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Abstract. In this paper we give analogues of the Ramanujan functions and nonlin-

ear differential equations for them. Investigating a modular structure of solutions for

nonlinear differential systems, we deduce new identities between the Ramanujan and

hypergeometric functions. Another result of this paper is a solution of transcendence

problems concerning nonlinear systems.

In 1916 S. Ramanujan has proved [12] that the functions

P (q) = 1− 24
∞∑
n=1

σ1(n)qn,

Q(q) = 1 + 240
∞∑
n=1

σ3(n)qn, R(q) = 1− 504
∞∑
n=1

σ5(n)qn,

(1)

where σk(n) =
∑
d|n d

k, satisfy the system of nonlinear differential equations

q
dP
dq

=
1
12

(P 2 −Q), q
dQ
dq

=
1
3

(PQ−R), q
dR
dq

=
1
2

(PR−Q2) (2)

(see also [5, Chapter X, Sect. 5]). Note that Q and R are modular as functions

of τ = 1
2πi log q.

The hypergeometric function

F (α, β; γ; z) =
∞∑
n=0

(α)n(β)n
(γ)n

· z
n

n!
,
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where (α)0 = 1 and (α)n = α(α + 1) · · · (α + n − 1) for n = 1, 2, . . . , satisfies the

second order linear homogeneous differential equation

z(1− z)d2V

dz2
+ (γ − (α+ β + 1)z)

dV
dz
− αβV = 0 (3)

(see, e.g., [15, Chapter 14, Sect. 14.2]). A method starting from original works of

K. Jacobi, H. A. Schwarz, M. Halphen et al. allows to derive relations between solu-

tions of the hypergeometric equation (3) and of Ramanujan-like nonlinear systems.

To illustrate this statement, we give the formula

F

(
1
12
,

5
12

; 1;
Q3 −R2

Q3

)
= Q1/4 (4)

(see [14] or the end of Sect. 4 below).

This paper deals with both nonlinear systems satisfied by modular functions, and

identities between these functions and hypergeometric functions for a special choice

of parameters. The recent papers [6, 11, 4] are devoted to the study of similar ques-

tions, but we have another aim. Our work is mostly inspired by Yu. V. Nesterenko’s

result [9] in number theory about algebraic independence over Q of at least three

numbers among q, P (q), Q(q), and R(q) for any q ∈ C, 0 < |q| < 1. Nesterenko’s

proof is based on the following three crucial features for the Ramanujan functions:

(i) algebraic independence over C(q);

(ii) algebraic system of differential equations (2) satisfied by the collection of

functions in question;

(iii) polynomial growth of integral coefficients of the Taylor expansions with

respect to q.

There exist a lot of another examples of functions satisfying conditions (i)–(iii);

some of them are indicated below. However, any such example has the modular

nature, that is, the corresponding functions are algebraic over the field generated

by the Ramanujan functions. The question about the existence of “nonmodular”

functions of one variable q satisfying (i)–(iii) is still unanswered.

1. Hypergeometric equation and nonlinear systems

Equation (3) has three regular singular points at 0, 1, and∞. Making the change
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U = zγ/2(1− z)(α+β+1−γ)/2V in (3) we deduce the equation

U ′′ +
(
a+ c

4z2
+

b+ c

4(z − 1)2
− c

2z(z − 1)

)
U = 0, (5)

where

a = γ(1− α− β) + 2αβ, b = (α+ β)(γ − α− β) + 2αβ − γ + 1,

c = γ(α+ β + 1− γ)− 2αβ.

Let πiτ be the ratio of two independent solutions

u1 = u1(z) and u0 = zγ/2(1− z)(α+β+1−γ)/2F (α, β; γ; z) (6)

of (5), and δ = 1
πid/dτ . Then the functions

y0 = δ log u0, y1 = δ log
u0

z
, and y2 = δ log

u0

z − 1
(7)

satisfy the system of nonlinear differential equations

δY0 = Y 2
0 −

a

4
(Y0 − Y1)2 − b

4
(Y0 − Y2)2 − c

4
(Y1 − Y2)2,

δY1 = Y 2
1 −

a

4
(Y0 − Y1)2 − b

4
(Y0 − Y2)2 − c

4
(Y1 − Y2)2,

δY2 = Y 2
2 −

a

4
(Y0 − Y1)2 − b

4
(Y0 − Y2)2 − c

4
(Y1 − Y2)2

(8)

(see [11, Sect. 3, Example 2]).

In the case of hypergeometric equation with parameters α = β = 1
2 and γ = 1

we obtain a = b = c = 1
2 , and after the substitution

Ψ2 =
1
4

(Y0 + Y2), Ψ3 =
1
4

(Y1 + Y2), Ψ4 =
1
4

(Y0 + Y1)

in (8) we get the Halphen system [3]

δ(Ψ2 + Ψ3) = 4Ψ2Ψ3, δ(Ψ2 + Ψ4) = 4Ψ2Ψ4, δ(Ψ3 + Ψ4) = 4Ψ3Ψ4. (9)

An easy computation using classical formulas (see [15, Sect. 21.8] and [11, Sect. 3,

Example 4]) shows that the system (9) is satisfied by the logarithmic δ-derivatives

of theta constants

ψ2 =
δϑ2

ϑ2
, ψ3 =

δϑ3

ϑ3
, ψ4 =

δϑ4

ϑ4
(10)

(for other proofs of this fact we refer to [3] and [16]).
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2. Gauss–Schwarz theory

Let each of the numbers

λ = |1− γ| =
√

1− a− c, µ = |α+ β − γ| =
√

1− b− c,

ν = |α− β| =
√

1− a− b

be either zero or the reciprocal of an integer greater than 1, and λ + µ + ν < 1.

Then the projective monodromy group Γ of (3) is isomorphic to a certain finitely

generated subgroup of SL2(R) (the so-called Schwarz triangle group), and the map

τ 7→ z(τ) is an automorphic function with respect to Γ, well defined inside the

Γ-stable circle Ω:

z(τ) = z(γτ) = z

(
aτ + b

cτ + d

)
, γ =

(
a b

c d

)
∈ Γ, τ ∈ Ω.

In particular, the function z(τ) is meromorphic in Ω.

The Wronskian of the equation (5) is a constant C; therefore,

dτ
dz

=
u′1u0 − u1u

′
0

πiu2
0

=
C

πiu2
0

. (11)

Hence u2
0 = C

πidz/dτ , which yields

u2
0

(
z(τ)

)
= C · δz(τ), τ ∈ Ω. (12)

In the right-hand side of (12) we see an automorphic function of weight 2 with

respect to Γ (see, e.g., [2, Sect. 44]). The following statement shows how to express

the identity (12) in terms of the solution (7) of the system (8).

Lemma 1. Let y0, y1, y2 be a solution of (8) assigned to the pair of linearly inde-

pendent solutions (6) of (5). Then

u2
0

(
y2(τ)− y0(τ)
y2(τ)− y1(τ)

)
=

(y0(τ)− y1(τ))(y2(τ)− y0(τ))
y2(τ)− y1(τ)

, τ ∈ Ω. (13)

Proof. By (11) and (7) we get

y0 − y1 = δ log z =
u2

0

Cz
, y0 − y2 = δ log(z − 1) =

u2
0

C(z − 1)
,

which implies z = (y2 − y0)/(y2 − y1). Therefore,

u2
0

(
y2 − y0

y2 − y1

)
= u2

0(z) = Cz(y0 − y1) =
(y0 − y1)(y2 − y0)

y2 − y1
,

as required in (13).
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Proposition 1. The following equality holds:

F 2

(
α, β; γ;

y2 − y0

y2 − y1

)
= (y0 − y1)γ−α−β(y2 − y1)α+β(y2 − y0)1−γ . (14)

Proof. By Lemma 1 and the formula

F 2

(
α, β; γ;

y2 − y0

y2 − y1

)
= z−γ(1− z)−α−β−1+γu2

0(z)

=
(
y2 − y0

y2 − y1

)−γ(
y0 − y1

y2 − y1

)−α−β−1+γ

u2
0

(
y2 − y0

y2 − y1

)
(15)

we obtain the desired relation (14).

Remark. Formula (15) explains what branches of the root functions one must con-

sider in (14). Their choice is determined by our choice of branches of z−γ and

(1 − z)−α−β−1+γ , which we assume to take real values for z ∈ (0, 1). It is inter-

esting to note that some corollaries of (14) (for instance, (4)) can sometimes be

regarded as equalities of formal power series, without mention of branches of root

functions.

Proposition 2. The functions (7) are meromorphic in Ω; moreover , they have

only simple poles. If τ0 ∈ Ω is a pole of any of the functions (7) then

z(τ0) ∈ {0, 1,∞}. (16)

Proof. According to formulas (7) and (12) we have

y0(τ) =
1
2
δ log

(
δz(τ)

)
, y1(τ) =

1
2
δ log

δz(τ)
z(τ)

, y2(τ) =
1
2
δ log

δz(τ)
z(τ)− 1

.

(17)

Hence simple poles of functions (17) coincide with zeros and poles of δz(τ), z(τ),

and z(τ) − 1. The poles of the last functions are poles of z(τ), which satisfy (16)

(that is, they belong to the set of cusps of Γ). Zeros of a function z(τ)− z0, where

z0 ∈ {0, 1}, are exactly points τ0 such that z(τ0) = z0. Finally, it remains to prove

that all zeros of the function (12) satisfy (16). Assuming the contrary, suppose that

there exists τ0 such that both u0(z(τ0)) = 0 and z0 = z(τ0) /∈ {0, 1,∞}. Since z0 is

not a singular point of the differential equation (5), linearly independent solutions
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u0(z) and u1(z) are holomorphic at z = z0, and u1(z0) 6= 0 because u0(z0) = 0.

Therefore the point τ0 = τ(z0) = 1
πiu1(z0)/u0(z0) =∞ does not belong to Ω. This

contradiction completes the proof.

In the proof of Lemma 1 we express the automorphic function z(τ) in terms of

the solution of the nonlinear system (8). The functions (7) are not automorphic,

but they have transformations under the action of Γ as follows.

Proposition 3. Suppose that Γ is the monodromy group for (5) and the collection

y0(τ), y1(τ), y2(τ) gives a solution of the dual system (8). Then

yj(γτ) = (cτ + d)2yj(τ) +
1
πi
c(cτ + d), j = 0, 1, 2,

γ =

(
a b

c d

)
∈ Γ, τ ∈ Ω.

(18)

Proof. Without loss of generality we give the proof of (18) only for the case of y0(τ).

The action of the monodromy group on a pair of linearly independent solutions

u0(z) and u1(z) can be expressed as

γ : u0(z) 7→ cu1(z) + du0(z), γ : u1(z) 7→ au1(z) + bu0(z), γ =

(
a b

c d

)
∈ Γ.

Consequently, for γ ∈ Γ using (7) we obtain

y0(γτ) =
1
πi

d
d(γτ)

log u0

(
z(γτ)

)
=
(

d(γτ)
dτ

)−1

· 1
πi

d
dτ

log(cu1 + du0)

= (cτ + d)2 · 1
πi

d
dτ

log
(
u0 · (cτ + d)

)
= (cτ + d)2 ·

(
δ log u0 +

c

πi(cτ + d)

)
, τ ∈ Ω,

which is the desired conclusion.

By (18) and Proposition 2, the differences y0 − y1 and y0 − y2 are automorphic

forms of weight 2 with respect to Γ:
(y0 − yj)(γτ) = (cτ + d)2 · (y0 − yj)(τ), j = 1, 2,

γ =

(
a b

c d

)
∈ Γ, τ ∈ Ω.

Thus, the identity (13) shows what automorphic function (of weight 0) one must

substitute for z in u2
0(z) to get an automorphic function of weight 2.

Another advantage of the functions y0(τ), y1(τ), y2(τ) is the possibility to con-

struct new automorphic functions with their help.
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Proposition 4. Suppose that Ω is the interior of the circle stable under the Schwarz

triangle group Γ, and a function f(τ) meromorphic in Ω satisfies the functional

equation

f(γτ) = (cτ + d)2f(τ) +
k

πi
c(cτ + d), γ =

(
a b

c d

)
∈ Γ, τ ∈ Ω,

where k > 0. Then

(a) the differential operator

δp = δ − p

k
f(τ)

takes each automorphic function of weight p with respect to Γ to an auto-

morphic function of weight p+ 2;

(b) the function δ1f(τ) is a automorphic form of weight 4 with respect to Γ.

We omit the proof since there is a detailed description in [5, Chapter X, Sect. 5]

for the concrete function f(τ) = P (e2πiτ ) satisfying the functional equation

f(γτ) = (cτ + d)2f(τ) +
6
πi
c(cτ + d), γ =

(
a b

c d

)
∈ SL2(Z), =τ > 0.

We observe that if f(τ) satisfies the assumptions of Proposition 4 and is a holo-

morphic function in Ω, then, by this result, one obtains a sequence of automorphic

forms f4 = δ1f , f6 = δ4f4, f8 = δ6f6, etc. of weights 4, 6, 8, . . . respectively. This

fact (and the known structure of modular forms for SL2(Z)) gives one arguments

to prove the system of differential equations (2).

3. Isomorphism of differentially stable fields

In this section we apply the one-dimensional case of the general method intro-

duced in the joint work [1] of D. Bertrand and this author to compute the transcen-

dence degree of the differential field generated by automorphic forms. Reducing to

the case of dimension 1 enables us to be more explicit.

We fix a hypergeometric equation (3) such that its projective monodromy group Γ

is the Schwarz triangle group with angles λ, µ, and ν. Let Ω be the interior of
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Γ-stable circle. We take the nonlinear system (8) dual to (3) (or, equivalently,

to (5)).

We take an arbitrary solution y0(τ), y1(τ), y2(τ) of (8) that is analytic in a neigh-

borhood of τ0 ∈ Ω and the quantities y0(τ0), y1(τ0), y2(τ0) are all distinct. Consider

the field

L = C

(
τ, y0(τ), y1(τ), y2(τ)

)
,

which is δ-differentially stable by (8). Note that the rings C[τ, y0, y1, y2] and

C[y0, y1, y2] are also δ-stable.

By [11, Theorem 1.1, 3)] we can find linearly independent solutions u0, u1 of

the homogeneous equation (5) such that setting πiτ = u1/u0 we obtain by (7)

the functions y0(τ), y1(τ), y2(τ) (at least in the neighborhood of τ0). Consider the

d/dz-differentially stable field

K = C

(
z, u0(z), u′0(z), u1(z), u′1(z)

)
which is the Picard–Vessiot extension for the equation (5).

The fields K and L are defined globally : for C \ {0, 1} and for Ω, respectively

(the last fact is a consequence of Gauss–Schwarz theory).

Lemma 2. There holds the embedding L ⊂ K.

Proof. By (11) and (7) one has

y0 =
u′0u0

C
, y1 =

u′0u0

C
− u2

0

Cz
, y2 =

u′0u0

C
− u2

0

C(z − 1)
, (19)

which yields that τ = 1
πiu1/u0 and the functions y0(τ), y1(τ), and y2(τ) belong to

C(z, u0, u
′
0, u1) = K. This proves the required embedding.

In general, the inverse embedding K ⊂ L fails, but this drawback can be easily

remedied.

Consider the symmetric square or the Appell transform (see [15, Chapter 14,

Example 10]) of the differential equation (5), that is the third order linear homoge-

neous differential equation with fundamental system of solutions u2
0, u0u1, u

2
1. Its

Picard–Vessiot extension is precisely

K2 = C

(
z, u2

0, (u
2
0)′, (u2

0)′′, u2
1, (u

2
1)′, (u2

1)′′, u0u1, (u0u1)′, (u0u1)′′
)
.



HYPERGEOMETRIC EQUATION AND RAMANUJAN FUNCTIONS 9

Proposition 5. The differentially stable fields K2 and L coincide.

Proof. Using formulas (19) and τ = u0u1/u
2
0, we deduce that the functions τ , y0(τ),

y1(τ), and y2(τ) belong to C(z, u2
0, (u

2
0)′, u0u1) ⊂ K2. This yields the embedding

L ⊂ K2.

Conversely, by (19) we get z = (y2 − y0)/(y2 − y1) (see the proof of Lemma 1)

and

u2
0 = Cz(y0 − y1), u2

1 = τ2u2
0, u0u1 = τu2

0;

the d/dz-stability of L follows from the formula

d
dz

=
dτ
dz

d
dτ

=
(
u1

u0

)′ d
dτ

=
C

u2
0

δ

and the δ-stability of L. This implies the embedding K2 ⊂ L and completes the

proof of the proposition.

Corollary 1. The field L does not depend on the choice of the solution y0(τ), y1(τ),

y2(τ) of the system (8) analytic in a neighborhood of τ0 ∈ Ω with distinct quantities

y0(τ0), y1(τ0), y2(τ0).

Proof. Since Picard–Vessiot extensions do not depend on the choice of linearly

independent solutions u0, u1 of (5), the application of Proposition 5 completes the

proof.

Corollary 2. The transcendence degree of L over C is 4.

Proof. First we have

tr deg
C
L = tr deg

C
K2 = tr deg

C
K = tr deg

C(z)K + 1.

The transcendence degree of the Picard–Vessiot extension K over C(z) is equal to

the dimension of the Galois group for the differential equation (5), which is the

dimension of the monodromy group Γ. Since the dimension of any Schwarz triangle

group is 3, we get the desired conclusion.

The result of Corollary 2 (in slightly distinct notation) is classical and has many

different proofs (see [7, 10] for a more general assertion). The proofs in this section

demonstrate one-dimensional potentials of the method from [1], which seems to be

new even in this simple case.
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4. Analogues of Ramanujan systems

We are interested in finding hypergeometric equations (3) such that the dual

system (8) possesses solutions having expansions in non-negative powers of q = eπiτ

(where =τ > 0) with almost all integral coefficients. We can restrict considerations

to the case γ = 1 (equivalently, a + c = 1) since all other cases correspond to

permutations of the parameters a, b, c (see Sect. 2 above). Our numerical results

for systems (8) with periodic and good-arithmetic solutions (the total number of

these systems is 9 by [4]) are gathered in the table below.

The cases considered above of logarithmic δ-derivatives of theta constants (10)

(λ = µ = ν = 0) and the Ramanujan functions (1) (λ = 0, µ = 1
2 , ν = 1

3 ) are

related by the formulas

P = 4(ψ2 + ψ3 + 4ψ4),

Q = 42
(
(ψ2 + 7ψ3 − 8ψ4)2 − 48(ψ3 − ψ4)2

)
= (ϑ4

2 + 8ϑ4
4)2 − 48ϑ8

2,

R = 43(ψ2 + ψ3 − 2ψ4)
(
(ψ2 − 17ψ3 + 16ψ4)2 − 288(ψ3 − ψ4)2

)
= (ϑ4

2 + ϑ4
3)
(
(ϑ4

4 − 16ϑ4
2)2 − 288ϑ8

2

)
.

(20)

We have not succeeded in the search of references for (20) whereas the relations

between P (q2), Q(q2), R(q2) and ψ2(q), ψ3(q), ψ4(q) are well known (see, e.g., [16]).

One possible way to prove identities (20) is to use the “modularity” of (1) and (10)

and to check the equality of their first terms in q-expansions; another way is based

on the differential equations for the functions (1) and (10).

It is clear that the functions

P2(q) =
P (q) + 2P (q2)

1 + 2
, Q2(q) =

Q(q) + 22Q(q2)
1 + 22

,

R2(q) =
R(q) + 23R(q2)

1 + 23
, S2(q) =

R2
2(q)

Q2(q)
,

(21)

P3(q) =
P (q) + 3P (q3)

1 + 3
, Q3(q) =

Q(q) + 32Q(q3)
1 + 32

, R3(q) =
R(q) + 33R(q3)

1 + 33
,

S3(q) =
R2

3(q)
Q3(q)

, T3(q) =
R3

3(q)
Q2

3(q)
, U3(q) =

R4
3(q)

Q3
3(q) (22)

have Taylor expansions with respect to q with integral coefficients of polynomial

growth (cf. the assumption (iii) from the introductory section). To check the as-

sumptions (i) and (ii) we give the following assertions.
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Proposition 6. The functions P2, Q2, R2, S2 satisfy the differential equations

δP2 =
1
8

(P 2
2 −Q2), δQ2 =

1
2

(P2Q2 −R2),

δR2 =
1
4

(3P2R2 − 2Q2
2 − S2), δS2 = P2S2 −Q2R2

and the additional condition R2
2 = Q2S2. The functions P2, Q2, R2 are algebraically

independent over C(q).

Proposition 7. The functions P3, Q3, R3, S3, T3, U3 satisfy the differential equa-

tions

δP3 =
1
6

(P 2
3 −Q3), δQ3 =

2
3

(P3Q3 −R3),

δR3 =
1
2

(2P3R3 −Q2
3 − S3), δS3 =

1
3

(4P3S3 − 3Q3R3 − T3),

δT3 =
1
6

(10P3T3 − 9R2
3 − U3), δU3 = 2(P3U3 −R3S3) = 2(P3U3 −Q3T3)

and the additional conditions R2
3 = Q3S3, R3S3 = Q3T3, S2

3 = Q3U3. The functions

P3, Q3, R3 are algebraically independent over C(q).

Propositions 6 and 7 can be derived directly either from the system of differential

equations (2), or from the systems (8) for Schwarz triangle groups with angles λ = 0,

µ = 1
2 , ν = 1

4 and λ = 0, µ = 1
2 , ν = 1

6 and the table.

We now want to explain the origin of relations from the last column of the table.

Numerical computations using an easy algorithm written for GP-PARI calculator

gives one q-expansions of the functions y0 = 1
2−c·Cq+O(q2), y1 = − 1

2 +O(q2), and

y2 = 1
2 + a · Cq +O(q2) up to qn for arbitrary n ≥ 1; here C > 0 is some specially

selected constant. By Proposition 2, the functions y0, y1, y2 have at most one (if

λ = µ = 0) or two (if λ = 0) simple poles in the upper half-plane Ω = {τ : =τ > 0};

therefore there exist two (if λ = µ = 0) or one (if λ = 0) linear combinations

of y0, y1, y2 representing functions holomorphic in Ω. To identify them with P ,

P2, or P3 it is sufficient to look only at finitely many, say seven, terms in their

q-expansions. Indeed, the linear spaces Sk(Γ), where k = 2, 4, or 6, of cusp forms

(which, in particular, contain automorphic forms of weight k vanishing at q = 0)

have dimensions ≤ 6 by [13, Theorem 2.24] in all cases listed in the table. Thus,

any difference of the functions separated by sign ‘=’ in the last column of the table
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Table. Solutions of nonlinear systems (8)

related to Ramanujan functions

λ, µ, ν α, β; γ a, b, c Ramanujan systems

0, 0, 0 1
2 ,

1
2 ; 1 1

2 ,
1
2 ,

1
2

5y0 + 5y1 + 2y2 = P

3y0 + 3y1 + 2y2 = P2

0, 0, 1
2

1
4 ,

3
4 ; 1 3

8 ,
3
8 ,

5
8

4y0 + 5y1 + 3y2 = P

2y0 + 3y1 + 3y2 = P2

0, 0, 1
3

1
3 ,

2
3 ; 1 4

9 ,
4
9 ,

5
9

4y0 + 5y1 + 3y2 = P

2y0 + 2y1 + 2y2 = P3

(y2 − y1)2 = Q3

(y2 − y1)2(2y0 − y1 − y2) = R3

0, 1
2 ,

1
3

1
12 ,

5
12 ; 1 41

72 ,
23
72 ,

31
72

4y0 + 5y1 + 3y2 = P

(y0 − y1)(y2 − y1) = Q

(y0 − y1)2(y2 − y1) = R

0, 1
2 ,

1
4

1
8 ,

3
8 ; 1 19

32 ,
11
32 ,

13
32

3y0 + 3y1 + 2y2 = P2

(y0 − y1)(y2 − y1) = Q2

(y0 − y1)2(y2 − y1) = R2

0, 1
2 ,

1
6

1
6 ,

1
3 ; 1 11

18 ,
13
36 ,

7
18

5
2y0 + 2y1 + 3

2y2 = P3

(y0 − y1)(y2 − y1) = Q3

(y0 − y1)2(y2 − y1) = R3

0, 1
3 ,

1
3

1
6 ,

1
2 ; 1 1

2 ,
7
18 ,

1
2

2y0 + 2y1 + 2y2 = P (−q2)

(y0 − y1)(y2 − y1) = Q(−q2)(
1
2 (y0 − y1) + 1

2 (y2 − y1)
)

×(y0 − y1)(y2 − y1) = R(−q2)

0, 1
4 ,

1
4

1
4 ,

1
2 ; 1 1

2 ,
7
16 ,

1
2

3
2y0 + y1 + 3

2y2 = P2(−q2)

(y0 − y1)(y2 − y1) = Q2(−q2)(
1
2 (y0 − y1) + 1

2 (y2 − y1)
)

×(y0 − y1)(y2 − y1) = R2(−q2)

0, 1
6 ,

1
6

1
3 ,

1
2 ; 1 1

2 ,
17
36 ,

1
2

5
4y0 + 1

2y1 + 5
4y2 = P3(−q2)

(y0 − y1)(y2 − y1) = Q3(−q2)(
1
2 (y0 − y1) + 1

2 (y2 − y1)
)

×(y0 − y1)(y2 − y1) = R3(−q2)

is an automorphic form, which is essentially zero since it has order O(q7) and lies

in the corresponding space Sk(Γ).

Finally, we obtain Q- and R-functions by Propositions 3 and 4. This completes
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the substantiation of the table.

In addition to this table we present some identities produced by Proposition 1:

F

(
1
3
,

2
3

; 1;
Q

3/2
3 −R3

2Q3/2
3

)
= Q

1/4
3 , F

(
1
8
,

3
8

; 1;
Q3

2 −R2
2

Q3
2

)
= Q

1/4
2 , (23)

F

(
1
6
,

1
3

; 1;
Q3

3 −R2
3

Q3
3

)
= Q

1/4
3 ,

and identity (4). The cases λ = 0, µ = ν ∈ { 1
3 ,

1
4 ,

1
6} are not that beautiful since in

these cases automorphic functions y0−y1 and y2−y1 cannot be rationally expressed

in terms of the Ramanujan functions.

Proposition 8. The following identities hold :

∞∑
n=0

(3n)!
(n!)3

(
Q

3/2
3 −R3

33 · 2Q3/2
3

)n
= Q

1/4
3 ,

∞∑
n=0

(4n)!
(n!)4

(
Q3

2 −R2
2

44 ·Q3
2

)n
= Q

1/2
2 , (24)

where the functions Q2, R2 and Q3, R3 are defined by (21) and (22).

Proof. The first identity in (24) follows from the first one in (23); by the corollary

of the classical formula

∞∑
n=0

( 1
4 )n( 2

4 )n( 3
4 )n

(n!)3
zn = F 2

(1
8
,

3
8

; 1; z
)

(see, e.g., [15, Chapter 14, Example 11]) and the second identity in (23) we derive

the second relation in (24).

It would be nice if we could continue the sequence (24) by an identity for the

series
∞∑
n=0

(5n)!
(n!)5

zn, (25)

all the more so that the substitution

z = z(q) = q − 770q2 + 171525q3 − 81623000q4 − 35423171250q5

− 54572818340154q6 − 71982448083391590q7 +O(q8)

for (25) is well known (see, e.g., [8, 6]). However the precise expressions of z(q)

and of the sum (25) with z = z(q) through classical functions (say, the Ramanujan

functions) are not yet known...
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3. M. Halphen, “Sur un système d’équations différentielles,” C. R. Acad. Sci. Paris 92:19 (1881),

1101–1103.

4. J. Harnad and J. McKay, “Modular solutions to equations of generalized Halphen type,”

Preprint CRM-2536, http://xxx.lanl.gov/abs/solv-int/9804006, Univ. de Montréal, 1998.
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