechnical engineering. 

2. ALE method 
The Lagrangian finite element methods, such as the Updated-Lagrangian (UL) method, normally fail 
to analyse accurately those problems involving relatively large deformations which lead to severe 
distortion of the finite element mesh used to represent the continuum.  In these Lagrangian methods, a 
computational grid is connected to the material particles, following them as deformation occurs in the 
finite element domain.  Such a permanent connection can potentially lead to mesh distortion, 
ultimately identified by a negative Jacobian of an individual element or elements, or a significant loss 
of precision in the finite element solution.  The Arbitrary Lagrangian-Eulerian (ALE) method, on the 
other hand, eliminates the mesh distortion by separating the material displacements from the grid (or 
mesh) displacements.  The equilibrium equation in the ALE method can be written in either a coupled 
form or a decoupled form.  In its coupled form, the global equations contain two set of unknowns that 
include the material displacements and the grid (or mesh) displacements.  The coupled ALE procedure 
is normally slower than the uncoupled method since the number of unknowns is doubled and the 
convection of the state variables, i.e., the remapping of all variables from the old mesh to the new 
mesh, is normally carried out during each iteration.  Nonetheless, this method guarantees that the state 
variables will satisfy the global equilibrium as well as any local plasticity consistency relations at the 
end of each iteration.  Compared to the coupled form, the decoupled form of the ALE method, also 
termed the ‘operator-split technique’, has the advantage of significantly reducing computation times 
since the global equations in this method are written in terms of material displacements only.  Analysis 
by the operator-split technique usually includes two main steps: an ordinary Updated-Lagrangian (UL) 
step, aimed at finding the material displacements, followed by an Eulerian step, which eliminates the 
mesh distortion and convects the state variables. The operator-split technique is necessarily more 
efficient than the coupled ALE procedure, since the number of unknowns in this method is only half of 
the unknowns in the coupled ALE.  In addition, mesh refinement and transformation of state 
parameters are conducted only once at the end of each time step.  The ALE method used in this study 
is based upon the operator-split technique described in [3].  A summary of the method and its key 
aspects in different geotechnical applications are presented in the following sections of this paper. 
 
2.1. Solid mechanics 
Soon after the introduction of the ALE method in fluid mechanics, various researchers extended its 
application to problems of solid mechanics.  Benson [7] introduced the operator split technique to 
separate the computational material domain from the grid domain.  Benson showed that this technique  
can reduce the analysis time by a factor of about two.  This technique has been widely used for 
analysing non-linear problems of solid mechanics, such as metal powder compaction, forming, cutting 
and guillotining.  Nazem et al. [3] described one of the earliest applications of the operator split 
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technique in geomechanics.  In the UL step of the operator-split technique, the material displacements 
are calculated using the principle of virtual displacements, as follows 

 ij ij i i i iV V S
dV u b dV u q dSσ δε δ δ= +∫ ∫ ∫  (1) 

where σ is the Cauchy stress tensor, δε denotes the variation of strain due to virtual displacement δu, u 
represents the material displacements, b is the body force, q is the surface load acting on area S of 
volume V.  The Eulerian step includes mesh refinement followed by the transformation of state 
variables.  For regular domains a structured mesh generation algorithm may be used to refine the finite 
element mesh, without changing the topology [8].  Alternatively, a refined mesh can be obtained by 
performing a static analysis [3].  After mesh refinement, the state variables, such as the stresses and 
hardening parameters, need to be remapped from the material domain into the new grid domain.  The 
remapping is usually conducted using the convection equation, obtained from a first order expansion 
of Taylor’s series [9], i.e., 

 ( )r r
i i

i

fdf df u u
x
∂

= + − ⋅
∂

 (2) 

where f r represents the value of an arbitrary state variable f in the mesh domain and ur denotes the 
mesh displacements.  Note that the state variables transformed by equation (2) may not satisfy the 
global equilibrium and the principle of plasticity consistency, demanding more equilibrium iterations.  
Alternatively, the unbalanced force due to the remapping can be calculated and carried over to the next 
load increment. 

2.2. Coupled analysis 
In some geotechnical problems, such as the consolidation of soils, deformations are coupled with pore-
water pressures.  The global equations for such problems may be obtained by combining the principle 
of virtual displacements and the continuity equation through the principle of effective stress and 
Darcy’s law [4].  The matrix form of the coupled global finite element equations may be written as 

 
ext

T ext

⎧ ⎫⎡ ⎤ ⎧ ⎫ ⎡ ⎤ ⎧ ⎫ ⎪ ⎪+ =⎢ ⎥ ⎨ ⎬ ⎨ ⎬ ⎨ ⎬⎢ ⎥
⎢ ⎥ ⎣ ⎦ ⎩ ⎭⎩ ⎭ ⎪ ⎪⎣ ⎦ ⎩ ⎭

K L 0 0 U FU
0 H PPL 0 Q

&&

&& &
 (3) 

where K, L and H are the global stiffness, coupling and flow matrices respectively, U denotes the 
nodal displacements vector, P is the nodal pore-water pressure vector, Fext and Qext represent the 
external force vector and the fluid supply vector, respectively.  Details of these matrices and vectors 
can be found in [4].  To obtain the values of displacements and pore-water pressures in each UL step, 
equation (3) needs to be integrated over the time.  Note that in an Eulerian step of a coupled analysis, 
the nodal values of pore-water pressure as well as other state variables at Gauss points need to be 
transformed from the old material domain into the new grid configuration. 
 An important issue which arises in a large deformation coupled analysis is the change in 
permeability (hydraulic conductivity) of the soil.  In this study it is assumed that the permeability of 
the soil depends on its voids ratio which changes as the soil deforms and undergoes volume change 
according to [4] 

 ( )1 1t t te J e+Δ = + −  (4) 

where e is the voids ratio and J denotes the Jacobian of the deformation gradient tensor.  In addition, 
in a large deformation analysis the permeability of the soil may also change if the soil is initially 
anisotropic and elements subsequently undergo significant rigid body rotation.  This effect is 
expressed by [13] 
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 Tt t t
ij ik kl ljk R k R+Δ = ⋅ ⋅  (5) 

where kij represents the permeability tensor and Rij is the rotation matrix at a Gauss point, which 
corresponds to the rotation of a vector in a Cartesian system of coordinates by a defined angle about 
the origin. 

2.3. Dynamic and contact analysis 
The effect of inertia forces should not be neglected in problems involving relatively fast loading rates.  
The rapid penetration of objects into a layer of soil is a classical example of such problems.  This type 
of problem contains another complexity due to the boundary conditions changing continuously during 
the analysis.  The principle of virtual work for the dynamic analysis of a system of k bodies in contact 
can be written as 

 
( ) ( )
( ) 0

k k k k k

c

ij ij k i i k i i k i i k i i kV V V V S
k k

N N T T cS

dV u u dV u cu dV u b dV u q dS

t g t g dS

σ δε δ ρ δ δ δ

δ δ

− − − + +

+ + =

∑ ∑∫ ∫ ∫ ∫ ∫

∫

&& &
 (6) 

where u&  and u&& represent material velocities and accelerations, respectively, ρ and c are the material 
density and damping, δgN and δgT denote the virtual normal and tangential gap displacements 
(between the bodies ‘in contact’), tN and tT are the normal and tangential forces at the contact surface 
Sc.  In order to describe the contact at the interface between two bodies, constitutive equations must be 
provided for the tangential and normal directions.  Among several strategies available in contact 
mechanics we use the penalty method to formulate these constitutive relations.  For more details see 
[10] and [11]. 
 The analysis of dynamic problems by the ALE method requires further considerations.  First, 
the velocities and accelerations of all nodal points must be remapped from the material configuration 
to the grid computation in the Eulerian step.  Second, the computational boundaries must be able to 
absorb the energy of oncoming waves.  In other words, the outgoing waves from a source must not 
reflect back from truncated artificial boundaries defined in a finite element domain.  This can be 
assured by using a standard viscous boundary [5].  Last, but not least, it is noted that the soil 
constitutive relations may be affected by the rate of loading.  For example, the undrained shear 
strength of cohesive soils, su, often increases with the rate of straining [12].  In the examples discussed 
below this effect has been described by 

 , 1 logu u ref
ref

s s γλ
γ

⎡ ⎤⎛ ⎞
= +⎢ ⎥⎜ ⎟⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦

&

&
 (7) 

where su,ref is a reference undrained shear strength measured at a reference shear strain rate of refγ& , λ 
denotes the rate of increase per log cycle of time and γ&  denotes the shear strain rate. 

3. Numerical examples 
Experimental as well as numerical validation of the ALE method reviewed here has been reported 
previously [3,4,5,6].  To demonstrate its abilities and its wide range of application, the ALE method 
has been used to analyse some interesting geomechanics problems, including the static and dynamic 
analysis of a footing resting on an undrained soil layer, the consolidation analysis of soil under a rigid 
footing and the deep penetration of a free-falling penetrometer into an undrained soil layer.  These 
problems have been solved numerically using SNAC, a finite element code developed by the 
geotechnical research group at the University of Newcastle, Australia. 
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3.1. Static and dynamic analysis of a rigid footing on an undrained soil layer 
In the first example, we consider a rigid strip footing on an undrained soil layer subjected to static as 
well as dynamic loads.  Due to symmetry, only the right-hand half of the footing is analysed using the 
finite element mesh and the boundary conditions shown in Figure 1.  The mesh consists of 3884 6-
noded plane-strain triangular elements, with 7903 nodal points overall.  In the dynamic analyses, the 
bottom and right boundaries are modelled as energy absorbing boundaries in order to avoid reflection 
of oncoming waves.  Table 1 denotes the material properties used in all analyses performed in this 
example.  An associated Tresca model was used to represent a purely cohesive soil deforming under 
undrained conditions.  Note that the smallest element dimension under the footing is equal to B/16, 

where B is the footing half-width, making the problem vulnerable to mesh distortion but potentially 

increasing the accuracy of the analysis.  As reported earlier, the UL method is not normally able to 
provide a solution to such problems due to significant mesh distortion occurring in the areas under and 
next to the footing where intense shearing is likely to occur [3,4].  For this reason, only the ALE 
results are reported in this study. 
 For the dynamic analysis a prescribed vertical velocity, 0.5 m/sec, was applied to the footing 
during a time interval of 1 sec using 500 equal time steps.  One static and three dynamic analyses, 

Material Property Value Comments 
Undrained Young's modulus, Eu 

Eu/su,ref = 100 To represent a relatively soft soil 
Undrained shear strength, su,ref 

Undrained Poisson's ratio, νu 0.49 To represent the elastic incompressibility 
of soil under undrained conditions 

Unit mass, ρ 2 tonne/m3 Corresponds to unit weight of 19.6 kN/m3 
 

Table 1. Material properties used in Examples 3.1 and 3.3. 
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Figure 1. Rigid strip footing; geometry, finite element mesh and boundary conditions.

WCCM/APCOM 2010 IOP Publishing
IOP Conf. Series: Materials Science and Engineering 10 (2010) 012074 doi:10.1088/1757-899X/10/1/012074

5



 
 
 
 
 
 

assuming λ = 0.0, 0.1, and 0.2 (see Equation (7)), were performed.  The average pressure predicted 
under the footing, normalised by su.ref, is plotted versus its vertical displacement, normalised by B, in 
Figure 2.  It is worth noting that an increase in the rate parameter λ significantly increases the 
mobilised strength of the soil under dynamic loading and the inertia effects abate relatively quickly 
after the initial impact. 
 

3.2. Consolidation of an elastoplastic soil layer under a rigid footing 
In the second example, the consolidation of a soil layer under a rigid impermeable footing, assuming 
small deformations as well as large deformations, is considered.  The geometry and boundary 
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Figure 3. Rigid strip footing; geometry, finite element mesh and boundary conditions. 
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Figure 2. Average pressure on the footing versus prescribed displacement. 
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conditions are shown in Figure 3.  Note that in a coupled displacement-pore water pressure analysis it 
is actually the drained soil properties that are required.  The drained Young's modulus, E′ , and the 
drained cohesion, c′ , of the soil are assumed to be 500 kPa and 5 kPa, respectively.  The drained 
friction angle, ϕ′ , is 20o whilst the dilation angle was assumed to be zero.  The initial (isotropic) 
permeability of the soil in the x and y directions is 10-4 m/day and the unit weight of the pore water and 
the soil are 10 kN/m3 and 20 kN/m3, respectively.  Poisson's ratio of the soil skeleton was assumed to 
be 0.3.  The water table is located at the ground surface.  Assuming B = 0.5 m and small strains, the 
theoretical undrained bearing capacity of the soil under the footing is approximately 102 kPa. 
 The analysis was performed in three stages.  In the first stage, body force due to self-weight of 
the soil was applied very slowly to produce fully drained conditions and an initial geostatic stress 
field, i.e., zero excess pore pressure.  In the second stage, a uniform pressure of q was applied to the 
footing at a uniform rate over a period of 1 day, i.e., relatively rapid loading.  Two different values of 
q = 90 kPa and q = 150 kPa were used for this step.  The soil was then permitted to consolidate over 
time, keeping the load constant.  The settlement of the footing, normalised by B, versus time is plotted 
in Figure 4 for the second and the third stage of the analysis.  For q = 90 kPa, the final consolidation 
settlement of the footing predicted by small deformation analysis and the ALE analysis are 0.86B and 
0.75B, respectively, occurring after approximately 3100 and 3500 days.  Compared with the small 
deformation analysis, the final consolidation settlement predicted by the ALE method occurs over a 
relatively longer period of time, mainly due to the changes in the permeability during consolidation.  
Note that as the soil is deformed and consolidated, its permeability changes with its void ratio 
(equation 5) as well as potentially with rigid body rotation (equation 6).  For q = 150 kPa, the final 
consolidation settlement predicted by the ALE method is 1.41B.  Note that small deformation analysis 
cannot predict a solution in this case since the pressure applied rapidly on the footing exceeds the 
(small strain) undrained bearing capacity of the soil. 

 

3.3 Analysis of a free-falling penetrometer 
In this example, the ability of the ALE method in providing an efficient solution to one of the most 
sophisticated problems in geomechanics, viz., the dynamic penetration of a free-falling penetrometer 
into an undrained layer of soil, is illustrated.  The geometry, finite element mesh and the boundary 
conditions of the problem are shown in Figure 5.  The mass and initial velocity of the penetrometer are 
assumed to be 0.2 kg and 10 m/sec, respectively, i.e., the initial kinetic energy of the object as it first  
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Figure 4. Normalised settlement of the footing versus time. 
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strikes the soil is 10 Joules.  The material properties are the same as the properties used in Example 1 
(see Table 1).  The strain rate parameter, λ, is equal to 0.2.  The size of each time step was assumed to 
be 2x10-5 sec. 

Figure 5. Finite element mesh of free 
falling penetrometer. 
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Figure 6. Severe mesh distortion 
occurring in UL analysis at t = 0.0097 s. 

Figure 7. Deformed mesh at the end of 
ALE analysis. 
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 The analysis by the UL method could not be finalised due to the obvious mesh distortion 
occurring at increment 485 (t = 0.0097 sec), as depicted in Figure 6.  The ALE method was able to 
perform the analysis successfully and predicted a total penetration of 0.37 m (9.23 diameters) 
occurring after 4092 increments (or 0.082 sec).  The final deformed mesh obtained by the ALE 
method is shown in Figure 7.  The average vertical contact pressure between the penetrometer and the 

soil, normalised by su,ref, is plotted versus the penetration of the object, normalised by its diameter, in 
Figure 8.  In addition, the vertical velocity of the penetrometer is plotted versus its normalised 
penetration as in Figure 9, where an approximately parabolic relation can be observed. 

4. Conclusion and future challenges 
The application of the Arbitrary Lagrangian-Eulerian method in solving a wide range of geotechnical 
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problems has been presented in this paper.  This was achieved by solving some typical examples 
including the large deformation analysis of a footing under static as well as dynamic loads, the 
consolidation of a soil layer under a footing and the dynamic penetration of an object into a soil layer.  
It is concluded that the ALE method can be successfully used in large deformation analysis of 
geotechnical problems.  However, application of the ALE method in the dynamic analysis of coupled 
displacement-pore water pressure problems in geomechanics has not previously been reported and as 
such demands further investigation.  This will be addressed in future work. 
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