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More Ramanujan-type formulae for 1/π2

V. V. Zudilin

One of the most spectacular achievements in the history of the number π is the
representations of 1/π by rapidly converging series discovered by S. Ramanujan [1] in 1914.
Although Ramanujan himself did not indicate how he arrived at his series, he hinted
that these series belong to what is now known as ‘the theories of elliptic functions to
alternative bases’. The first rigorous mathematical proofs of Ramanujan’s identities in [1]
and their generalizations were given by the Borweins [2] and the Chudnovskys [3] (see
also [4] and [5]). One of the nowadays standard examples of Ramanujan-type formulae is
the Chudnovskys’ famous formula [3]
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which enabled them to hold the record in the calculation of π in 1989–94. Here (a)n =
Γ(a+n)/Γ(a) = a(a+1) · · · (a+n−1) for n > 1 and (a)0 = 1 is the Pochhammer symbol.
Quite recently, following a different method J. Guillera [6], [7] managed not only to prove
some of Ramanujan’s identities but also to indicate similar rapidly converging series for
1/π2. In this note we present a simple algorithm for producing Ramanujan–Guillera-type
formulae for 1/π2 from known ones for 1/π.

The general form of a Ramanujan-type series for 1/π is as follows:
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where α, β and z0 are certain algebraic numbers, and v(z) is the analytic solution
(around the origin) of a certain ‘arithmetically nice’ linear differential equation of order 3
normalized by v(0) = 1. It always happens that the differential equation is the (symmetric)
square of a differential equation of order 2, θ2u+A(z)θu+B(z)u = 0, A(z), B(z) ∈ Q(z),
say. In other words, we have v(z) = u(z)2, where u(z) is the analytic solution of a linear
differential equation of order 2. In particular, this fact implies

v = u2, θv = 2u θu. (3)

Consider the fourth power of the same differential equation of order 2; its analytic solution
around the origin is w(z) = u(z)4, that is,

w = u4, θw = 4u3θu, θ2w = 12u2(θu)2 + 4u3θ2u = 12u2(θu)2 − 4Au3θu− 4Bu4. (4)

Comparing (3) and (4) we find that
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Taking the square of both sides of (2) and using (5) we finally arrive at the identity“
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and the latter is a Ramanujan–Guillera-type formula for 1/π2. It is clear that taking the
cube, fourth power, etc. of the both sides of (2) leads one to similar (but more complicated)
formulae for 1/π3, 1/π4, . . . .

Our two illustrative examples are related to the identities
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involving 2F1- and 3F2-hypergeometric series (see, e.g., [8] for the corresponding definition),
where the sequence
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satisfies the polynomial recurrence equation

8(n + 1)3an+1 − (2n + 1)(8n2 + 8n + 5)an + 8n3an−1 = 0

(see [9; Section 1]). The function u(z) = 2F1
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Writing the Chudnovskys’ formula (1) in the form
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,

where z0 = − 1
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,

we find from (6) that

222883324273153467 · θ2w(z0) + 16670750677895547 · θw(z0)

+ 415634396862086 · w(z0) =
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.

A more modest example is based on the Ramanujan-type formula [3]
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where z0 = −1/803. Taking the square of (7) we obtain

198144387 · θ2w(z0) + 28855107 · θw(z0) + 1400726 · w(z0) =
2403

π2
.
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