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Abstract: The high accurate simulation of very thin glue layers based on the finite element method is still
connected to many problems which result from the necessity to construct a complicated mesh of essentially
different sizes of elements. This can lead to a loss of accuracy, unstable calculations and even loss of
convergence. However, the implementation of special transmission elements along the glue line and special
edge-elements in the near-edge region would lead to a dramatic decrease of the number of finite elements in
the mesh and thus, prevent unsatisfactory phenomena in numerical analysis and extensive computation time. The
theoretical basis for such special elements is the knowledge about appropriate transmission conditions and the
edge effects near the free boundary of the adhesive layer. Therefore, recently proposed so-called non-classical
transmission conditions and the behavior near the free edge are investigated in the context of the single-lap

tensile-shear test of adhesive technology.
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1. Introduction

Different approximation procedures for the solution of
partial differential equations are known (cf. Figure 1) and
each of the method possess its own advantages or dis-
advantages. The finite element method (FEM) is derived
from variation principles or the principle of virtual work
and results in a symmetric system of equations with a
diagonally dominant matrix. Many commercial codes are
available and such codes are widely used for industrial
simulations. Even with commercial codes, arbitrary geom-
etries and non-linearities, e.g. plastic or visco-elastic mate-
rial behavior, can nowadays be considered. The finite dif-
ference method (FDM) is derived from differential equa-
tions of the corresponding field problem and can result in
a non-symmetric and diagonally dominant matrix. This
method is easily to transform into computational codes but
reveals its disadvantages for complex geometries, singular
crack behavior or non-continuous solutions. The boundary
element method (BEM) is derived from integral equations
and results in a non-symmetric and full matrix. The advan-
tage of this method is that only the boundary needs to be
discretisized. The main disadvantage is that arbitrary inho-
mogeneous structures and non-linearities are difficult to
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transform completely into integral equations. Therefore, this
method is reserved for special applications, e.g. fracture
mechanics.

Nevertheless, the application of the finite element method
requires a lot of experience and many problems are still
unsolved or unsatisfactory with respect to economic require-
ments. The high-accurate simulation of thin adhesive layers
requires in the framework of the finite element simulation
the introduction of a huge amount of finite elements. The
generation of such computational models is on the one
hand difficult to automatize and extremely time-consuming
and on the other hand later on, the solving of the resulting
system of equations may also take considerable time. Fur-
thermore, complicated meshes with elements of essentially
different sizes and deformed transition elements can lead to
numerical problems, such as loss of accuracy or even loss
of convergence[2,3]. A further problem is connected with
the fact that the aspect ratio, i.e. length-width ratio, is
limited for classical finite elements to a maximum number
of 1:2 in order to avoid numerical instability. The improve-
ment of such calculations is therefore not only an economic
requirement but also the necessity for a better dimensioning
of structural applications which will lead to maximum
utilization of the materials and higher reliability and service
life of entire structures and applications.

A simplified adhesively bonded joint under shear load is
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Figure 1. Numerical approximation procedures for partial dif-
ferential equations.
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Figure 2. Schematic representation of an adhesively bonded
joint.

shown in Figure 2 with its geometrical dimensions. The real
three-dimensional behavior can be approximated by two-
dimensional limiting cases in order to reduce the dimen-
sionality (this leads to significant less finite elements in the
computational model): the plane strain case which holds
inside the joint and the plane stress case which holds at the
free surface. In the following, we are going to present and
to investigate so called non-classical transmission condi-
tions which are the theoretical basis for the introduction of
novel finite elements for adhesive layers. It should be men-
tioned here that the overall deformation behavior is deter-
mined by the plane strain case. However, the total descrip-
tion based on two-dimensional models requires also the
consideration of the plane stress case.

2. Transmission Conditions

The idea of transmission conditions can easily be intro-
duced based on simple one-dimensional structural elements,
such as springs or rods (cf. Figure 3). The relative displace-
ments of both ends for symmetric loading, [u.]=u-(-u1),
can be related to the acting force F in the spring or the
stress ¢ in the rod according to Eq. (1) (k: spring stiffness;
E: Young’'s modulus; A4: cross-sectional area; /: length).

spring
-F, -u, k F,u,
-] /\ /\ /\ /\ —
-F, -U, — X F, U,
-] —
G o
E Al
rod

Figure 3. Simple one-dimensional structural elements.

Table 1. Possible sets of transmission conditions along the line
x =0 depending on the relative properties of the thin inter-
mediate layer. 2D case

Interface Transmission conditions
soft [tp)-a205=0 [u]-a10,=0 [045] =0 [0:]=0
comparable [#,]= 0 [2]=10 [o5]=0 [o:]=0

stiff [24]=0 [t,]=0 [ox)t0/ dx(az duy/ Oy) [6.]=0

Table 2. Parameters afy) for the plane strain and plane stress
case

Case a @ as
. 2h(Q+ )1 =2v) 4k(1+v) 2hE
plane strain 20-0) 5 -2
2n(1 =o* 4h(1 +v)
plane stress D E 2hE

E—

Figure 4. Two-dimensional mesh (details) and boundary con-
ditions.

A L "'——l—r'y A

7z =

(spring); [ue) =2u,= L 0] =2, + 0 (rod) (1)

Recently, so-called non-classical transmission conditions
for two-dimensional problems were proposed which relate
the difference of displacements [u] and stresses [ o] at the
adhesive/adherend interface (cf. line C, D in Figure 2) to the
behavior in the middle of the adhesive layer (cf. line B in
Figure 2, x=0). Table 1 and 2 summarize these non-
classical transmission conditions for isotropic elastic mate-
rial behavior[4,5]. The elastic constants £ and v are related
to the adhesive layer of thickness 2h.
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Figure 6. Stress orthogonal the bond line for an adhesive with v = 0.39 and E = 14.96 MPa.

The classification soft, comparable and stiff relates to the
relationship between the stiffness of the adhesive and the
adherend (E/E;). The formulae in Table 2 have been found
under the assumption that the material parameters of the
adhesive layer do not change perpendicular to the glue line.
General expressions which incorporate any functional de-
pendency can be found in[6].

The knowledge about the validity of these conditions will
enable the derivation of novel elements.

3. Finite Element Modeling

The validity of the indicated non-classical transmission
conditions will be numerically investigated in the frame-
work of the single-lap tensile-shear test of adhesive techno-
logy (cf. Figure 4)[7]. Later on, this procedure will be used
for the experimental verification of the novel computation
method. Figure 5 shows the high mesh density which is re-
quired for accurate solutions especially near the free bound-
ary of the adhesive layer. Special elements with reduced
integration using an assumed strain formulation written in
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natural coordinates which insures good representation of the
shear strains in the element were used. A commercial finite
element software (MSC.Marc) was used for simulating the
mechanical behavior of the thin adhesive layer with a thick-
ness of 24 =30 mm. In the following, the results are pres-
ented for stepped brass adherends (£s=119704 MPa, vs =
0.3395, length 106 mm, width 25 mm, total depth 12 mm)
and an adhesive (E=14.96 MPa; v=0.39) which can be
classified as soft according to Table 1. We assumed for
these calculations that the adhesive layer is isotropic and
homogeneous. Both cases, i.e. the plane strain and plane
stress case were investigated. However, to reduce the amount
of presented results, only the plane strain case is presented
here. It should be mentioned here that the plane stress case
reveals similar results.

4. Results

First of all, Figure 6 shows the displacement and stress
distribution perpendicular to the glue line, this means along
the line where y =0 holds, in order to verify some basic
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Figure 9. Verification of the first transmission condition along the imperfect interface (plane strain).
assumptions used for the derivation of the transmission this result holds for any line y =const (except the region
conditions. It can be seen that the justified linear behavior near the free boundary). The behavior of the ¢, component
for the displacements and the constant behavior for the results from the averaging of the adhesive and adherend
stresses inside the adhesive layer are fulfilled. Furthermore, values at the interface node. However, the correct extra-
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Figure 10. Verification of the second transmission condition along the imperfect interface (plane strain).
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Figure 11. Verification of the third transmission condition along the imperfect interface (plane strain).
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Figure 12. Verification of the fourth transmission condition along the

polation of this value (i.e. constant value in the whole ad-
hesive layer) can be done without any loss of generality of
the presented results. To avoid this behavior it would be
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necessary to refine significantly the finite element mesh
also in this region. However, it would increase the total
amount of unknowns in such a way that it would be



6 A. Ochsner, G. Mishuris, and J. Gracio

difficult to compute the 2D problem on a standard PC with
1.5 GB of RAM.

Figures 7 and 8 illustrate the displacement and stress
distribution along the glue line (x=0) and the interface
lines C and D (cf. Figure 1). These values which were de-
rived from FEM analysis will be evaluated according to the
relationships given in Table 1 and 2 in order to investigate
the validity of the given conditions.

Figures 9~12 show the evaluation of all four transmis-
sion conditions given in Table 1 along the whole glue line
and additionally, for magnifications near the free surface. It
can be seen in Figures 9 and 10 that the transmission
conditions are fulfilled along a very long range of the glue
line and that only very near the free surface the conditions
fail. In this region, also the influence of the stress singula-
rity becomes visible. Thus, special singularity elements need
to be derived in order to offer a complete set of special
adhesive elements for the whole range of the glue line. The
validity of the transmission conditions is based in our eval-
uation on a 1% criterion for the deviation between the left
and right hand side of the equations presented in Table 1.

However, the application of the 1% criterion is difficult
to realize for the jump [0] and [0.] shown in Figures 11
and 12 because the wvalues should be equal to zero.
Nevertheless, it can be seen that the conditions are fulfilled
in the same range as indicated in Figures 9 and 10.

5. Conclusions and Outlook

In the present work, non-classical transmission conditions
were presented and their validity investigated in the frame-
work of the single-lap tensile-shear test of adhesive techno-
logy. It could be shown that the proposed transmission
conditions are valid over a very long range of the glue line.
Only near the free surface, the conditions fail and the size
of this zone is obtained more or less independently of the
evaluated transmission condition.

The knowledge about the validity region makes it pos-
sible to drastically decrease the number of finite elements
in the constructed mesh by introducing special transmission
elements instead of the thin intermediate zone between the
different materials and also to prevent unsatisfactory phe-
nomena in the numerical analysis. The development of such
special elements and the implementation into a finite ele-
ment code is the topic of our future research work. Further-
more, non-linear material, i.e. plastic and visco-elastic, will
be investigated and corresponding transmission conditions
will be derived and their validity examined.
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Figure 1 : Schematic representation of the problem

tions in the corresponding domains:

Loy =0, (r£y}eQ.. Lu=0 {(xry)eQ {1

where the differential operators £.. and £ are defined in
the following manner:

£ [Pa ) DI pe DY (Mt p ) DDy
T (A +u£)DDy  (Ay +2u2)D) +uD2 )’
(2)

DAD, + DD,

e [ D{h+2u) D, + DyuDy \
| ( DAD+ DD, D (A+2u)Dy+DuD, /)’
(3)

Here D, and D, are the respective partial derivatives,
while the material parameters can change thewr values
within the interphase:

W=altea L=%{cy. (4)
Some boundary conditions are assumed to be satisfied on
the exterior boundaries;

Bags =0, [#.¥) €0 Nde,

3
Bu=0, (x.v) ¢bBL; PLL (5)

We do not use precise forms of the boundary operators
B. and B because they will not play any role in a formal
asymptotic procedure. However, they are extremely im-
portant, of course, for justification of the final asymptotic
estimate for the obtained solution.

Along the interior boundaries y = -/, the perfect trans-
mission conditions (6) should be satisfied (the vectors of
displacements and stresses are continuous across the in-
terface):

w.(x. k) =u(x.£h), o (x.+h) =W (x.Lh). (6)

CMC, vol.2, no.4, pp.227-238, 2005

J,‘_g\:}(x, +h) and V) (x. +4) are tractions along the
boundaries of the thin interphase between the adherends

which are calculated from Hooke's law:

where ¢

(x)

on'(x.v) = M. {x,y), oM(xy)=Mu(x.y). (7
{_ {pbDy @y
A5 (wx (}L-{-z,u)o_‘.) ®

and M., are defined in the same manner by replacing «
and A with g, and A~

We assumne that the intermediate layer is essentially thin-
ner in comparison to the characteristic size of the body:
h << min{L, H}. This allows us to introduce in the prob-
lem & small dimensionless parameter € << | in the fol-
lowing manner: (x,y) € Q

v==e& e |-hphy|. hg~min{l H}. (9)
This makes it possible to use asymptofic methods to per-
form an analysis of the problem. It is a well known fact
that the perfect transmission conditions are still apphea-
ble if the elastic constants of the intermediate layer are
comparable in values with those of the matched materi-
als (see, for example. [Movchan and Movhan (1995)]).
We assume in this paper that there is a significant dif-
ference in the elastic properties. Namely, there exists an
additional small parameter connected with the mechani-
cal properties of the bimaterial structure (the interphase
is essentially softer than the both matched materials):

Hlxy) = Bun () Mogy) =shp(x, ) (am

(11)

Hy ~ }vu- My~ Ha.

Let us denote By w(x.&) = u(x.e€) the solution within
the domain Qg = {(x.E). |&| < hg}. In the new notations,
all operators can be rewritten as follows:

Lo=¢g o+ Ly +eln., M = My-+eM,. (12)

where Lo = DAoDz, £ = D AsD.. My = AgDz, My =

AD, AgAs '—_-rI((J(z#f] + A and

v

L —

0 D,\K()D{ i D'ET-.H(}D.\' (I '3)
D;;)q)p_v e DX/H'UD:‘, 0 ? ‘

- Ho 0 - 0 MU.
0= (0 Lp:-_:uo)’ A'*(xﬁ 0)'

(14)
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then taking into account Eq. (22), one can conclude:

Ay i

ouin ke [0.1;-a5 ' (x.0) + Ole).

200 + Ay

or finally inside the interphase the last stress component
varies in direction perpendicular to the mterphase only if
Poisson’s rutio depends on the variable &

A= HH

r. Y(x.E)
o s oo v | =

=Tl s
—vix g orAd

+Ole). (29)
Thus, whereas the value of Young's modulus of the inter-
phase depends on the variable &, the stress component o,
does not depend on this variable becanse Poisson’s ratio
is consiant.

Let us consider two particular cases ol the transmission
conditions. The first one appears when all the elastic pa-
rameters of the interphase are constant. Then. the inter-
facial parameters are also constants:

4h(1 +v 2(1-+=v)(1—=2v}h
R i) MRS LS (30)
- (}—=v)E
for the plane strain and
Flills v
e N L= ol
! I 2 I (1)

for the plane stress case.

In the case when Poisson's ratio is a constant while
Young’s modulus of the interphase is a function of both
variables, one can easily extract from (27) and (28) the
same formulae as in (30) and (31), where the modulus £
has to be only replaced by the auxiliary function:

= 0 My h
E{x)s (/ nm) |

However, we have to mention in this place an essential

(32)

ditfference betwesn plane strain and plane stress prob-
lems. Namely, if the elastic intermediate phase is weakly
compressible (v = 0.5 — evy. vy = 1), then the condition
4~ A is not true (cf. (11))in general. As a result, trans-
mission conditions (26) are not justified for the weakly
compressible interface in the case of plane strain prob-
lems [Mishuris (2004)].

One of the main questions, as it usually appears in
asymptotic approaches, is: which magnitude of error will
be introduced in the problem if one replaces the real thin

CMC, vol.2, no.4. pp.227-238. 2005

interphase by the evaluated imperfect transmission con-
ditions. An additional problem which everywhere ap-
pears after formal asymptotic analysis is the estimation
of regions where the asymptotic formulae give an accept-
able resuit and where other methods (other conditions in
this case) should be apphied Lo correct the solution.

It one models the soft intermediate layer by the imper-
fect transmission conditions (26) then the relative error
connected with such an approach can be estimated a pri-
orl from the asymptotic analysis in terms of O(€} except
the regions near the intersections of the layer and the ex-
ternal boundary (Fig. 1). Nevertheless, it is impossible
to estimate in value the ranges of the mentioned regions
and the real error introduced in the solution.

One of the aims of this work 1% to provide numerical es-
timates for the aforementioned error as well as to clanfy
the sizes of the edge zone effects by FEM modelling of
the thin intermediate layer in composite structures. We
are not going to discuss here any questions concerning
implementation of the imperfeet transmission conditions
in the numerical codes wich is also an important problem
to be solved.

3 FEM simulation

finite clement code MSC.Mare is
used for the simulation of the mechanical behavior
of the thin intermediate layer with a dimension of
2h = H/100 = 0.01 and L = 10. The two-dimensional
FE-mesh is built up of four-node, isoparametric elements

The commercal

with bilinear mterpolation functions. In order to investi-
gate the edge effect (¢f. Fig. 1, left and right hand side of
the imerphase), a strong mesh refinement is performed in
this region. Furthermore. the mesh 15 generated in such
a way that 1t 18 possible to evaluate the displacements
and stresses along the axes of symmetry (ef. Fig. 2, lines
A and B) and along the transition zone of the materials
(cf. Fig. 2, lines C and D). In Fig. 2, the lines C* and D*
belong to the bonded material and the lines C* and D' to
the interphase. The MSC.Mare user subroutine feature
is used to autematically derive the data along the above
mentioned lines.

The final mesh and some details of the interphase with
its strong mesh refinement are shown in Fig. 3. The
whole mesh consists of 108544 Elements whereof 39512

Elements account for the interphase.  The resulting
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Figure 5 : Boundary conditions and loads: a) tensile

case; b) shear case

works well, but not for the bending loading.

4 Numerical results and discussion

First of all let us note that, in the case when the clasiic
modulae of the intermediate layer are constant. equations
(22) and (23) can be rewritten in the following form:

w(x,&) =0 (x. —0)+ (§+/g) Ay oY (x.0),

[“]-‘:0_( 0 2&/(2%?»})0 ).

(33)
(34)

In the following, we will discuss the obtained numeri-
cal results in detail only for one case as an example:
i.e. plane stress tensile loading with interface constants:
E =813 MPa, v=04999. In Fig. 6, distributions of
displacements and stresses along the line A (cf. Fig. 2)
are presented. Note that the stress component 6,(0,y) is
discontinuous at the intertace boundaries, as it should be
expected. while all other components are continuous. Al-
though the ratio £/E™ can only be estimated as 0.1 while
2 /H = 0.01, one can see that the distribution of the dis-
placements within the interface exhibits linear character,
which coincides with (33). Moreover, we can new check
condition (34) at least at the point x = (. For this rea-
son, we calculate the difference berween displacements
Auy = u} —u, from different sides of the interface. In
the first line of the table 2. the calculated value of Au /o,

CMC, vol.2, nod, pp.227-238, 2005

is presented whereas stress o, = 0,(0.0) has been ex-
tracted directly from the subroutine (the different mate-
rial combinations are explained in Tab. 1}. This valuc
can be compuared, as it follows from (34), with the mate-
rial constant 24/ (2 + A). Although both values have an
order of 1077, the relative error takes only & magnitude
of 107", which is essentially better than one can expect
from the theoretical result where an estimate Q(€?) can
be only justified (€2 ~ 10~*). This fact can be probably
explained 1n that way that next terms in the asymptotic
expansions (17) disappear in this case, as an exception,
due to the special symmetry of the loadings and geome-
try.

Note also that the value of Auy(x)/0,(x) does not change
practically along the entire interface, and the edge ef-
fect becomes essential only near the external boundary.
To show this fact, distributions of the displacements and
stresses along five lines B, C', C¢, D', D® (cf. Fig. 2) are
presented in Figs. 7 and 8 for the same exumple. The de-
viation between the lines of Fig. 7 at the free edge is not
visible in the scale of the figure.

Let us note that the first component in the transmission
condition (34) is satisfied identically for the entire in-
terface as it tollows from Figs. 7 and 8 due to tensile
loading. In the cuase of the shear loading, the same re-
sults have been obtained for the second component of
(34). These facts are simple consequences of the sym-
metry in geometrical and mechanical properties of the
example under consideration. If 1y important to note that
although the displacement is continuous along the inter-
phase boundary, it is not smooth in y-direction and there-
fore, a visible difference of displacement for iines C¥, e
and 1D°. D' can be observed in Fig. 7b. Furthermore, the
decrease of 6. at the {ree ends is not possible to observe
in the given scale of Fig. § but indicated by the markers.
One can think that the displacernents should behave in
opposite way at the free edge 1n comparison with that
presented in Figs. 7b and 8. Af the first glance, the in-
terphase stiffness seems to increase near the {ree edge,
because the displacement decreases. In Fig. 9a, the final
shape of the free edge boundary after the deformation ix
presented for the same sample with simple tensile load-
ing. It is clear that such a behavior of the displacements
near the free edge is reasonable because of the contrac-
tion. In order to compare two limiting cases of Poisson’s
ratio, the shape is drawn for the same tensile sample n
Fig. 9b with another Poisson’s ratio of v = 0.0001. Now,
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Figure 9 : Shape of the interphase near the free edge for
different Poisson’s ratios

this case and maybe also mvolved in the loss of numeri-
cal accuracy.

To our great surprise, the imperfect transmission condi-
tions (34). bemg only justified for the soll thin interphase,
are true for practically all examples on a sufficiently long
distance along the interface from the center of the sam-
ples, as it follows from the tables. However, with in-
crease of the ratio £/E", the region where this fact is
observible becomes smaller.

The edge effect manifests its influence deeper within the
sample. To estimate this influence we have introduced

CMC. vol.2. no4, pp.227-238, 2005

the distance / from the ends of samples (Fig. 1) where
the corresponding stress component measured along the
interface becomes worse with an accuracy of 1% in com-
parison with the value at the symmetry axis. Let us note
that it is possible to introduce alternative definitions of
the edge effect zone based on the displacement compo-
nents. It is a well known fact that the size of the zone
depends on the definition, but the result is of the same
order. Thus, the same definition is consequently used 1o
provide the necessary information about the effect. We
use everywhere the parameter 6 = 2//L showing the rel-
attve deepness of this zone. This edge effect is connected
with Saint-Venant's principle. In fact, in the case of the
infinite strip one can easily show that the stress will be
constant along the interface. Thus. the observed chang-
ing of the behavior near the sample cdges in Fig. 8 is
due to the boundary conditions applied to the edges (in
this paper: free edge). The main tendency concerning
the edge effect may essentially differ for other houndary
conditions in comparison with the discussed one.

Table 1 : Investigated material cases (MC)

MC | E Y
1 | 8138 | 0.4999
2 | 813 0.4999
3 |81 0.4999
4 | 5427 | 0.0001
5 | 542 0.000]
6 |54 0.000]
7 | 8138 | 0.3000
8 | 813 0.3000
9 |81 0.3000
10 | 271270 | ©.3000

In Figs. 10-12. corresponding values of & are presented
for difterent cases under consideration. Except the case
of the weakly compressible interface (v = 0.4999) un-
der plane strain conditions for tensile loading, all curves
in Figs. 10-12 8 = 8(E/E") éxhibit a similar behavior.
Namely, for small values of the ratio E/E* ~ 10 = 5
takes a value near 0.05 and for smaller values (see Fig.
12) it becomes comparable with the accuracy of & due
to the definition. Moreover, the magnitude of Poisson’s
ratio slightly influences the value of 3, except the men-
tioned case of the weakly compressible interface under
plane strain conditions and tensile loading.
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in perpendicular direction to the interface at the symme-
try line x = 0 are presented. The only difference between
the graphs in Fig. 6b and Fig. 13b is the scaling. We do
not present such magnification carlier in of Fig. 6 where
the stresses took practically constant values within the in-
terface (with accuracy more than 0.01%, which. in fact, 15
better than it has been predicted by the asymptotic analy-
sis}. This 1s no more valid with the same accuracy for the
nonhomogeneous interphase. It is clear from Fig. 13b
that in the case under consideration the stresses within
the interface differ now about 2.4% in the worst point
from the constant behavior.

However, it 15 important 1o note that the increase of the
gradient in the definition of Young’s modulus leads to
a loss of accuracy in the calculation. This behavior is
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Figure 13 : Normalized displacement and stress distri-
bution along line A (cf. Fig. 2)

connected with the small amount of nodes in direction
perpendicular to the interphase used in the constructed
mesh (only 9 nodes within the interface in perpendicular
direction). Let us also note that the stress component G,
is a constant within and outside the interphase (|y| < &)
and has a jump at the interface lines (y = +h). However,
this jump is not well approximated due to the few finite
elements in that region. Of course, one can easily draw
the right behavior.

On the other hand, when we decrease the gradient in
the material properties of the'interphase. the stress inside
the interphase becomes again to be constant. However,
cven with the chosen sufficiently large change in mate-
rial properties within the interphase, the accuracy of the
transmission conditions is still very high.

To clarify this, two terms which are involved in one
of the imperfect transmission conditions, i.e. Aw«, and
Ty0y(x,0), are presented in Fig. 14. The other condition
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FEM-analysis of nonclassical transmission conditions between elastic structures.
Part 2: Stiff imperfect interface

G. Mishuris', A, Ochsner® and G. Kuhn?

Abstract: Nonclassical transmission  conditions . for
dissimilar elastic structures with imperfect interfaces are
investigated. The thin interface zone is assumed to be
soft or stiff in comparison with the bonded materials and
the transmission conditions for stiff interfaces are eval-
uated based on asymptotic analysis. The accuracy of
the transmission conditions is clarified not only in terms
of asymptotic estimate, but, which is especially impor-
tant for users, also in values by accurate FEM calcula-
tions. The ranges of applicability of the conditions are
discussed.

keyword: Elasticity, Imperfect interface, Nonclassical
transmission conditions, Finite element method

1 Introduction

In the first part of the paper Mishuris -(2005b), sym-
metrical elastic structures consisting of two thick layers
matched by a thin interphase layer exhibiting different
material properties under conditions of simple shear and
tensile loading have been considered. Transmission con-
ditions for the soft interface have been analytically eval-
uated there by asymptotic analysis to compare with the
results obtained by FEM analysis of the structure. It has
been shown that the numerical error in these special cases
is essentially smaller than it could be expected from the
theory. Even in the case of the stiff interface, where other
transmission conditions should rather be applied, satisfy-
ing agreement has been obtained. In'this paper, dissim-
ilar elastic structures have been analysed under different
loading (simple or complex one) by the same FEM tech-
niques. Additionally, transmission conditions for the stiff
interface will be evaluated by asymptotic methods and
later numerically verified in order to estimate the possible
error connected with its application. Finally, such impor-
tant values, for practical numerical calculations dealing

VR2UT, Rzeszow, POLAND.
2UA, Aveiro, PORTUGAL.
3FAU, Edangen, GERMANY.

with bimaterial structures with thin interfaces, as ranges
of edge effect zone, validity of the discussed transmis-
sion conditions and singularity dominated zone will be
evaluated. These effects are the main reason for crack-
ing and delamination in composite materials [Akisania
(1997); Boichuk (2001); Kokhanenko (2003); Li (2004);
Qian (1998); Yu (2001)].

2 Asymptotic evaluation of transmission conditions
between two elastic materials with a stiff elastic
interphase (2D-problem)

Let us consider a model plane problem for a bimaterial
elastic solid in the rectangle £ = Q, UQ_ UQ, where
Qi = {(x,y), £y 2 h}, Q= {(x,5),| < h} (see Fig.
1). We assume that the intermediate layer Q is inho-
mogeneous and isotropic, while the bonded materials are
isotropic and homogeneous. Let u4(x,y) and u(x,y)be

vectors of displacements: ux = [t uf]T, u = [ue,u,] 7.

/ v(x)

Eovo |
g\ o y‘:’.‘lmeA ~
fing B ————— e E y T
g:/ \intcrphase ¥

E, v
ST,

7 1/'/ ey
|

Figure 1 : Schematic representation of evaluation paths
and boundary conditions of the investigated structure

They satisfy Lamé equations in the corresponding do-
mains : ~

Liug =0, (x,y)€Qs,  Lu=0, (r,y)€Q, (1)

‘ where the differential operators Ly, and £ are defined in
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the following manner:

L= ((}‘d: + Z;Ii)D_% +[tiD;l.

(A +.“i)DxD)‘ )
(Ax + 12 )D:Dy

(Ax+2p5)D} 4 s D?
2)

P (Dx(l +24)D; + DyDy

DXXD). + DyDx
DyADy+ DDy j

Dy(A+2u)Dy+ DDy
: A3)

where D, and D, denote respective partial derivatives.

On the exterior boundary some boundary conditions are
assumed to be satisfied:

Bruy =0, (x,)) €082,NIQy4,

Bu=0, (xy) €N @

We do not precise here the forms of the boundary opera-
tors B and B, because they will not play any role in the
formal asymptotic procedure. However, they are very im-
portant, of course, in order to prove the final asymptotic
estimate for the asymptotic solution obtained in some
functional spaces.

Along the interior boundaries, i.e. y = A, the perfect
transmission conditions should be satisfied:

uy (x,2h) = u(x, xh), G(iy) (t,2h) = (x, k), (5)
where

oD 0y) = Mavs(ey), oV(xy) = Mu(xy), (6

M, = (l‘:!:Dy fxDx )
7 \MaDx (Ax+2p4)Dy )"

__ {uDy 1Dy
M= (wx (x+2,¢)z>,.) : @
Let us assume that the intermediate layer is essentially
thinner in comparison with the characteristic size of the
body: h << min{L,H}. This allows us to introduce in
the problem a small dimensionless parameter € << 1 in
the following manner:

ehy=h (8)

CMC, vol 4, no.3, pp.137-151, 2006

and rescale the variable within the intermediate layer:

(xy)€Q y=¢k, E € [—ho,ho}, hp~ min{L,H}.
’ ©)

We assume through out this section that the interphase
material is essentially stiffer in comparison with both
, bonded materials:

p(xy) =€ po(x,8), Alxy)=e"ho(t8), #o~pz,
(10)

~ and denote by w(x,£) = u(x,€€) the solution within the
domain Qy = {(x,£), |§| < ho}. In this new notation, all
operators can be rewritten as follows:

L=¢e3 0+ 2+ Ly, M =M+ M,
an

where

L= DF,AODQ _ (12)

_ 0 D AoDg + DgjioDsx
L= (Dg)uoDx+Dx;loD§ 0 » U3
[/2 = DXAZD.\', % = A0D§| ﬂ'[l =ADy, (14)
_[(ro 0 | {0 o
Ao = (0 xo+2;¢0)’ A= (xo o>'
_ (ho+2mp O \
Ar= ( o ) : (15)

Then, a part of the problem under consideration within
the domain € can be reformulated in the following man-

- ner: we should seek for the solution w in the domain Qg
satisfying the equation:

(+eti+e20)w=0, (8 e, (16)
and the interior transmission conditions:

" ug(x, ko) = w(x, £ho),

2o (x, +eho) = (M, +ewn)wig=i,,o. a7
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The solution within the corresponding domains will be
sought in form of asymptotic series:

Y ehwi), us(ny) =3 eutny).

w(x, §) =
(18)
As aresult, sequence of the BVPs determining respective

terms in the asymptotic expansions (18) will be found.
Thus, for the first term wg one can obtain:

DngD;’wo =0, (x&) e, 19
g (x,£0) = wo(x, +/o), ; (20)
A0D§w0|§=:tho =0. 21

From (19) and (21) one can obtain that

wolx, &) =a)(x), ’ 22)

while the unknown function a;(x) has to be found from
(20):

ay (x) = “6 (xa "0)1 . (23)
and an additional condition has to be satisfied:
[wo]y=0 = u(',F (x,+0) —ug (x,-0) = 0. (24)

Note that equation (24) constitutes the first unknown im-
perfect transmission condition for the external solutions
ug within the bonded materials.

To find the next sought for the transmission condition for

the first term of the external asymptotic expansion, uak,’

one can continue the procedure to analyse the second in-
ternal BVP:

Y(X, €) € Qo, ' (25)

DeAgDgwy + Lywo =0,
:tlloD’-ua; (x,+0) + u'f (x,+0) = Wl (x, £Hp), (26)
Angwl I§==Hlo +M “'0|§=:tho =0. ; 27

Taking into account the properties (22) of the internal
solution wg, one can rewrite equations (25) and (27) in
equivalent forms:

(xE) e, - (28)
AoDeWile=n, +’A1Dx“'o|§=i/,o =0. (29)

DgAgDew) +D€A|DX“'Q =0,

10
A’»‘”T(o_ o)’

The solution to this problem is easily calculated as:

wi(x,E) = ay(x) — /: A5 (x,0)A1(x,1)dt - Dewo(x),
(30)

where

—-he
ay(x) = /0 A5 (6,1)A1(x, 1)dt - Dewo(x)
—hoDyug (x,—0) +uj (x,—0), €3)]

and an additional transmission condition has to be satis-
fied for the so]ution u; of the second external BVP:

[i)ym0 = — / A5 (x, )AL (6, 1)dt - Dowo )
—-2]10(D llo))=o. (32)

There, we have introduced the standard notation

(=35 +12). (39

As it follows from this step, it is not enough to consider
even the second term of the internal asymptotic expan-
sion, wy, to find the still missing transmission solution
for the first term of the external expansion, u(f. Thus,
one needs to continue the asymptotic procedure. Let us
consider the internal BVP for the third term of the inter-
nal asymptotic expansion (18):

DeAoDegwy + Liwi + Lwo =0, (rE)eQy,  (34)

1
2'115D§u§ (x, £0) & hoDyuif (x, £0) -+ ud (x, 20)
= wa(x, %), (35)
0%) (2,0 = AoDewalosy + M 6
Gy (x%,0) = AoDgWale— 1, + Miw, le=thg- (36)

Equations (34) and (36) can be simplified using the re-
sults from the previous steps:
DgAoD:W2+DeA1DW1 +DyA3Dewo =0, (x,E) € Qq,
37
() 0) = AnD:w A ,
Co (X, ) =Aap g“2{§=:!:ho + le“lk:;tho: (38)
where we have introduced a new notation:

_ 4po(Ro+mo)  2pp
Ao +210 1-vo

(39)
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Equation (38) can be integrated to give:
A()Dz-’“'z +A1Dwy
3 ;
=a3() =D, [ As(xa)dr-Dowo,  (5.8) € Q. @0)

From this equation and (38) one can immediately con-
clude that

R I )
[cg)]_\:=o+D,‘ / ; As(x,0)dt-Dywp=0. 4D
—hg

However, taking intor account relations (22)-(24), last

equation can be rewritten in the form:

(09,0 + Dy / As(x,1)dt - Dytioly—o = 42)
which constitutes together with (24) the sought for nec-
essary transmission conditions for the first external BVP
in the case of the stiff interface.

Summarizing the obtained result with those concerning
imperfect transmission conditions from [Antipov (2001);
Movchan (1995); Mishuris (2005b)] one can collect
them together within Table 1. It is assumed that the im-
perfect interface is always situated along the.coordinate
line y=0.

Table 1 : Possible sets of transmission conditions de-
pending on the relative properties of the thin intermediate
layer: 2-D problems

interface
~ soft comparable stiff
[t =020 =0 | [1,] =0 (e =0
] —ar0, =0 | [i] =0 []=0
[o] =0 ool =0 | [onl+E(ad) =0
[o,]=0 [o,]=0 [oy] =0

Here, the parameters a; in formulae from Table 1 are,
generally speaking, functions with respect to the vari-
able x and have to be calculated according to the equa-
tions in Table 2. Under the additional assumption that

CMC, vol.4, no.3, pp.137-151, 2006

the material properties of the interface do not vary in di-
rection perpendicular to the interface (do not depend on
variable y in this case) these equations can be simpli-
fied and rewritten in forms presented in Table 3, where
all mechanical and geometrical parameters can be only
functions of variable x (change its values only along the
imperfect interface).

Table 2 : General representation of the parameters a;(x)

in Table 1 for plane strain and plane stress case
case plane strain plane stress
1+v)(1-2v) ho (1-v?
al(x) f h %‘%{_\)_de f ,/l (—L)d)'
ax) | f1, 2 gy | gt A gy
!
(13(.1') f —‘h 'l_.EVs d-)‘ —h Edy
Table 3 : Particular representation of the parameters
aj(x) in Table 1 for plane strain and plane stress case
. case | planestrain | plane stress
2h{14+v)(1-2v 2h{1=v?)
ay(x) E(1—V) ) £
az(x) 4/’([E+V) 4’)(IE+V)
az(x) f}& 2hE

3 Numerical results

3.1 Dissimilar layer with saoft imperfect interface un-
der simple shear and tensile loading

Let us consider a dissimilar elastic structure with a thin
elastic interphase which exhibits other properties than the
bonded materials (Fig. 1). The thickness of the interface
‘zone is assumed to be small € = 2/1/H = 0.01 and this
value will be considered through out the paper as a small
parameter. In this subsection, results similar to those
presented in paper [Mishuris (2005b)] will be evaluated.
The only difference is now that the matched materials are
-not the same. The top part of the structure is represented

_by steel with elastic constants E; = 210000 MPa, v, =

0.3, while the bottom part is of aluminum (E_ = 72700
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Figure 2 : Displaccmént and stress distribution along
line A for the asymmetric sample and the simple tensile
loading

MPa, v_ = 0.34). Various elastic constants for the in-
terphase material are considered in the same way as it
has been done in Mishuris (2005b) for easy comparison
of the obtained results.” First, simple tensile and simple
shear loadings are considered: vi(x) =0, vy(x) =1-d
(where d is an arbitrary dimensionless parameter for nor-
malization) and v,(x) = 1.4, vy(x) = 0, respectively. All
calculations have been done by the FE code MSC.Marc.
For details conceming the constnicted FEM-mesh for the
considered structure we refer the reader to the first part of
the paper, [Mishuris (2005b)]. '

In Figs. 2, 3 and 4, the normalized distributions of the
displacements and the stresses in direction perpendicular
to the interface (along the line A) and along the inter-
face (lines B, C*, Ci, D¢, D') are presented (see Fig. 1
for the used notations). The material parameters of the

“soft weakly compressible intermediate layer in this case

are: E =813 MPa, v = 0.4999 (the same as in paper

0.4 -
- plane stress, tensile case - E =813 MPa
| v =0.4999
0.2
all lines

Norm, displacement u /d, mm &

-0.2 - cevma— c' P B ————— DQ
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B
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Figure 3 : Displacement distribution illong lines B, C
and D for the asymmetric sample and the simple tensile
loading
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Figure 4 : Normal and shear stress distribution along

horizontal l'i‘nes B, C and D for the asymmetric sample
and the simple tensile loading

[Mishuris (2005b)] for the reason of comparison).

It-is easy to see that the solution has lost its symme-
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Figure 5 : Relative length of the edge effect zone for the
asymmetric sample

try which is natural to the problem definition. How-
ever, because of simple tensile loading, displacements
and stresses on lines B, C¢,'C}, D¢, D' are still practically
constants along the major part of the imperfect interface.
This enables us to easily define the size of the edge zone
with the same 1% accuracy criterion from changing the
constant behavior of the traction along the interface. Cor-
responding results are included in Fig. 5. Similarly as
in the symmét:ical case, only the weakly comprcssible
interface for the plane strain case under tensile loading
exhibits irregular behavior in comparison with all other
cases.

- Let us note that there is no practical difference in the

case of the shear loading for plane strain and plane stress

states. This phenomenon has been explained in [Mishuris

(2005b)], and is a simple consequence of the fact that the
components of both solutions responsible for the shear
deformation satisfy the same equations, boundary and
transmission conditions (cf. Table 1). Because of this
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fact, we present here in Fig. 5b only the plane stress
case. On the other hand, the straight line behavior of the
solution within the sample give us an occasion to restrict
our interest to the accuracy of the transmission condi-
tions in one point and we have chosen the symmetry point
x=0in the middle of the rectangle, i.e. the same point as
in [Mishuris (2005b)]. Corresponding results have been
collected in Tables 4-7. In Table 7 for the plane strain
case we have presented one case for comparison with Ta-
ble 6. : ‘

Within the edge zone, the behavior of the solutions for
the dissimilar body may essentially differ in compari-
son with the symmetrical case due to the distinct lim-
ited asymptotic behavior of the solution near the corner
points of the intermediate layer and the external bound-
ary (intersection points). This fact is manifested by Fig.
3. However, even within the edge effect zone, the corre-
sponding transmission transmission conditions from Ta-
ble 1 are still valid. We discuss this phenomenon in de-
tails-later in the fourth subsection.

3.2 Dissimilar layer with soft imperfect interface un-
der complex loading.

In the first part of this paper [Mishuris (2005b)], only
symmetrical structures with simple external loading, i.e.
simple tensile or simple shear, were considered for a soft
interphase and the accuracy of the transmission condi-
tions turned out to be much better than one could expect
from the theoretical point of view. In order to investi-
gate if this fact was based on the simple cases under con-
sideration, we are going to investigate in this subsection
the influence of complex loading on the accuracy of the
transmission conditions for asymmetric samples. First of
all, it is necessary to underline once again that the con-
ditions checked up till now numerically, have been sat-
isfied with an error smaller than that predicted from the
asymptotic theory. We are going to show now that this
is because of the applied simple loading and, in case of a
complex one, the theoretical predictions simply coincide
with the numerical calculations.

Let us consider a more complicated tensile loading in the
same dissimilar structure with the same soft interface as
in the previous subsection. Namely, instead of the uni-
form external loading, a complex tensile loading defined
as follows: uy(x,11/2) = vy(x) = dx?/25, v,(x) = 0 is ap-
plied in the plane stress case.

Numerical results in graphical form for such loading,
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Table 4 : Relative errors for the second and fourth transmission conditions from Table 1
for the asymmetric plane stress simple tensile case along line A

E v A’—(—,-—:“((‘g;g’ ———-—2”“[_:_"2) rel. error ——-——-—-‘:f‘_‘&'g)

8138 | 0.4999 | 9.217259-1077 | 9.217252-10~7 | 6.916-10~7 | —9.088-10~"
813  ]0.4999 | 9.226338-107% | 9.226322-10-6 | 1.735.10~¢ | —3.479.10-8
81 0.4999 | 9.260510-10~° | 9.260494-10~5 | 1.724.10~7 | —1.008-10~8
5427 | 0.0001 | 1.842648-107% | 1.842639-10~% | 5.084-10~5 | —1.001-10~8
542 0.0001 | 1.845021-1075 | 1.845018-107° | 1.538-10~% | —2.662-1078
54 0.0001 | 1.851854-10% | 1.851852-10~% | 1.286-10~6 | —1.934.10-8
8138 | 0.3000 | 1.118216:10"6 | 1.118211-1076 | 4.183-10~6 | —9.285.10-?
813 0.3000 | 1.119313-1075 | 1.119311-1075 | 1.404-10-% | —1.936-10"8
81 0.3000 | 1.123458-10~% | 1.123457-10~4 | 1.450-10~7 | —1.205-10~8
271270 | 0.3000 | 3.354742-10~8 | 3.354591.1078 | 4.490-10~* | —2.460- 10~%

Table 5 : Relative errors for the second and fourth transmission cbnditions from Table 1
for the asymmetric plane strain simple tensile case along line A

E |v —a——ﬁ:'((&g) 2"“; ‘;R_ZV) rel. error ——'———‘;‘i‘é%;)

8138 | 0.4999 | 7.472625-107"° | 7.370853-10"19 | 1.362-10~2 | 2.465-10>
813 | 0.4999 | 7.387995-10-° | 7.378106-10~° | 1.195-103 | 3.102.10-5
81 0.4999 | 7.407831-10-% | 7.405432-1078 | 3.238.10~*| 1.119.10~5
5427 | 0.0001 { 1.842650-10"% | 1.842639-10~¢ | 5.980-10~6 | —1.122-10~7
8138 | 0.3000 | 9.128290-10"7 | 9.128252-10"7 | 4.142-10-6 | —1.205- 107

. Table 6 : Relative errors for the second and fourth transmission conditions from Table 1
for the asymmetric plane stress simple shear case along line A

E v -—ﬁ':((g,‘g)) 4—-—"(;_.”) rel. error ——“?,:!(gb(;)

8138 | 0.4999 | 3.686151-107° | 3.686164-10~° | —3.381-10°° | 5.612-10F
813 0.4999 | 3.689783-10~5 | 3.689791-10~5 | —2.034-1076 | 6.127-10-3
‘81 0.4999 | 3.703429-10~* | 3.703431-10~% | —7.541-1075 | 3.947.10°8
5427 | 0.0001 | 3.685663-10~¢ | 3.685646- 106 | 4.565-10~6¢ | 2.806-10~8
542 0.0001 | 3.690406-10~5 | 3.690406- 10~ | —8.265.10~2 | 6.128-10-8
54 0.0001 | 3.704048-10~* | 3.704074-107% | —7.147-10-5 | 3.948-10°8
271270 | 0.3000 | 9.585672-1073 | 9.584547-107% | 1.174-10~* | 7.586.10~7

Table 7 : Relative errors for the second and fourth transmission conditions from Table 1
for the asymmetric plane strain simple shear case along line A
4115 14+v)
E

31, (00 26,100)
kv E v c—:"_(%'—o)l | ‘ rel. error '%v((T.O)-
8138 [ 0.4999 { 3.686143-107° | 3.686164-10%| —5.665-10"5 | 2.806- 10~

the direction perpendicular to the interface. Moreover,
the stress components 0, and G, are continuous across
the interface as it follows from Fig. 8 a) and the remain- ,
ing component o, exhibits a discontinuous behavior, as

analogous to those in Figs. 2-4, are presented in’ Figs.
6-8. As earlier, it is easy to see that the displacements are
still linearly distributed within the considered soft weakly
compressible interface, while the stresses are constant in
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Figure 6 : Displacement and stress distribution for the
asymmetric sample and the asymmetric tensile loading

it should be expected.

However, distributions of displacement and stress com-
ponents along the interface (cf. Figs. 7-8) are no longer
practically constants and essentially change its behavior
along the interface. Nevertheless, the vector of stresses
is continuous through the interface as it follows from
Fig. 8b and as it has to be according to the transmis-
sion conditions (Table I). As a result, it is more diffi-
cult in this case to determine the edge effect zone. In
the previous subsection a simple exact analytical solu-
tion has existed far away from the external edge bound-
ary (constant stresses within each material). Now, to find
. the size of the edge effect zone we propose to apply an-
other technique. Namely, we additionally load the right

{and left) hand sides of the rectangle (Fig. 1) by some .

additional loading having zero main vectors and observe
the changes in the respective solution. As we have ex-
pectéd, the obtained results are similar to those reported
in Fig. S and corresponding results are presented in the
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Figure 7 : Displacement distribution for the asymmetric
sample and the asymmetric tensile loading along lines B,
CandD

first row of Table 9. One can see that the edge effect
zone (calculated by the perturbation method) differs de-
pending on which displacement or stress components it
has been extracted from. However, this is not an un-
expected phenomenon. For example, for the symmet-
rical sample and symmetrical loading, one pair of the
stress and displacement components gives the edge ef-
fect zone of zero length at all due to the symmetry (cf.
[Mishuris (2005b)]). In [Boichuk (2001); Kokhanenko
(2003)] even the edge effect zones are determined for
each component of stresses. Moreover, the sizes of the
zones essentially depend on the chosen criterium. It is
evident that only a crude estimation of the edge zone
can be obtained in the early proposed way. Because of
this, we restrict ourself in these numerical simulations to
the accuracy of 0.1 in the absolute value. In the author’s
opinion, such information is absolutely enough to clarify
the range'of the phenomenon. A more important value
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for users is the size of the region where the transmission
conditions hold true.

In order to find this region with a good accuracy we have
additionally calculated the jumps-of the corresponding

_displacement components from different sides of the thin

interface, (1] and [uy], and the stress components o, and
Oy, along the middle line of the interface which have been
normalized by the respective constants a; and a, accord-
ing to Table 1. Corresponding results are presented in
Figs. 9, 10.

One can observe a good correlation between the func-
tions and, from the first glance, the same excellent agree-
ment with respect to the transmission condition accuracy.
However, if one wants to calculate the relative error be-
tween the values, the error has a different range in-differ-
ent points. This is because of the variation of the function
values along the interface that makes it impossible to pro-
vide any.conclusions uniquely based on the relative error
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Figure 9 : Verification of the first transmission condition
for the soft interface from Table I (d = 1)

estimation at any a priori chosen point, as it has been
done earlier. Moreover, in the center of the sample all
values even disappear with machine zero accuracy. As
a result, it is impossible to directly extract the error at
point x = 0 at-all. To clarify this fact, we present in Ta-
ble 8 relative errors connected with the second and the
fourth transmission conditions from Table 1. The errors
have been calculated in two different points at x = 0 (by
extrapolation from the nearest points) and far away from
the center (at point x = 3.0). From the first glance, it
follows from Table 8 that the accuracy of the transmis-
sion conditions drastically changes in comparison with
the previous simple loading. However, this is not an ac-
curate conclusion,

Let 'us remind- ourselves that the analytical estimation
which has been proved for the case under consideration
(the soft interface) in [Mishuris (2005b)] gives us the the-
oretical prediction of the order O(g). From the asymp-

. totic analysis point of view, this only means that any
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Figure 10 : Verification of the second transmission con-
dition for the soft interface from Table 1 (d =1)

value along the interface (e.g. components of the dis-
placement or stress) is represented in the form: z(x) =
zo(x) + €2)(x), where €2y, in fact, is the mentioned error.
However, this fact is not influenced by the relative error
which is gz;(x)/z(x) = O(g) at an arbitrary point of the
interface. This is not true, for example, near the point
where zp(x) = 0 holds. An appropriate approach consists
in comparison of any norms of the functions that gives
correct result: ||ez1]|/||z]] = O(g). Of course, in the case
of a constant value (z{x) = const) point by pointand norm
~ definitions of the relative error coincides themselves.

Let us return to-the evaluation of such value which is of
extremely interest for users-and researchers as the range
of the validity of the nonclassical transmission condi=
tions. Fortunately, it is still possible to determine the
zone of validity of the transmission conditions with the
1% accuracy criterion based on a point by point relative

center. It is important to note that the transmission con-

CMC, vol.4, no.3, pp.137-151, 2006

ditions are still valid within the edge effect zone. For
the case under consideration the limits of the edge effect
zone are marked by points in Figs. 9a and 10a. How-
ever, it is impossible to see in these figures where the
transmission conditions are not valid. For this reason,
we have prepared corresponding magnifications near the

_right-hand side of the dissimilar sample. One can easily

sec from the figures that the transmission conditions are
still valid within the edge effect zone. The correspond-
ing regions have been calculated with the 1% cfiterion
and are presented in the second row of Table 10.

Let us note that there are two singular points (intersec-
tion of the interface boundaries with the external bound-
aries of the sample). Moreover, in the case of the dis-
similar body, corresponding stress singularities are dif-
ferent. From the results presented in Figs. 9b and 10b one
can conclude that the singularity dominated region is ex-
tremely small. Its length consists of 10™% or 0.01 - 2/i that

coincides with results of Akisanya reported in [Akisania

(1997)]). In Figs. 9b and 10b it is easy to see that the
singularity dominated region is even essentially smaller
than the region where the transmission conditions are not
valid. In fact, the region between the depicted points in
Figs. 9b and 10b is a transmission zone between two ab-
solutely different solution behaviors. Moreover, the sin-
gularity only appears in the respective stress term (dis-
placement discontinuities are bonded functions). The ac-
curate range of this zone can be calculated within the
same 1% accuracy in determination of stress singularity
exponent (cf. Table 9). It must be remembered that the
constructed FEM mesh is very dense near the singular
points.

Finally, in Table 10 norm estimate for the first two trans-
mission conditions from Table 1 have been presented not
only along the whole interface (interval (-5,5)) but also
within the interval of the transmission condition validity.
One can see from these results that in such a way defined
relative norm error is always within range of e = 102 for
the complex loading, which coincides with the theoreti-
cally predicted from the asymptotic analysis, and essen-

tially better for the simple loading, as it has been men-

tioned above. Moreover, within the zone of the condition
validity, the calculated integral error is an order smaller

- than the predicted one. Also the mentioned great influ-

ence of the applied loading on the final estimate is clearly

o ) ! “observed.
error estimate starting from a point far away from the
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Table 8 : Point by point verification of the transmission conditions. Plane stress, asymmetric sample and the '

asymmetric tensile loading, E = 813 MPa, v = 0.4999

X A'Gi‘ ; —-—-2"“5""_ rel. error - A?ci‘i
0.0 | 8.621439-107° [ 9.226322-10°% | =7.016-102 | —3.088.10-2
3.0 [ 9.221909-1076 { 9.226322-10% | —~4.785-10~* | —2.728- 10—

Table 9: Ranges of the different edge phenomena. Plane stress, E = 813 MPa, v = 0.4999

asymmetric tensile loading | simple tensile loadmv
| (Any, 0'\) (Auy, Gx}) (Any,0,) (Any, ny)
range of the edge effect | 4.6 3.9 4.5 3.4
range of validity of the | 4.9803 | 4.9883 4.9803 | 4.9894
transmission condition
range of the singularity | 4.999... | 4.999... 4.999... |1 4.999...
_dominated domain :

Table 10 : Norm verification of the transmission conditions. Plane stress, asymmetrical tensile loading, E = 813

MPa, v =0.4999

. IlAux—aszyllz IIA",-—aloyllz
eror e | Bl
simple- (=5.00,5.00) | 6.563-10~2 6.876-1077

loading | (-4.98,4.98) | 2.390-1073 = | 5.460-10~*
complex | (—5.00,5.00) | 3.575-10~2 1.614.1072
loading | (—4.98,4.98) | 1.778-10~2 1.153.1073

3.3 Stiff nonideal interface in dissimilar structure

In this subsection the stiff imperfect interface discussed
in the introduction is numerically investigated. For this
aim, the same steel-aluminum dissimilar rectangle, but
with a thin stiff intermediate layer (elastic constants:
E =21-10° MPa, v = 0.3), is under consideration. The
same simple tensile loading uy(x, H/2) = v,(x) = 1-d,
ty(x,H /2) = v,(x) = 0 as in subsection 3.1 has been ap-
pliediin this case. Corresponding distributionsof all com-
ponents of the displacement and stress along the line A
(in the middle line of the sample within the interphase)

" and along the lines B-D (parallel to the interface) are pre-

sented in Fig. 11a and Figs. 12-13, respectively. As it
follows from the asymptotic solution (cf. (19)-(21)), the
displacements within the interphase should be constant in
the direction perpendicular to the interface. This fact is
confirmed by FEM-calculations in Figs. 11a-12. On the
other hand, according to the obtained numerical results in
Fig. 11b, the stress components are also constants, while
one can conclude from (36), (38) and (40) that the shear

stress should rather change its behavior in direction per-
pendicular to the interface. There is, nevertheless, a sim-
ple explanation of the fact observed in the calculations.
Namely, one can notify that %_;n, =0 at point x = 0 due
to the symmetry conditions (and it is easy to observe in
“the numerical calculations presented in Fig. 12). More-
over, from Fig. 13 whete stress distributions are shown
along different lines parallel to the interface and are ly-
ing in and out of the interface, one can conclude that all
stress components behave exactly in the way as predicted
by asymptotic analysis. In this case, only the validity of
the fourth transmission condition from Table 1 is not ev-
ident in advance. For this reason, we additionally cal-
culated the jump of the shear stress from different parts
of the interface, {0.], and the second derivative of the
displacement 1, normalized by the parameter a3 due to

Table 1. Figure 14 confirms a good agreement between
the functions.

The edge effect zone can be easily estimated from
Fig. 12b and 13a where one of the displacement compo-
nents.uy and two stress components o, and o, practically
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Figure 11 : Displacement and stress distribution along
the symmetry axis perpendicular to the interface in the
asymmetric sample and the simple tensile loading for the
stiff interface o '

exhibit a constant behavior along the interface. The cor-
responding distance.from the external boundary is even
smaller than in the case of the soft interface. To calcu-
late the region where the considered transmission condi-
tion is valid, we prepared as earlier a magnification (cf.
Fig. 14b) near the right-hand side boundary. Correspond-
ing points on the figure illustrate the respective values.
The singularity dominated region is of the same length,
while the zone where the transmission condition does not
* hold true is now two times longer. Moreover, the sec-
" ond derivative of the displacement at the middle line of
the interphase (y = 0) is bounded near the free boundary.
This is an additional proof that the singularity dominated

domain is essentially smaller than the thickness of the in-.

terface. Otherwise, one should observe a higher growth
-of the derivative near the free boundary, '

Finally, we have also tried to verify the stiff transmis-
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Figure 12 : Displacement distribution along lines B, C
and D parallel to the interface in the asymmetric sample
and the simple ténsile loading for the stiff interface (d =

1)

sion condition in the case of the complex loading which
has been introduced in the previous section for the soft
interface. However, our FEM-mesh leaded to the same
unsatisfactory behavior of the solution, as it has been
discussed in the introduction of the first part [Mishuris
(2005b)]. This is because bending plays an important
role for such loading together with the stiff interface and
makes it impossible to use the constructed mesh for the
verification of the transmission conditions in this case.

4 Discussions and Conclusions

As it follows from the numerical results by FEM analy-

‘sis presented here and in paper [Mishuris (2005b)}, im-

perfect transmission conditions for the thin soft and stiff
interphases analytically obtained by asymptotic analysis
are satisfactory with a very good accuracy even in the
case of € = 0.01. Moreover, in the case of simple symme-
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Figure 13 : Normal and shear stress distributior along
lines B, C and D parallel to the interface in the asym-

metric sample and the simple tensile loading for the stiff
interface

try, the accuracy is essentially better than that predicted
by theory. Only in the case of the plane strain problem
for the soft weakly compressible interface, the error man-
ifests an essentially different behavior. Let us note that
in this case Lamé parameters of the interphase material
are not comparable in value and one of the main nec-
essary assumptions to prove the transmission conditions
obtained are not valid. ‘ ‘

As aresult, in the case of the thin intermediate layer be-
tween two elastic materials different transmission condi-
tions can be applied depending on relations between the
material parameters of the bonded materials and the in-
terphase zone: The question when one can use particular
transmission conditions has been answered taking into
account relations between the problem parameters. How-
ever, it is enough to use, in fact, only two of them - for
the stiff and the soft interface. Namely, if the interphasc

a) )
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Figure 14 : Verification of the fourth transmission con-
dition for the stiff interface from Table 1 (d = 1)

is stiffer than the bonded materials then it makes sense to
use the stiff interface transmission conditions, while in
the case when the material parameters of the thin layer
are smaller than the matched ones then it is necessary
to use the transmission conditions for the soft interface.
Then in the intermediate case of the comparable in value
interface parameters a; have the same degree O(g) with
respect to the only small parameter € = ii/H as the theo-
retically predicted error. '

However, there are still some questions which still re-
main to be clarified. First, it is necessary to evalu-
ate transmission conditions in the case of the weakly
compressible interphase and estimate by the same FEM-
analysis the range of their applicability. This phe-
nomenon has been observed in [Ryabenkov (1999)] but
no solution has been suggested. On the other hand, it
is highly important to estimate an error introduced into
final calculations by utilization of any of the proposed

_imperfect transmission conditions from the initial stage.
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Hence, the analysis will be not complete if one does
not calculate numerical solutions based on the imperfect
transmission conditions and does not compare it with the
accurate numerical solutions for the finite thin interface.
Moreover, such comparison has been done in the whole
domain not only near the imperfect interface. Let us note
that the estimates for the zones presented in Table 7 give
us the possibility to properly locate special singular and
transmission elements of respective sizes in a constructed
FEM mesh. These problems will be pointed out in future
investigations.

~ The edge effect appears on a distance comparable with
twenty five times the thickness of the interface. In fact,
this zone can be considered as a region where Saint-
Venant’s principle fails. The interesting and important
fact is that this zone essentially depends on the type
of interface that is not so evident from the first glance.
Namely, the size of the edge effect zone monotonically
depends on the ratio E/E_. However, the verified trans-
mission conditions fail only on a distance of two interface
thickness, while the singularity dominated zone extends
on a distance of only /1/100. Of course, the lengths of
the zones are strongly influenced by the chosen criterion.
We have applied a 1% accuracy criterion throughout the
paper which corresponds to the predicted accuracy of the
transmission conditions O(g). However, regardless of the
criterion choice the region where the transmission condi-
tions are not valid is essentially smaller than the size of
the edge zone.

Although FEM analysis is very useful for verification in
value in comparison with the formal asymptotic analy-
sis, it has its own restrictions concerning values of the
small parameter and strong difficulties connecting with
necessity to build a complicated mesh which can be ad-
ditionally depending on the type of loading, as it oc-
curred in our investigations for bending. Also it is dif-
ficult to define an unknown form of corresponding trans-
mission conditions from FEM analysis. However, in the
case when one can suppose any specific conditions, they
might be numerically verified. In such a way there is a
possibility to evaluate imperfect transmission conditions
in the case when respective asymptotic analysis is diffi-
cult to carry out. Taking this fact into account, we are

going to evaluate and verify transmission conditions for

thin plastic interphases. First attempt have been done in - : )
p P P . ‘Ryabenkoyv, N. (1999):  On the accuracy of determina-

‘tion of mechanical properties of an adhesive. Ind Lab,

[Mishuris (2005a)].

- Akisania, A.R.; Fleck, N. (1997):

Mater, vol. 46, pp. 4895-4904.
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Abstract

Different imperfect transmission conditions modelling a thin intermediate layer between two bonded materials in a dissimilar
elastic strip are analysed from the point of view of possible free-edge effects. The type of imperfect model depends essentially on the
mechanical properties of the interphase and can be classified as soft, comparable and stiff interfaces. Corresponding transmission
conditions have been derived by asymptotic analysis. However, they are not valid, generally speaking, at a region near the free edge,
where an additional boundary layer should be constructed. By using FEM the size of this region is estimated and all possible edge-

effects phenomena are classified.
© 2004 Elsevier Ltd. All rights reserved.

Keywords: Elasticity; Imperfect interface; Non-classical transmission conditions; Finite element method; Free-edge effects; Stress singularity;

Interphase

1. Introduction

Most modern engineering structures make use of
elements which are produced from the technology of
joining materials (i.e. composites, adhesive joints, etc.).
Analytical and numerical investigations of the edge ef-
fects which can be observed at the free boundaries of the
bonded dissimilar materials, have, in the past, be mainly
based on three approaches. The first of these, and the
most popular, assumes that the bi-material interface is
of zero-thickness, which allows the so-called “perfect
contact condition” to be satisfied along the whole length
of the interface [2,7-9,27]. The perfect contact condi-
tions occur when the displacements and tractions remain
continuous across the whole of the interface. From the
point of view of the edge effect analysis, such an ap-
proach provides a stress singularity at the intersection
between the interface and the external boundary. Cor-
responding stress singularities can be calculated from
respective transcendental equations taking into account
all boundary and transmission conditions. In the two-
dimensional (2D) case, the equation has been written for
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8543116.
E-mail address: miszuris@prz.rzeszow.pl (G. Mishuris).
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the first time in [5] and later it is discussed for different
wedge geometries in [2,27]. It has been shown that the
classical square root stress singularity is no longer valid
and it has been shown to depend upon the angle between
the interface and the boundary as well as on two-
dimensionless material parameters (Dundurs parame-
ters), which describe the relative properties of the two
bonded materials (cf. [9]). Nevertheless, the singularity
can be easily calculated and implemented in FEM code
with the corresponding special elements.

A region within the neighbourhood of the singular
point is susceptible to microcracking originating from
the point of the stress singularity. This may lead to a
decrease in the mechanical strength/stability of the whole
structure which may ultimately lead to its destruction
[1,2,4,13,25,26,28]. To estimate the risk of crack ap-
pearance, Cherepanov [8] suggested and Akisanya later,
with the help of his co-authors [2,27], developed the idea
of using the value of a so-called generalised ‘‘stress
intensity factor” in fracture mechanics analysis. How-
ever, such an approach makes it impossible to take into
account any internal peculiarities of the real interphase
between the matched materials. On the other hand,
properties of adhesive materials may differ fundamen-
tally from those of the bonded materials. For this reason,
another (second) approach has been implemented in the
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modelling of bonded dissimilar materials. It consists of
the assumption that there is an additional thin layer of
finite thickness with its own mechanical properties (see
review in [10]). However, with modern technology very
thin glue layers (thin films) are used [14,30]. This fact
makes it difficult to perform any numerical calculations
using FEM taking into account the need to build a
complicated mesh of fundamentally different sized ele-
ments that can lead to a loss in accuracy, unstable cal-
culations and even loss of convergence [22]. In such a
case, the third approach may be very successful: the so-
called imperfect interface approach. This consists of
using some special non-classical transmission conditions
which take into account the internal properties of the
thin interphase, but the conditions are still applicable
along the imaginary zero-thickness interface (glue line).
Such transmission conditions can be obtained from some
phenomenological assumptions (cf. [8,10,30]) or from the
accurate asymptotic analysis [3,12,15,16,22,23] taking
into account various features of the intermediate layer.
However, to the best knowledge of the authors, only the
very first attempts (in the papers [11,12,23]) have been
made to estimate the influence of such imperfect mod-
elling on the edge effects seen within composite structure.

In this paper we will be investigating all the possible
imperfect interfaces (i.e. soft, comparable and stiff). The
three classifications come from the asymptotic analysis
[22,23] and do not contradict or overlap with that found
in [12], where, in fact, only the soft and comparable
interfaces in our classification are under consideration.
The edge effects secen related to the problem under
consideration are divided up into three groups: edge
effect, validity of transmission condition and singularity
dominated zone.

2. Transmission conditions and FEM modelling

Let us consider a plane problem (that being: a two-
dimensional problem) for modelling a dissimilar body
(Fig. 1). The bonded materials from the top and the
bottom part of the dissimilar strip posses the elastic

v(x)
zone of edge effect E,v, <
ce VA N l
Ci Y
line B \) > E, v )
D - X -1
D¢ interphase
. _—line A
LV
"
L

Fig. 1. Schematic representation of the problem, evaluation paths and
boundary conditions of the investigated structure.

parameters u,, v_ and u_, v_, (the shear modulae and
Poisson’s ratios, respectively). The interphase is as-
sumed to be isotropic, with the elastic constants y, v. In
this section, possible transmission conditions which can
be evaluated by asymptotic methods are presented
without any details. The corresponding analysis has
been done in [22,23]. The interphase is assumed to be
very thin so that A =ehy and hy ~ L, where L is a
characteristic dimension of the bonded components,
while € is a small dimensionless parameter (e < 1).

Three different interphases can be distinguished: soft
interface u ~ ep,, comparable interface: p ~ u,, and,
finally, stiff interface: p ~ ¢ 'u, . Additionally, it is as-
sumed that the interface may be slightly curved and the
elastic constants of the bonded materials do not differ
significantly when compared to the value of the small
parameter €. These assumptions mean that, for example,
if €=0.01 then u, /u_ can range from 0.1 to 10.0, but
can not be smaller than 0.01 nor exceed 100.0. As a re-
sult, different transmission conditions can be obtained,
respectively [22-24]. They are summarised in Table 1. In
Table 2 the formulae to calculate the parameters a;
(j = 1, 2, 3) are given. The formulae in Table 2 have been
found using an additional assumption: i.e. material
parameters of the interphase do not change in direction
perpendicular to the glue line (line where y = 0 holds).
However, the parameters a; can exhibit any functional
dependency with respect to the variable x changing along
the glue line. One can find the general relations in [23].

Let us mention here an extremely important fact with
respect to the evaluation of the transmission conditions:
the corresponding asymptotic analysis in the case of the
plane strain is only valid when the material of the
interphase is not weakly compressible (i.e. the value of
Poisson’s ratio v is close to 0.5 but on a scale essentially
greater than the value of the small parameter €). As is
clear from the Table 2, the parameter a; should be
approaching zero when v — 0.5, but the respective
transmission condition is not longer valid.

One last remark: the transmission conditions derived
by asymptotic analysis, which are presented in Table 1,
are only valid at a distance from the external boundary,
where an additional singular boundary layer has to be
built to fulfill the external boundary conditions near the
thin interphase layer. As a result, the question arises as
to what the length of the zone is where the transmission
conditions are not longer valid.

A commercial finite element software (MSC.Marc) is
used for simulating the mechanical behaviour of the
thin intermediate layer which has the dimensions
2h = H/100 = 0.01 and L = 10. As a result, the value 2/
can be taken in this case as the small parameter e. The
two-dimensional FE-mesh is built up of four-node,
isoparametric elements with bilinear interpolation
functions. In order to investigate the edge effect on both
sides of the rectangle (cf. Fig. 1), a strong mesh refine-
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Table 1

Possible sets of transmission conditions along the line y = 0 depending on the relative properties of the thin intermediate layer, 2D case

Interface Transmission conditions
Soft [u,] — 20, =0 ] —aio,=0 [ow] =0 [o,] =0
Comparable [u,]=0 ] =0 [ow] =0 [o,] =0
Stiff 1] =0 ] =0 (o] + & (a3 %) = 0 [0,] =0
Table 2 1.25-10°
Parameters a;(x) for the plane strain and plane stress case 1y=0
Case a a, a - 1.00-105 —
Plane strain R - e £ 075105
Plane stress w0 $) 2hE = -
‘2 0.50-105
) -
o
< 0.25-105
() i
= -
1000 -
mesh detail: end of interphase 0 . ’|I — . I : I

Fig. 2. Two-dimensional FE-mesh: strong mesh refinement in the
investigated area.

ment in this region is performed (cf. Fig. 2). Further-
more, the mesh is generated in such a way so that it is
possible to evaluate the displacements and stresses along
the axes of symmetry: lines A and B (cf. Fig. 1) and
along the transition zone of the materials: lines C and D.
(The lines C° and D¢ belong to the bonded material and
the lines C' and D' to the interphase.) Additionally, the
density of the mesh increases near the free boundary (cf.
Fig. 3) to accurately investigate the distribution of the
displacement and stress fields without necessity to use
any special singular element in FEM analysis. The main
aim of the mesh choice is to eliminate any predefined
behaviour within the numerical solution as it can exhibit
different features depending upon the mechanical
properties of the interphase and the bonded materials as
well as the chosen interface model. We have checked the
constructed FEM mesh by comparing it with known
benchmarks to show that it is appropriate for the tensile
and shear loading, but not for bending load cases where
a phenomena known as “locking” can appear in the
transition elements.

Numerical simulations have been made under the
following conditions: simple uniform tensile and shear

-5.000 -4.9950 2 4
x-coordinate, mm

Fig. 3. Mesh density with reference to Fig. 1.

external loads (corresponding components of the given
displacement v(x) at the top boundary of the sample are
equal to v,(x) =0, v,(x) =1 and v,(x) =1, v,(x) =0,
respectively) or tensile loads in the form: v.(x) =0,
v,(x) = 0.04 - x*. Two different samples are under con-
sideration: symmetrical sample (both matched compo-
nents are aluminum alloy AlCuMgl (2017), with the
elastic constants, Young’s modulus £. = 72,700 MPa
and Poisson’s ratio v. = 0.34) or asymmetrical sample
whose upper part consists of steel (elastic properties
E, =210,000 MPa, v, = 0.3), while the lower part is
the aluminum alloy (E_ = 72,700 MPa, v_ = 0.34).
Differing elastic constants are assigned to the interme-
diate layer and the calculations are carried out for the
plane stress and plane strain states.

3. Numerical results

A lot of numerical results for the mentioned sym-
metrical and asymmetrical samples, different loadings
and different types of the interface from Table 1 have
been presented in [22,23] to estimate the range of the
validity of the derived transmission conditions. In this
paper we would like to concentrate our efforts mainly on
the possible edge effects appearing in the problem under
consideration.

In Figs. 4 and 5, distribution of displacement and
stress along the lines B, C and D parallel to the glue line
are depicted. As an example, the symmetrical sample
consisting of two aluminum parts affixed by a
weak adhesive layer with the following artificial elastic
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Fig. 4. Displacement distribution for asymmetric loading along lines B, C and D.

o E =813 MPa
—e— lines B, C} D v=03
—— line C*

—%— line D°

Normal stress ¢, 102 MPa
(353
3
1

line B

plane stress, tensile case

)
S
S

T T T T T T T T
4 2 0 2 4
x-coordinate, mm

600 60
g 500_‘ —— E =813 MPa -
i —— v=03 edge effect __ 40 E
S 4004 &
6 300 i
o 300 4
Z 001 %
£ g
- 7
= =
£ g
5 =
2 2

1 plane stress, tensile case |
-100 — T T T 7T -60

4 2 0 2 4
x-coordinate, mm

Fig. 5. Normal and shear stress distribution for asymmetric loading along horizontal lines B, C and D.

properties: E = 813 MPa, v = 0.3. In our classification
this is the typical soft interface. Corresponding trans-
mission conditions are presented in the first line of Table
1. For calculation, an inhomogeneous tensile load has
been applied: v, = 0, v, = x*/25.

From Fig. 5b one can observe that the stress com-
ponents ¢, and o, are continuous and, hence, the cor-
responding transmission conditions are satisfied, from
the first glance, along the entire length of the sample.
The last component of stress g, takes the same value
within the interphase, but is discontinuous across the
interphase boundaries, as expected due to the disconti-
nuity of the material properties. On the other hand,
displacement components u, and u, are dissimilar along
all of the considered lines. To check the last two trans-
mission conditions from the Table 1, for the case of the
soft interface, it is necessary to calculate the jump of the

| plane stress, tensile case E =813 MPa
é 0.08 - line B v=0.3
& 0044 edge effect

2 1

< 0.00-

é 0.04—

2‘ 1 Au,
Dt a0,
0.12 +—————7——7—

4 2 0 2 4

x-coordinate, mm

displacements from different sides of the interphase.
This has been done in Figs. 6a and 7a, where the
respective displacement discontinuities and the corre-
sponding stress components, normalised by the formu-
lae from Table 1, are presented. A perfect match of the
both lines is also observed.

If the simple shear or tensile loads were to be applied
to the sample, then at some distances from the free edge,
all displacement and stress components could be seen
in Figs. 4 and 5. However, we intentionally applied
more complicated loads to show that it is not so evident
how to define the possible edge effects. Nevertheless,
observing the curves for the stress components a,, oy,
from Fig. 5b and the curves in Figs. 6a and 7a, one can
conclude that there are points where the behaviour of
the curves changes. These points are depicted by small
circles determining the size of the first edge effect zone.

0.12 1 plane stress, tensile case E =813 MPa
g 0.08 line B v=0.3
% 0.044 validity of transm. cond. g
g:. o 00_‘ singularity —
é -0.04
s su,
< . -
008 e a0,
-0.12 B e e | B
4.90 4.92 4.94 4.96 4.98 5.00

x-coordinate, mm

Fig. 6. Verification of the first transmission condition along the imperfect interface.
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Fig. 7. Verification of the second transmission condition along the imperfect interface.

This effect is, in fact, related to Saint-Venant principle.
That being: the behaviour of the solution changes due to
approaching the considered points as we move along the
curve towards the external boundary. Hence, the size of
this zone should depend first of all upon the type of the
external boundary conditions along the left and right-
hand sides of the strip and the load being applied there.
We are mostly interested in how the interphase prop-
erties influence the size of this zone. At first glance, one
could think that this influence is not so important be-
cause of the already mentioned physical behaviour of
the zone. However, this is not true.

In Fig. 8 the main tendency for the size of the edge
effect zone can be observed for different material prop-
erties of the interphase layer when the same aluminum-
aluminum symmetrical sample is used. As one can see
from the presented results, only the case of the soft
weakly compressible interface under plane strain con-
ditions deviates in behaviour in comparison with the
other cases. The reason for this is due to the fact that
other transmission conditions have to be valid for such
interface. Moreover, it has been shown in [23] that dif-
ferent external loads on top of the sample have a neg-
ligible effect in regards to the edge effect zone size. Of
course, in order to discuss any edge effect zone, it is
necessary to define the criteria describing the phenom-
enon. In this paper, an accuracy criteria of 1% is rig-
orously applied for the determination of any edge effects
under consideration. The edge effect subjected to Saint-
Venant principle (that being the simplest and clearest) is

3 0.5 tensile case O v=0.4999
£ 1 A v=0.0001
5 04 v=0.3
= J -
k= 1 e} o
& 03 ST I i
= L2 plane strain
o 4
kS
< 0.2 H
B0
=
L 0.1 Ap/g/%j:
— A
&

0.0 ————

104 107 102 107! 10°

(a) Ratio of Young’s modulus E/E_

10!

Rel. length of edge influence

(b)

simultancously the most difficult to be determined
numerically. Only simple loads (simple shear or simple
tension) give the possibility to do that without compli-
cations. Otherwise, the exact solution valid for an infi-
nite sample with the same external loads has to be
known in advance to compare with the numerical
solution for the rectangle of the given length with the
free edges. However, taking into account the above fact
that the applied loading to the top of the sample has a
slight, non-significant, influence, one can restrict the
loading to simple loads. Another technique can be
proposed to determine the zone with any complicated
load at the top of the sample boundary. In this tech-
nique, one can apply to the right-hand side of the sample
some additional loads exhibiting a zero main vector and
then observe the changes in the results obtained. We
used this technique in paper [23].

Furthermore, it should be underlined here that the
edge effect zone is not directly connected with the region
of wvalidity of the transmission conditions for the
imperfect interface. By this we mean that one can easily
observe a perfect coincidence between the curves from
Figs. 5b, 6a and 7a corresponding to the different parts
of the imperfect transmission conditions mentioned
above. Moreover, one can conclude from the diagram
that the transmission solutions are satisfied along the
whole glue line. However, this is not true, of course, and
this only holds in the range of the figures. To make it
clear, magnifications of the curves from the right-hand
side of the sample are presented in Figs. 6a and 7a. In

0.16
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0.14
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Fig. 8. Relative length of the edge effect zone.
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turn, two different points can be recognised in the
magnified diagrams. The first one is the point that sep-
arates the region where the imperfect transmission
conditions are still valid from the region where they are
not. The same 1% criteria has been applied to find this
point. The other point on each diagram defines the so-
called singularity dominated region near the singular
point which was mentioned in the introduction. To
determine this region one can approximate the solution
along the interphase boundary in the proximity of its
intersection with the external boundary using a simple
asymptotic expansion (for example, u, = u,o + br*). In
Fig. 9 such an approximation can been plotted on the
logarithmic scale. Moreover, the both unknown param-
eters b and A have been found numerically by the least
square method. It is important to note here that we still
have a lot of numerical points for such an approxima-
tion due to the constructed mesh being used (see the first
section). Because the exact value of A can be easily
calculated from the respective transcendental equation
given in [27], it makes it possible to estimate the size of
the stress dominated zone by applying the 1% criteria in
terms of the accuracy of the value of this parameter (see
Fig. 9). The corresponding points visualised in Figs. 6b
and 7b have been also extracted in the same way. One
can see that this region is essentially smaller than the
thickness of the interphase and can be estimated as
0.02 - 2h. This corresponds with the results reported in
[6,12,23,27]. On the other hand, the region, where the
transmission conditions are no longer valid, can be
estimated as being comparable with the interphase
thickness. However, the length of this region is more

E =8138 MPa
v=0.3

—e— ln(u},-uyu)

——=—=— Inb+A-In(x+5)

-13 -10 -8 -5 3 0
In(x+5)

Fig. 9. Evaluation of the length of the singularity dominated zone.

variable with changing material properties of the inter-
face than the size of the singularity dominated domain.
Moreover, using the results of the paper [11,12] (where
several values of the thickness have been investigated)
one can conclude that the absolute size of the singularity
dominated zone can not be considered as an appropriate
characteristic but the only relative one (in comparison
with the thickness of the interphase). The zones between
the points in Figs. 6b and 7b are, in fact, intermediate
regions between absolutely different behaviour of the
considered elastic field. From a mathematical point of
view, this is the length of the boundary layer zone which
has to be build to complete the asymptotic analysis
dealing with the derivation of the imperfect transmission
conditions (see [24]).

Corresponding results showing the sizes of the dif-
ferent edge phenomena are presented in Table 3 for
three different soft interfaces. All the discussed sizes
have been measured parallel to the glue line. However,
at least for the last edge effect, i.e. singularity dominated
zone, one can also determine the singularity influence in
a direction perpendicular to the interface from the sin-
gular point (as in any other direction cf. [6,17,29]). In
Figs. 10a—12a the distribution of all stress components
along the line parallel to the external boundary at some
distance d are shown for three different cases: the sym-
metrical sample and simple tensile, the symmetrical
sample and asymmetrical tensile load and, finally, the
asymmetrical sample and simple tensile load. It has been
assumed that the intermediate layer exhibits the same
properties in the cases under consideration with elastic
parameters v = 0.3 and EF =813 MPa. The value of
d =1.953 x 1073 (d = 1.953 x 10732h) has been taken in
such a way that the line definitely lies within the domain
where all the three above mentioned edge-effect phe-
nomena appear. Let us note that the stress components
o, and o,, are equal to zero along the free boundary
according to the boundary conditions. However, the
stress components along the line under investigation are
still very small along the major part of the line
(6.(5—d,0) = 0.2 MPa and 0,,(5 — d,0) ~ —16 MPa)).
The magnitudes of the stresses in this region do not
practically depend on the cases under consideration.
Nevertheless, these values are not longer equal to zero as
one can conclude from the first glance from Fig. 5.

On the other hand, there are two regions near the
intersection points between the interphase and the

Table 3
Plane strain, tensile case, line A
E v Edge effect Validity of transmission Singularity dominated
condition domain
8138 0.3 4.1847 4.6928 4.999
813 0.3 4.4522 4.9919 4.999
81 0.3 4.7768 4.9932 4.999
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Fig. 10. Distribution of the stress g, along the line parallel to the free edge at distance d = 1.953 x 1075.
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Fig. 12. Distribution of the stress ¢, along the line parallel to the free edge at distance d = 1.953 x 107,

external boundaries where the behaviour of the stresses
o, and o,, changes drastically in Figs. 10a and Ila.
Analysing the lengths of the regions, one can determine
that the range of the singularity dominated domain is of
the same order in the both directions (perpendicular and
parallel to the interface). However, within these regions
the influence of the particular cases is quite evident.
Moreover, in the case of the symmetrical samples, no
essential differences can be observed between the two
different singular points, as it should be expected (be-
cause of the free external boundaries and practically the
same distance to the loaded top and bottom boundaries
of the rectangle). In fact, the values of the stress singu-
larity exponents and the generalised stress intensity fac-
tors near the singular points should be almost equal in
absolute values (but of the opposite signs for the gener-
alised SIFs) in these cases. And in the case of the asym-

metric sample (even for simple and, hence, symmetrical
loading) higher peak stresses arises near the singular
point with a larger difference in the elastic properties of
the matched materials (in the case under consideration it
is the top intersection point between the external and
interphase boundary). Although, the values of the com-
ponents o, and a,, do not change significantly along the
line under consideration, the last component o, behaves
differently. Here, all factors play an important role.
Moreover, all stresses exhibit other behaviour within the
interphase along the line perpendicular to its boundaries
in comparison with those in the middle part of the
sample, where all components change linearly (see [23]).

To also indicate the influence of the value of Pois-
son’s ratio on the mentioned edge effects, the same re-
sults for the stresses in the case of the asymmetric
sample loaded by simple tensile loading on the top are
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presented in Figs. 10b and 12b. One can deduce from
those figures that the value of Poisson’s ratio influence
significantly the value of the stress singularity exponents
and the generalised SIFs but not on the length of the
singularity dominated zones.

It is also to be noted that the stress field appearing in
the model with only the imperfect transmission condi-
tions instead of finite thin interphase does not exhibit
any singular behaviour near the free edge effect at all
(cf. [11,12]). However, this is not a peculiarity of the
imperfect interface itself, but a direct consequence of the
geometry of the dissimilar body under consideration.
Thus, in cases when the crack stops perpendicularly to
the imperfect interface [18,19] or lies on it [20,21], vari-
ous stress singularities can arise depending on the local
mechanical behaviour of the local shape of the inter-
phase near the crack tip and on its material properties.
In this paper we always assume that the mechanical
properties of the interphase do not change from point to
point. As a result, for such a geometry, no stress sin-
gularity exists under any of the imperfect interface
models excepts the classical perfect bonding.

Although, only the soft interface has been discussed
here in details, it has been shown in [23], among others,
that the stiff imperfect interface is characterised by the
same lengths of the singularity dominated domains and
the regions where the transmission conditions are no
longer valid as has been in the case of the soft imperfect
interface. This allows us to consider the results as a
general rule for researchers involved in work regarding
different influencing edge effects in composites with
imperfect interfaces.

4. Conclusions

In the presented work, special efforts have been made
to clarify all edge effects connected with imperfect bonds
between two different elastic materials. Different imper-
fect models have been discussed with respect to the
appearing edge effects. By using FEM analysis, ranges of
the domains involved in the phenomena have been esti-
mated. It has been shown that the edge effects in the case
under consideration can be classified in three different
type phenomena. Although each of them play an
important part in influencing the behaviour of the dis-
similar structure, the last two edge effects (validity of the
transmission condition region and singularity dominated
zone) should be of particular interest for users of finite
element programs involved in edge effects. Thus, the
knowledge about the validity region makes it possible to
drastically decrease the number of finite elements in the
constructed mesh by introducing special transmission
elements instead of the thin intermediate zone between
the different materials and also to prevent unsatisfactory
phenomena in the numerical analysis. The information

about the singularity dominated domain, in turn, makes
it possible to locate the corresponding special singular
element in the correct location.
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A THIN INTERPHASE between two different elastic media is under consideration. It is
assumed that the intermediate layer consists of a soft elasto-plastic material whose
Young’s modulus is small enough in comparison with those of the bounding materials.
Using an asymptotic technique, nonlinear transmission conditions for the bimaterial
structure are evaluated. As a numerical example, a FEM analysis of a bimaterial
structure with an interface is performed to investigate the accuracy of the derived
transmission conditions.

Key words: elastic-plastic layer, imperfect interface, nonclassical transmission con-
ditions.

1. Introduction

THIN INTERPHASES appearing in dissimilar bodies such as composite structures
with adhesively bonded materials may influence significantly the whole spectrum
of structural parameters: strength, dynamics, fracture, long lifetime and so on.
Recently, significant efforts have been done to clarify various phenomena con-
nected with the so-called imperfect interface approach. It consists in replacing
the real thin interphase between two different materials by an infinitesimal layer
of zero thickness. This layer is then modeled by special transmission conditions
which incorporate information about geometrical and mechanical properties of
the thin interphase. At first, such proposed conditions were based on phenom-
enological arguments and have been sufficiently exploited (see [3, 6, 7] among
others and the respective references). Later, various imperfect transmission con-
ditions have been evaluated by asymptotic methods in (2, 4, 8, 13| for different
types of interfaces and materials. Accurate asymptotic behaviour of solutions of
interface crack problems in the imperfect interface formulation have been done
in [1, 14, 15] where it has been shown that the behaviour may be very compli-
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cated and essentially depends on the material and geometrical properties of the
imperfect interfaces. Possible error estimates and ranges of the edge zone effects
connected with utilisation of the imperfect interface models have been discussed
in [16, 17] by the FEM analysis. This short overview shows that elastic imperfect
interfaces have been intensively investigated in different directions.

However, thin elasto-plastic interfaces appear very often in real applications
and the respective plastic properties may even have a greater influence than
the elastic ones [11]. On the other hand, the numerical FEM simulation of the
thin elasto-plastic interphase is more complicated than a pure elastic simulation.
Unfortunately, results which have been obtained up to now have been absolutely
insufficient and are mainly concentrated on problems of thin plastic interphases
between rigid adherends [10, 12].

In the present work, imperfect transmission conditions for a soft elasto-plastic
interphase are evaluated by asymptotic methods. The interface is described by
the simple Hencky’s deformation theory model. Only the main terms. i.e. zero-
order expressions, of the asymptotic analysis are considered. Respective trans-
mission conditions are naturally nonlinear. Higher-order expressions can be much
easier to construct continuing the asymptotic procedure from the respective lin-
ear boundary problems. A numerical example based on an accurate finite element
simulation shows a high efficiency of the approach. in spite of the fact that the
deformation theory has its strong restrictions.

2. Basic interphase equations

In this section, only the interphase is considered. It is assumed that the
material behaviour can be modeled by the elasto-plastic Hencky law [5. 12}

1-2v 1
= D = - D N
E g, € (¢+ 2#) o

where v is Poisson’s ratio, i and E are the shear and Young's moduli of the
material in the elastic regime (F = 2u(1 + v)). Here. D, and D, denote the
deviatoric parts of the strain and stress tensors:

(2.1) €

1
(2.2) D, =¢— §€I, D,=0 - %O'I,

while
3 3
(2.3) E=Il(€)=ZEn', 0':]1(0'):20“'
i=1 =1

are the first invariants of the tensors.
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Function ¢ is assumed to be known in Eq. (2.1) and depends only on the
second invariant of the strain deviator |12]:

(2.4) o=9(hre),  #(0)=0.

Here, as usually,

3
1
(2.5) Jo(€) = I(De) = 3 E €ij€ij
4.5=1

and e;; are components of the deviator D.. It is well known that such a model
describes appropriately only monotonic or near-monotonic loading and, in fact,
comprises one of the nonlinear elasticity models {9, 12|.

After some standard transformations, Eq. (2.1) can be rewritten in a form of
nonlinear elasticity as:

(2.6) aij = 2fies; + Aedyj, i,j =1,2,3,

where the generalised Lamé’s coefficients have been introduced:

1
o) =5 (o452

E

- 1 14+v) ! v E
’\(¢):§(¢+ E) (1—2u+¢1—2u)'

It should be noted here that these new coeflicients coincide in the pure elastic
regime (¢ = 0) with the elastic Lamé’s parameters:

(2.7)

E ~ vE

(2.8) fi(0) = p = W+ 0) A0)=A= T+ )=

Also the generalised Poisson’s ratio can be introduced in the model:

_ M9) _ 3w+ ¢E
2(Mg) +iu(p)) 3+ 2E

It is easy to show from Egs. (2.7) and (2.9) that for 0 < v < 0.5

(2.9)

T
—~~

1+v

, /\S/\(¢)<‘37

A,

DO =

(2.10) 0<pi(e) <p, v<p(g)<

where the function ji(¢) monotonically decreases, while functions #(¢) and A(¢)
monotonically increase.
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REMARK 1. If the initial elastic parameters of the intermediate laver are
essentially smaller than those corresponding to the bonded materials. i.e.

(2.11) £0) < px,  AM0) < A,

then one can immediately conclude from (2.10) the same properties of the gen-
eralised parameters for any ¢ > 0 provided v is not too close to zero:

(2.12) (o) < pa,  A@) < As.

REMARK 2. It follows from (2.9) and (2.10) that o(¢) — 1/2 as ¢ — oo.

REMARK 3. Function ¢ = ¢(J2(€)) can not behave arbitrarily. In fact, it
should be determined from the yield criterion [12]. On the other hand, one can
deduce from the monotonicity of the true stress-strain curve behaviour that the
function fi(#(t))V/t has to be non-decreasing. Moreover. in the case of hardening
materials without saturation, Jy(g) — oo as Ja(¢) — ¢, or

(2.13) f(o(J2(€))) v J2(€) — oo, as Ja(€) — 00.

Taking into account Eq. (2.7), it is clear that condition (2.13) holds always in
the case when ¢(t) is a bounded function. In the oposite case, if ¢(t) — oo as
t — oo, the following estimate for the function ¢ has to be satisfied:

(2.14) Vt/$(t) = 00, as  t— oo
If one additionally assumes that there exists some parameter o > 0 such that
(2.15) o(t) = O(t%), as t — o0,

then it is easy to see that estimate (2.14) is satisfied only under the condition
0<a<l/2

On the other hand, in the case of ideal plastic materials or plastic hardening
laws with saturation:

(2.16) fi(#(J2(e)))V/ J2(€) — const,  as  Ja(e) — oo.
This leads to:
(2.17) Vt/$(t) — const, as  t— oo,

or, under assumption (3.2), it is equivalent to a = 1/2.
To finish the preliminary part of the paper, equations for the plane strain
state are presented below. Thus, if uy = uz(z,y). uy = uy(z,y), u; = 0 then

(2.18) ez = Epz = Syz = O, Orz = Uyz - 0, Oy = X((b) E,
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and for the remaining displacement and strain components, the following 2D
relationships hold:

ou ou 1 /ou ou
2.1 = =2 =-|=2 =
(2.19) =Gy T fwT (&r + ay)

and the stress components are defined by generalised Hooke’s law (2.6):
(2.20) oij = 2fi€i; + Aebiy, 1,5 =1,2,  e=¢;+¢y

Finally, the second invariant of the strain deviator can be calculated in this
case as:

1
(2.21) Jo(e) = 5, + 3 (€2 + &) — exey) -

3. Problem formulation and its asymptotic analysis

A bi-material domain with a thin elasto-plastic layer between two different
elastic materials with Lamé’s parameters p4, Ay, respectively, is considered in
the following (Fig. 1). It is assumed that conditions (2.11) and, hence, (2.12)
are satisfied. The intermediate layer is thin and soft so that simultaneously the
conditions

(3.1) 2h = 2ehg,  fi=¢€fg, A= €A,
hold where € < 1 is a small parameter, and
(3.2) ho ~ L, RO ~ fit, Xo ~ A,

while L is a characteristic size of the body.

elasto-plastic interphase  y

FiG. 1. Bimaterial structure under consideration.
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The stresses satisfy within the interface, together with Egs. (2.19) and (2.20),
the equilibrium conditions:

_.80’”?1 + 8_02

oz ay ) O (9y = 0, Yy € (—Gho, Eho) .

Along two bimaterial interfaces where y = Zehg holds, the perfect transmission
conditions are assumed to be true:

(3.4) ug(z, Leho) = uf (z, £ehy), uy (. tehg) = uf(x, +ehp),

(3.5) Ozy(x, Tehg) = O';:ty(CL‘, +ehy), oy(a. tehy) = a;:(x, +ehyg).

Let us intentionally assume that the solution of the problem is known. Then,
the nonlinear material parameters /i and A depend. generally speaking, on the
geometrical position of the point under consideration:

(3.6) i=i(zy), A=Az,y)

via the known strain €;5(, y) and, hence, the second invariant Ja(g) = Jo(z, )
of the strain deviator. During the evaluation of the transmission conditions it
was assumed that functions (3.6) are known. As a result, this interphase can be
analysed as an inhomogeneous elastic interphase [16] and only in the last stage,
an additional equation to determine the second invariant of the strain deviator
will be extracted.

Here, the standard asymptotic procedure, explained in detail in [19], is ap-
plied. Namely, rescaling one of the space variables by the formula:

(3.7) y=¢€€,  §€(~ho ho),

and seeking for the solution of the problem in the form of asymptotic series:
w . w .

(38) u(x,y) = Z€JUj(.’E,f), U(:E,f) = ZfJO'j(IE,f),
=0 j=0

one should collect the terms of the same order with respect to the small parameter
€ in Eqs. (2.20), (2.21) and (3.3) and in the transmission conditions (3.4)-(3.5)
and then to solve step by step the corresponding boundary value problems. Thus,
repeating the line of reasoning applied in [16], one can find the solution for the
zero-order approximation within the interface in the following form as [16):

(3.9) ay(2,y) = 05,(2,0),  oy(z,y) = 0 (,0),
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Yy
war9) = 45 (2,0) + 0(2,0) [ =2,
(3.10) -
Yy
w(5:9) =5 (2,0) + 0y(2,0) [ s—

A Az, t) + 2i(z, )

whereas the imperfect transmission conditions along the soft inhomogeneous
elastic interface with known distribution of the elastic parameters A(x,y) and

fa(x,y) are:
(3.11) lozyly=0 = 0. loyly=0 =0,

h

h
dt dt
(3.12)  [ugly=0 = azy(a:)—{ izt [uyly=0 = Jy(x)l Mz, t) + 20(z, 1)

Here, the symbol [f]r denotes as usually the jump of the function f across the
surface I'. Let us underline here that integrals in (3.12) are estimated like O(1)
in view of the assumptions (3.1). On the other hand, one can conclude from
(3.10) and (2.19) that:

(3.13) £y, €xy = O™ ). e = O(1), e—0.

Taking these estimates into account, one can rewrite Eq. (2.21) in the following
manner:

; 1
(3.14) Ja(g) = (Eiy + 5512/) (14 O(e)), e—0,
and utilising the generalised Hooke’s law (2.20) and neglecting the terms of
higher orders, one can deduce that the second invariant of the strain deviator
can be calculated in the following manner:
2 2
o o
3.15 Joe) = 22 4 —L —.

(3.15) 0= 3 3(2f1+ A)?
This equation should be considered as an additional relationship to the trans-
mission conditions (3.11), (3.12) connecting stress and strain quantities within
the thin soft elasto-plastic layer.

Note that the stress components o, and o4, do not depend on the variable
y (compare it with (3.9)). As a result, it is natural to assume that

(3.16) Ja(&) = Jo(x) and ¢ = ¢(x).
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Taking this fact into account, one can simplify the transmission conditions (3.12)
to obtain:

2h 2h

(3.17) [uz) e Ozy(), [uy) o)+ 2@ oy(z).

The system of five equations (3.11), (3.17) and (3.15) establish the sought for
transmission conditions for the soft elasto-plastic interface. Three of the equa-
tions in the transmission conditions are nonlinear (cf. (3.17) and (3.15)). For-
tunately, it is possible to reduce the number of equations. Namely, to stay only
with two nonlinear transmission conditions, equations (3.17) are substituted into
equation (3.15) to obtain:

[uz]? | [uy)®
3.18 J = = .
(3.18) 2(6) = T2 + 1op2
As a result, one can receive two nonlinear equations

(319)  SA@UAE)) ] = 0wy 5 (ot 20)(0(2(8) - [wy] = 0,

which constitute together with (3.11) the complete set of the transmission con-
ditions. Here, J3(¢) is calculated only basing on the displacement jumps [u;| and
[uy] in (3.18). It should be noted that the transmission conditions (3.19) can be
written in abstract form as:

(3.20) Fr([ug], [uy]) = oay, Fy([us), [uy]) = oy,

where functions F3(t,-) and Fy(-,t) monotonically increase with respect to the
variable ¢ (cf. equations (2.4), (2.7) and (3.18)). Moreover, one can conclude from
(2.7) and (3.1) that the left-hand sides of equations (3.20) are of the order O(1).

Equations (3.11) and (3.20) substitute the complete system of nonlinear
transmission conditions for the soft elasto-plastic interface in the bimaterial
structure under consideration. Another peculiarity of the conditions obtained
in comparison with the imperfect elastic interface [16] is that the displacement
jumps in different directions are not separated for the soft elasto-plastic inter-
face, but both participate in each transmission condition from (3.20). However,
in a particular case, when only the elastic regime appears in the elasto-plastic
layer, conditions (3.20) degenerate to the imperfect elastic interface [16]:

(3.21) 0N [uz) = Oy,

NO)+20(0) (o,
2%h yi— Yy

Another possibility to separate the displacement jumps from each other, even
under plastic regime, can appear for some special loading conditions (e.g. simple
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tensile or simple shear load), where one of the nonlinear transmission conditions
(3.20) is satisfied identically whereas the other contains at the left-hand side the
remaining non-zero jump (generally speaking in a nonlinear form).

REMARK 4. Transmission conditions (3.11) and (3.20) are valid, generally
speaking, at some distance at the interaction of the interface with the external
boundary. The range of the distance cannot be exactly predicted but can be
estimated numerically, what will be done in the next section.

4. Numerical example and discussions

First of all, it is important to note that only terms of zero order have been
evaluated by means of the asymptotic procedure. However, next terms can be
found also in the same manner. Moreover, the boundary value problems which
appear for the next terms will be linear, in contradiction to the zero-order term.
However, as it has been demonstrated earlier in the case of the purely elastic
interface [16], it will be shown for the elasto-plastic case that it is also sufficient
to restrict the analysis to the zero-order approximation.

To show this, a numerical simulation of a bimaterial interface problem has
been done. The geometry of the sample and respective loading conditions are
shown in Fig. 2. The elastic materials which are glued by the interphase are
assumed to be identical with Young's moduli £y = 72700 MPa and Poisson’s
ratio v+ = 0.34. The geometrical dimensions are L = 10 mm, H = 1 mm and
2h = 0.01 mm. As a result, the value of ¢ = 2h/H = 0.01 can be considered
as the small parameter. The elasto-plastic interface is represented by a linear
hardening model whose parameters are described in Fig. 3. Namely, the elastic
parameters: £ = 813 MPa, v = 0.3. In the plastic region which is appearing after
reaching the Huber-Mises stress of value k¢ o = 50 MPa, the constant hardening
modulus £, = 81.3 MPa is prescribed. Let us underline that all commercial

1
]l ] W

zone of edge effect E,v,

< y “\line A S
line B ». E, v,k ou)
/1 Tinterphase *
T . E,v
v,
L

I -

F1G. 2. Geometry and loading conditions of the bimaterial sample with a thin soft
elasto-plastic interface for FEM simulation.
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FEM codes are based on the more general theory of plastic flow [5, 9, 12]. As
it has been mentioned above, the results with these models, i.e. deformation
and plastic flow theories, coincide only under monotonic or nearly monotonic
loading. Because of this, only monotonic external loading is applied (Dirichlet’s
boundary condition at the top of the sample).

The function ¢ from the deformation theory equations (2.1)-(2.4) was calcu-
lated by the given interphase properties of the flow theory [5, 12| and is shown
in Fig 3b). Furthermore, it has been assumed that the material is obeying the
Huber-Mises yield criterion.

a)

70 -
« Jplane strain
o
=
g 1 /<(70q = Ooq (€eq)
& 50 ]
] 40 -
%’ -
E 30 E=813MPa
'§ 20 A v=03
ERT N k.o = 50 MPa
K 1 E, =813 MPa
0 ——TT—7T7
000 005 010 015 020 025 030
Total equivalent strain ¢, -
b) 0.004
0.003
_"N i
[a%
= 0.002
é‘ -y
8
3 0.001 E =813 MPa
£ y v=03
0.000 k.o =50 MPa
7 E,=81.3MPa
-0.001 T T r T r T .
0.00 0.02 0.04 0.06 0.08

1(€)

FiG. 3. Evaluation of the function ¢ from plastic flow parameters.

A simple tensile monotonic loading (ug(z, H/2) = 0, uy(z, H/2) = v,) is ap-
plied at the top of the bimaterial sample in the range from 0% to 0.6% of v,/H in
100 incremental steps. Due to the symmetry of the loading and the sample geome-
try, two of the transmission conditions, i.e. [o4y] = 0 and Fp([ug], [uy]) = 04y,
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are satisfied identically because of [u;] = 0 and o5y = 0 holds in this case. The
two remaining conditions [uy] = 0 and Fy(0, [uy]) = o, have to be verified. The
first one is the same as in the case of the pure elastic imperfect interface [16] and
is of less interest in comparison with the second one.

In Fig. 4a), a comparison of the left and right-hand side of the condition
Fy(0, [uy]) = oy is presented. The traction is represented by the solid line while
the values of the left-hand side function are depicted by circles in several points.
The visible plastic zone appears in the middle of the interface after 30 incre-
ments. The accuracy of the evaluated transmission condition is in the same
range as it has been checked for the pure elastic interface [17]. Moreover, the
region where the transmission conditions are valid does not change practically,
regardless whether the interphase material is in the elastic or plastic region. To
illustrate this fact, a magnification of the same functions as in Fig. 4a) is pre-
sented in Fig. 4b). The 1% accuracy criterion has been chosen to indicate the
validity regions. It is also important to note that the plastic zones which appear
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F1G. 4. Validity of the transmission conditions for thin elasto-plastic interface.
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near the free edges are very small and therefore invisible in the scale of Fig. 4a).
The range of the plastic zone coincides more or less with the range of singularity
dominated domains for the elastic interface [17] and starts to be smaller during
the plastic deformation.

Additionally to the presented analysis, investigations of possible singularity
of the solution for a bimaterial body with a soft imperfect elasto-plastic interface
model near the interface crack tip or near free edges should be done. Respective
results concerning the pure elastic imperfect interface have been obtained in
[1, 14, 15).

One of the crucial points to underline is the fact that the stress-strain state of
the 2D bimaterial structure under consideration is not purely monotonic due to
definition in [12]. Thus, it would be natural to expect a more significant difference
between the numerically and analytically predicted interfacial conditions than
it was clarified for the pure elastic interface in [16]. However, as it follows from
the results presented in Fig. 4, the accuracy of the transmission conditions for
the elasto-plastic interface is much better than one could expect due to the
limitations of the deformation theory.

Another important fact which should be mentioned here concerns Remark 2.
It may happen for very large plastic deformations that the generalised Poisson’s
ratio will approach its maximal value of 0.5 and, as a result, the transmission
conditions evaluated here should be used with a reservation, as it follows from the
results obtained in (18] for the soft, weakly compressible elastic interface. Nev-
ertheless, if Poisson’s ratio of the elasto-plastic interphase is sufficiently smaller
than 0.5 in the elastic regime, then the transmission conditions evaluated in the
paper can be applied in the range of usual plastic deformations. For example,
the maximum value of the generalised Poisson’s ratio takes in the numerical
simulation the value of 7 = 0.42 after 100 increments, while 7(0) = 0.3.
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Abstract

A thin soft elasto-plastic interphase between two different media is under consideration. The intermediate layer is assumed to be of
infinitesimal thickness and is modelled by non-linear transmission conditions which incorporate the elasto-plastic material behaviour of
the layer. FEM analysis of a bimaterial structure with such an imperfect elasto-plastic interface shows the efficiency of the approach and

illustrates some restrictions of its application.
© 2006 Elsevier Ltd. All rights reserved.

Keywords: Elastic—plastic layer; Imperfect interface; Non-classical transmission conditions

1. Introduction

Thin interphases appearing in dissimilar bodies such as
composite structures with adhesively bonded materials
may significantly influence the whole spectrum of struc-
tural parameters: strength, dynamics, fracture, lifetime,
and so on. Recently, significant efforts have been done to
clarify various phenomena connected with the so-called
elastic imperfect interface approach. It consists of replacing
the real thin interphase between two different materials by
an infinitesimal layer of zero thickness. This layer is then
modelled by special transmission conditions which incor-
porate information about geometrical and mechanical
properties of the thin interphase. At first, such proposed
conditions were based on phenomenological approaches
and have been sufficiently exploited (see [1-3] among others
and the respective references). Later, various imperfect
transmission conditions have been evaluated by asymptotic
methods in [4-7] for different types of interfaces and mate-
rials. The accurate asymptotic behaviour of solutions of
interface crack problems at the imperfect interface formu-

* Corresponding author. Tel.: +48 17 8651660; fax: +48 17 8543116.
E-mail address: miszuris@prz.rzeszow.pl (G. Mishuris).

0263-8223/§ - see front matter © 2006 Elsevier Ltd. All rights reserved.
doi:10.1016/j.compstruct.2006.05.017

lation has been investigated in [8-10] where it has been
shown that the behaviour may be very complicated and
essentially depending on the material and geometrical
properties of the imperfect interfaces. Possible error esti-
mates and ranges of the edge zone effects connected with
utilisation of the imperfect models have been discussed in
detail in [11,12] by FEM analysis. This short review shows
that elastic imperfect interfaces have been intensively inves-
tigated in different directions.

However, thin elasto-plastic interfaces play even a more
important role in real applications [13] and results which
are obtained up to now are absolutely insufficient and are
mainly concentrated on problems of thin plastic interpha-
ses between stiff adherends [14,15].

In the present work, imperfect transmission conditions
for a soft elasto-plastic interphase are discussed. The inter-
face is described by Hencky’s deformation theory model.
Only the main terms, i.e. zero-order expressions, of the
asymptotic analysis are considered. Respective transmis-
sion conditions are naturally non-linear. Higher-order
expressions can be later much easier constructed contin-
uing the asymptotic procedure from the respective linear
boundary problems. Numerical examples based on an
accurate finite element simulations show the high efficiency
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of the approach, in spite of the fact that the deformation
theory has its own strong restrictions.

2. Description of the thin elasto-plastic interface

Let us first consider only the elasto-plastic interphase
and assume that its material behaviour can be modelled
by Hencky’s law [15,16]:

1 —2v 1
= D, — ~\p,, 1
o=t D= (044) 0

where v is Poisson’s ratio, u and E are the shear and
Young’s modulae of the material in the elastic regime
(E=2u(1+v)). As usual, the first invariants of the strain
and stress tensors are denoted by ¢ and o. Furthermore,
D, and D, are deviators of strain and stress, respectively,
while J>(g) and J»(e) are their second invariants.

Function ¢ isknown in Eq. (1) and it is assumed to depend
only on the second invariant of the strain deviator [15]:

¢ = d(J2(2)), (2)

where ¢(t) = 0 holds within the elastic region (7 < Ja(&cr),
& Initial yield strain tensor). It is well known that such
a model appropriately describes only monotonic or nearly
monotonic loading and, in fact, constitutes one of the non-
linear elasticity models [15,17]. It can be rewritten in the
elasticity-like form after transformations as

O'[j = 2[18,’] + 185[]3 lﬂj = 1’2’ 3’ (3)

where the generalised Lamé’s coefficients are introduced by
the following formulae:

-1
ﬁ(qﬁ):%(ml;v) :

~ 1 1+ - 3y E
A(‘f)):?(‘ﬂ E) (1—2v+¢1—2v)'

Let us note that these coefficients simply coincide in the
pure elastic regime (¢ =0) with the respective elastic
Lamé’s parameters:

E ~ vE
1 0 = = ) O = ) = _—_
MO =w=3013 “O=4=G5a=
Using notations (4), the generalised Poisson’s ratio can be
defined in the following manner:

M) _ 3Vt ¢E
2(4(¢) + i(§))  3+29E

In [18], new transmission conditions which describe the
behaviour of a flat thin elasto-plastic interphase of constant
thickness situated between two different materials have
been evaluated by means of asymptotic techniques for a
plane strain state. The only restriction to the model was
that the adherends should be essentially stiffer than the
interphase itself in all regimes (elastic or plastic ones).
Assuming that the interface middle line is y = 0, the condi-
tions take the following non-linear form [18]:

(4)

(5)

v(¢) = (6)

[ax}’] =0, [ay] =0, (7)
Fo([wl, [w)]) = 0y, F(wl,[w]) =0, )

where [f] = fix,0+) — f{x,0—) is the jump of the function f
along the infinitesimal interface y = 0. The functions on the
left-hand sides of Eq. (8) are defined from the generalised
Lamé’s coefficients (20) given in Appendix, where the main
ideas of the asymptotic analysis to evaluate the transmis-
sion conditions (7) and (8) are presented.

It is important to note that the transmission conditions
(7) and (8) correspond to the main (zero-order) term of the
asymptotic procedure. Next terms are also possible to con-
struct. Moreover, they have to be found from solutions of
the consequent /inear boundary value problems for the cor-
responding degree of approximation. However, whereas it
is also easy to prove the estimate of such an approach
which is terminating the procedure at any step in the case
of linear elasticity, the elasto-plastic interphase is a much
more complicated problem due to the material non-linear-
ity. In such cases, FEM analysis of modelling problems is
the most effective way to check applicability of the trans-
mission conditions and to discover its restrictions. This
approach is utilised in the following.

3. Numerical examples
3.1. Metallic joints

The geometry of the sample and loading conditions are
shown in Fig. 1. The real elasto-plastic behaviour of the
aluminium alloy AlICuMgl [19] is assigned to the metallic
adherends which are adhesively bonded by the interface
and it is assumed that both are identical with Young’s
modulae E,. = 72,700 MPa and Poisson’s ratio v, = 0.34.
The geometrical dimensions are L =10mm, A =1 mm
and 24 =0.0l mm. As a result, the value of e=2h/
H =0.01 can be considered as the small parameter.

Two different elasto-plastic interphases are considered: a
linear hardening material model and an elastic-perfectly
plastic material. Corresponding material parameters are
described in Fig. 2(a). Namely, elastic parameters of the
interphases are the same: E =813 MPa, v=0.3. In the

W ]
zone of edge effect _ E,v, =
y ‘r‘lmc A Nl
line B » E, v, k-1 ::E
/ interphase %X T
E,v
g
L

Fig. 1. Schematic representation of the problem, evaluation paths and
boundary conditions of the investigated structure.
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Fig. 2. (a) Material parameters of the interphase for metallic joints due to plastic flow theory and (b) function ¢ of Hencky’s law.

plastic region which is appearing after reaching the Huber—
Mises stress of value ko = 50 MPa, the constant hardening
modulus £, = 81.3 MPa is prescribed for the hardening
material and k¢ = ko for the ideal plasticity case. Let us
underline that all commercial FEM codes are based on
the more general theory of plastic flow [15-17]. As it has
been mentioned above, the results with these models (plas-
tic flow and deformation theories) coincide only under
monotonic or nearly monotonic loading. Because of this,
only monotonic external loading is applied in the modelling
approach (Dirichlet boundary condition at the top of the
sample).

The respective functions ¢ involved in the deformation
theory Egs. (1) and (2) have been calculated by the given
interphase properties of the flow theory [15,16] and its
graphs are shown in Fig. 2(b). Furthermore, it was
assumed in both cases that the elasto-plastic material is
obeying the Huber—Mises yield criterion.

The commercial finite element code MSC.Marc is used
for the simulation of the mechanical behaviour of the mod-

elling thin intermediate elasto-plastic layer between two
elastic adherends. The two-dimensional FE-mesh is built
up of four-node, isoparametric elements with bilinear inter-
polation functions. In order to cover all possible edge
effects [12] (cf. Fig. 1, left and right hand side of the inter-
phase), a strong mesh refinement is performed in these
regions, Fig. 3. The density of the elements along the inter-
phase is shown in Fig. 4. Furthermore, the mesh is gener-
ated in such a way that it is possible to evaluate the
displacements and stresses along the axes of geometrical
symmetry, and along all the interfaces between the inter-
phase elasto-plastic material and the adherends as well as
along the lines parallel and perpendicular to the interfaces
and lying within the interphase layer.

3.1.1. Elasto-plastic interphase with hardening law

3.1.1.1. Simple tensile loading. A simple monotonic tensile
loading (u.(x, H/2) = 0,u,(x,H/2) =v,) is applied to the
top of the bimaterial sample in the range from 0% to
0.6% of vy/H in 100 incremental steps.

oo = e i = e i e e e e i e e e e =
e |

'

Fig. 3. Two-dimensional FE-mesh: strong mesh refinement in the investigated area.
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Fig. 4. Mesh density with reference to Fig. 1.

First of all, distributions of all displacements and stress
components in direction perpendicular to the interface
through the whole sample in its middle part (along the line
A cf. Fig. 1) are shown in Figs. 5 and 6. Results presented
in Figs. 5(a) and 6(a) correspond to the elastic regime while
Figs. 5(b) and 6(b) are valid for the plastic deformation. As
one can see, stresses within the interface are constant
whereas the displacements are linear functions which com-
pletely coincides with the theoretical predictions. As a
result, equivalent Huber—Mises stress and the equivalent
plastic strain do not change within the interphase in direc-
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1.0+ line A
g
S 084
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= 1v=03
g 04 ——
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§ 02+ Y
o J
5 0.0 O
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0277
-0.4 -0.2 0.0 0.2 0.4
a y-coordinate, mm

tion perpendicular to its boundaries (for a fixed x). Its var-
iation along the middle line of the elasto-plastic interphase
is presented for several increments in Fig. 7.

Due to the symmetry of the loading and the sample
geometry, two of the transmission conditions, i.e.
[0]=0 and F([uy],[u,]) = oy, are satisfied identically
because of [u,]=0 and o,,=0 holds in this case. The
remaining two conditions [#,] = 0 and F,(0,[u,]) = o, have
to be verified. The first one is the same as in the case of the
pure elastic imperfect interface [11], has the same order of
accuracy as discovered in [11] and, because of this, it is of
less interest in comparison with the second one.

In Fig. 8(a), comparisons of the left and right hand sides
of the condition F,(0,[u,]) = o, are presented. The traction
is drawn by the solid line while the values of the left-hand
side function in (8), is depicted by circles in several points.
The visible plastic zone appears in the middle of the inter-
face at the 30th increment with a deformation ratio of v,/
H=0.18%. The accuracy of the evaluated transmission
condition (8), is in the same range as it has been checked
for the pure elastic interface [11]. Moreover, the region
where the transmission conditions are valid does not
change practically regardless the interphase material is in
the elastic or plastic region, Fig. 8(b). To highlight this fact,
a magnification of the same functions as in Fig. §(a) is
presented in Fig. 8(b). A 1% accuracy criterion has been
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V=771 I
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Fig. 5. Displacement distribution along line A (cf. Fig. 1) for an elastic and plastic stage inside the hardening interphase (simple tensile loading; aluminium

adherends).
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Fig. 6. Stress distribution along line A (cf. Fig. 1) for an elastic and plastic stage inside the hardening interphase (simple tensile loading; aluminium

adherends).
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chosen to indicate the validity regions for the transmission
conditions. The regions are of 2-3 thickness of the inter-
phase. It is also important to note that the plastic zones
appearing near the free edges are very small and are invis-
ible in the scale of Fig. §(a). The zone where the transmis-
sion conditions are not longer valid coincides more or less
with the range of the singularity dominated domains for
the elastic interface [12] and becomes to be smaller with
accumulated plastic deformation.

3.1.1.2. Combined loading. Now we apply to the top of the
specimen a combined loading in such a way that in y-direc-
tion the same displacement is prescribed whereas in the per-
pendicular direction there is also a non-zero monotonic
loading: (u\(x, H/2) = vy,u,(x,H/2) =v,) in the same
ranges from 0% to 0.6% for v,/H and v,/H, respectively,
in 100 incremental steps.

In this case, the same particularities can be observed
with respect to distributions of the displacements and stres-
ses inside the thin interphase and outside the interphase
within the surrounding materials. In Fig. 9, the results con-
cerning Huber—Mises stress and equivalent plastic strain
are presented in the same way as it has been done in
Fig. 7. A slightly different behaviour can be observed which

shows now the influence of the additional secondary load-
ing in x-direction.

A more interesting question is about the validity of the
transmission conditions. Now both of them are not trivial.
Moreover, a second non-zero jump [u,] is presented in the
functions F, F, appearing in the transmission conditions
(17). Tt is interesting to note that the validity region is at
least not smaller than in the case of the simple tensile load-
ing. To manifest this, we present Fig. 10 where the same
values are depicted as in Fig. 8.

The same accuracy for the evaluated transmission con-
ditions arises for the second transmission condition dealing
with the jump [u,]. We skip this picture only because it can-
not be compared with the case of the simple tensile loading.

One of the crucial points to underline is the fact that the
stress-strain state of the 2D bimaterial structure under con-
sideration is not pure monotonic due to the definition in
[15]. Thus, it would be natural to expect a more essential
difference between the numerical model based on the plas-
tic flow theory and the analytically predicted interfacial
conditions based on the deformation theory in comparison
with the accuracy observed for the pure elastic interface.
However, as it follows from the results presented in Figs.
8 and 10, the accuracy of the transmission conditions is
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much better than one can even expect due to the limitation
of the deformation theory. However, this is only true for a
hardening interphase law. It will be shown in the following
that the results are slightly worse in the case of perfect plas-
ticity. It should be noted here that the adherends remained
in the pure elastic regime at any stage of the applied
deformation.

3.1.2. Elasto-plastic interphase with perfect plasticity

3.1.2.1. Simple tensile loading. In this case, also the same
monotonic tensile loading (u,(x, H/2) = 0,u,(x, H/2) = v,)
has been applied to the top of the bimaterial sample in
range from 0% to 0.4% of v,/H in 200 incremental steps.
Because of the perfect plasticity law in the plastic region,
one should increase the accuracy of the calculations.

The results concerning the behaviour of the solution
within the interphase in direction perpendicular to the glue
line (y = 0) are similar to those shown in Figs. 5 and 6 at
point x = 0 and hold without any conceptual change (con-
stant stresses and linear displacements at each increment).
Distributions of the equivalent Huber—Mises stress and
the equivalent plastic strain along the middle line of the
elasto-plastic interphase (y =0) are presented for several
increments in Fig. 11. One can clearly observe the ideal
plasticity plateau starting from a total deformation of v,/
H =0.14%.

| o validity of transmission condition
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o, and Fy ([ug],[uy])
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497 4.98

of the validity of the transmission condition for an elasto-plastic interphase (hardening interphase case; combined loading;

The verification of the transmission condition (8), in this
case is presented in Fig. 12. Still very good agreement with
the theoretical results can be observed over the whole range
of the interface.

3.1.2.2. Combined loading. Let us now consider a combined
loading. In this case it will be a monotonically increasing
external loading (u.(x, H/2) = vy, u,(x, H/2) = v,) applied
to the top of the bimaterial sample in the same range from
0% to 0.4% for v,/H and v,/H, respectively, in 200 incre-
mental steps.

We also restrict ourselves to show the same results as for
the simple tensile loading case. Respective equivalent
Huber—Mises stress and equivalent plastic strain curves are
presented in Fig. 13, whereas the verification of the validity
of the transmission conditions can be done based in Fig. 14.

A very important difference in comparison with the
hardening law can be observed in the case of the ideal plas-
ticity law. Namely, the region where the transmission con-
ditions are valid is smaller than that in the case of the
hardening plastic law (compare Figs. 8(b) and 10(b)) and
this region essentially depends on the level of plastic defor-
mation (compare Figs. 12(b) and 14(b)). To clarify the dif-
ference, some estimates of the zone ends have been
presented in Table 1 for the hardening and the ideal plastic-
ity law for different levels of the deformation. However, in
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both cases application of combined loading provided
slightly better results for the applicability of the transmis-
sion conditions. This is an important result. First of all
because a combined external loading is more frequent in
technical applications. On the other hand, it shows that
the worse accuracy appears in simple loading cases which
researchers usually apply for testing.

3.2. Fibre reinforced plastics

All previous simulations and evaluations were performed
for adhesively bonded metallic joints made of aluminium

adherends. In the following sections, typical material
parameter sets taken from the context of fibre-reinforced
plastics (FRP) were assigned to the same finite element
model as described in Section 3.1. For simplicity, the fibres
were assumed to reveal an isotropic, homogeneous and lin-
ear-elastic behaviour and possible effects resulting from cur-
vatures were neglected in order to compare the results with
findings obtained in the previous section. For both types of
fibres, i.e. glass and carbon, the interphase consists of the
same elasto-plastic epoxy matrix with elastic constants
E =3000 MPa and v = 0.4 [20]. The plastic parameters of
the interphase, i.e. initial yield stress kyo =45 MPa and
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Table 1
Validity of the transmission condition in terms of §/(24) for metallic joints
Deformation 0.12% 0.22% 0.6%
Hardening
Simple tensile 1.81 1.93 3.45
Combined loading 1.82 1.90 3.01
Ideal 0.1% 0.16% 0.4%
Simple tensile 1.78 82.35 118.6
Combined loading 1.82 1.80 94.2

linear hardening modulus E, = 2200 MPa were taken from
Ref. [21], cf. graphical representation given in Fig. 15a).

The respective function ¢ involved in the deformation
theory Eqgs. (1) and (2) has been calculated by the given
interphase properties of the flow theory [15,16] and its
graph is shown in Fig. 15(b). Furthermore, it was assumed
that the elasto-plastic matrix is obeying the Huber—Mises
yield criterion.

3.2.1. Glass fibres and epoxy matrix

In the following section, a typical material set for glass
fibres, i.e. EL = 66,500 MPa and v, = 0.23 [22], is consid-
ered. The same external monotonic tensile loading as in
the case of metallic joints (v,/H = 0.006) is applied in 100
incremental steps. Fig. 16 shows the distribution of equiv-

200
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a Total equivalent strain, €eq-

alent Huber—Mises stress and strain along the middle line
(y = 0) of the elasto-plastic interphase for different levels
of deformation. Comparing this figure with the results
obtained in the previous section (cf. Fig. 7), one can
observe that the behaviour is quite different. Namely, a
practical constant behaviour for both quantities is obtained
over a wide range of the interphase for the fibre-matrix
structure. In addition to that, small maxima occur now
close to the free surface while the material set for the metal-
lic structure reveals its maximum in the middle where
x =y =0 holds.

Comparing the results for the equivalent plastic strains
(i.e. Figs. 16(b) and 7(b)), one can see that the level for
the plastic strain is much lower in the case of the fibre—
matrix material set which is a direct result of the chosen
material parameters. Despite the lower initial yield stress,
first plastic deformation occurs a few increments later in
the case of the fibre-matrix material because the equivalent
yield stress is much more homogeneously distributed over
the length of the interphase.

The validity of the transmission condition is shown in
Fig. 17. As can be seen, a perfect fulfilment is again
obtained over the range presented in Fig. 17(a). Looking
at the magnification shown in Fig. 17(b), one can observe
that the range of the validity decreases from x = 4.9 (cf.
Fig. 8(b)) to x ~ 4.5 compared to the metallic configura-
tion. This is an important information in order to decide
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Fig. 15. (a) Material parameters of the interphase for fibre reinforced plastics due to plastic flow theory and (b) function ¢ of Hencky’s law.
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where interphase or special singularity elements should be
introduced in an improved numerical approach. Neverthe-
less, a range of x =~ 4.5 for the validity is from a practical
point of view still quite good.

3.2.2. Carbon fibres and epoxy matrix

A typical set for carbon fibres (E. = 227,000 MPa and
vy = 0.3 [20]) is assigned for the adherends in the following
section. In order to obtain comparable values for the equiv-

alent plastic strain, the maximum evaluated external dis-
placement is limited to v,/H = 0.0018. As in the previous
example of a fibre reinforced plastic, a homogeneously dis-
tribution of the equivalent stress and strain is obtained, cf.
Fig. 18.

Looking at Fig. 19 which illustrates the validity of the
transmission condition, one can see that a validity region
(x = 4.95) is significantly larger than in the case of the
glass—fibre material set and now comparable to the values
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Table 2
Validity of the transmission condition in terms of 6/(2h) for fibre
reinforced plastics (hardening)

Material Deformation 0.12% 0.30% 0.6%

Glass—glass Simple tensile 51.74 56.42 56.55
Deformation 0.06% 0.084% 0.18%

Carbon-carbon Simple tensile 4.32 4.57 5.13

obtained for the metallic joint. It should be noted here that
the same range compared to the metallic joints could be
obtained even though the material properties for the inter-
phase and the level of the external loading are quite
different.

The normalised values for the validity of the transmis-
sion conditions for fibre-matrix material sets are summa-
rised in Table 2. As can be seen, the much stiffer carbon
fibre reveals results comparable to the metallic joint set
and significantly better than the glass fibre. Reminding that
the interphase material was the same for both fibre-matrix
cases, one can see that the stiffness ratio between interphase
and joint materials directly influences the validity of the
transmission conditions.

4. Discussions and conclusion

The very good accuracy of the presented approach will
enable the introduction of novel finite elements for thin
interphases. Later, we concentrate on the weak side of
the method and its respective restrictions.

It follows from Egs. (6) and (11) that v < ¥(¢) < 1/2
and ¥(¢) — 1/2 for ¢ — co. Hence, it may happen for
large plastic deformations that the generalised Poisson’s
ratio will approaches its maximal value of 0.5 and, as a
result, the transmission conditions evaluated here should
be used with a reservation as it follows from the results
obtained in [23] for the weakly compressible soft elastic
interface. Nevertheless, if Poisson’s ratio of the elasto-plas-
tic interphase is sufficiently smaller than 0.5 in the elastic
regime, then in the range of usual plastic deformations,
the transmission conditions which were evaluated in the
paper can be applied.

For example, the maximum value of the generalised
Poisson’s coefficient (6) in the numerical simulation for
the 100th increment with a deformation ratio of v,/
H = 0.6% (hardening case) takes the value v = 0.47, while
¥(0) = 0.3. Additionally, values of the generalised Pois-
son’s ratio are presented in Fig. 20 for four different adhe-
sive materials. Three of them (hardening law and ideal
plasticity law for the interphase in metallic joints and fibre
reinforced plastics) were used earlier in this paper and the
last one is from Ref. [24] where properties of real adhesive
have been discussed. One can conclude from Fig. 20 that
the ideal plasticity case is the most dangerous in the dis-
cussed sense. Also it provides the worst results with respect
to the validity of the transmission conditions (16) and (17),
cf. Tables 1 and 2.

The transmission conditions (16) and (17) which were
evaluated in the paper are non-linear and the jumps of
the displacements in different directions with respect to
the bimaterial interface cannot, generally speaking, be sep-
arated from each other. This only occurs in the elastic
regime. Another possibility where the jumps are separated,
even under plastic regime, appears in the case of some spe-
cial loadings (simple tension or simple shear), where one of
the non-linear transmission conditions (17) is satisfied iden-
tically whereas the other contains on the left-hand side the
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Fig. 20. Generalised Poisson’s ratio (cf. Eq. (6)) for different adhesive
materials.



213

G. Mishuris, A. Ochsner | Composite Structures 80 (2007) 361-372 371

only remaining non-zero jump (generally speaking in the
non-linear form).

Additionally, to the presented analysis, investigations of
the possible singularity of the solution for a bimaterial
body with the soft imperfect elasto-plastic interface model
near the interface crack tip or near free edge should be
done. Respective results concerning pure elastic imperfect
interface have been obtained in [8-10].
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Appendix

Here, only the main ideas in a comprehensive form how
to evaluate transmission conditions (16) and (17) are pre-
sented. For more details and proof, a prospective reader
is requested to the paper [18].

Let us consider a bi-material domain with a thin elasto-
plastic layer between two different elastic materials (Fig. 1)
which can be described by Hencky’s law (1) in such a way
that the conditions

2h =2¢chy, QL= e€fly, 1= €, (9)

are simultaneously satisfied with some small parameter
ek 1, and

ho~L, fig~ ., o~ (10)

while L is a characteristic size of the body and u, A, are
the respective generalised Lamé’s coefficients of the adher-
ends which are much higher under the same level of defor-
mation than the corresponding values of the elasto-plastic
interface. Let us note that it is sufficient to use instead of f
and Z in estimate (9) its value in the elastic region because

1+v
3y

and Poisson’s ratio of the interphase is rather different
from zero. Moreover, one can show [18] that the function
fi(¢) monotonically decreases, while functions v(¢) and
A(¢) monotonically increase.

Within the interface together with Eq. (1), the equilib-
rium equations should be satisfied:

A< AP) <

0<i(¢) <u Z (1)

0o, 0oy 00y, % B
ox oy | ax  dy
Along the two bimaterial interfaces between the layer and the

adherends (y = +ehy), the perfect transmission conditions
are assumed to be along the interphase boundaries true:

0, ye (—6/’!0,6/’10). (12)

u,(x, tehy) = ul (x, ehy), u,(x,tehy) = uf(x, +ehy),
(13)
o,(x, £ehg) = ayi(x, +ehy).
(14)

Oyy(x, £ehy) = axiy(x, +ehy),

Following for [25], we search for a possible solution in a
form of asymptotic series:

00 00

u(x,y) =Y _dui(x,8), o(x, ) =) doyx, ). (15)

j=0 j=0

To construct the asymptotic procedure [25], it is necessary
to collect in all equations and in the transmission condi-
tions the terms of the same order with respect to the small
parameter ¢ and then to solve step by step the correspond-
ing boundary value problems. Thus, repeating the line of
the reasoning as in [11] one can find the solution for the
zero-order approximation within the interface in the fol-
lowing form [18]:

[ny]y:o =0, [6)]y:() =0, (16)
Fulad, fo]) = o, Fi(fud, o)) = o, (17)
Fe= 55 BOU(6) - ],

Fy = 5 (O 20 (9(6) - ). (18)

It was proven in [18] that all values within the interphase
do not depend on the variable y in the main terms, such
that Jo(g) = Ja(x), $(Ja(&)) = ¢(x), and

2
Jo(e) = b ol (19)
160> 1217

Note here that functions F\(¢,-) and F,(-,¢) in (17) mono-
tonically increase with respect to the variable ¢.

Egs. (16) and (17) substitute the complete system of non-
linear transmission conditions for the soft elasto-plastic
interface in a bimaterial structure.

2

+
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Abstract. Imperfect transmission conditions modelling a thin intermediate layer between two
bonded materials in a dissimilar strip are derived in this paper. The interphase material is
assumed to be heat-resistant and situated in a thin rectangular domain between the main
materials. Different types of the interphase are investigated: homogeneous and inhomogeneous;
linear and nonlinear ones.

Introduction

Thin interphases are commonly used in modern technology [1]. An inhomogeneous structure
obtained in such a way may exhibit a wider variety of thermal and mechanical properties.
On the other hand, numerical modelling of composites with thin interphases is still a difficult
numerical task as it requires high inhomogeneity of the constructed mesh which can lead to a
loss of accuracy and even numerical instability. That explains the high interest to model the
interphases as a zero thickness object described by specific so-called transmission conditions
along the infinitesimal interface. In the case of constant heat conductivity, the problem has been
completely solved in [2], where the general approach was developed independent of the range
of the heat conductivity of the thin (in comparison with the matched adherents) interphase.
However, such interphases often manifest clear nonlinear or homogeneous properties connected
with the production and exploitation processes [1]. In this paper, we derived the transmission
conditions in the case of inhomogeneous or nonlinear heat conductivity. We concentrated our
interest to a a heat-resistant interphase which is the most important case from an application
point of view. We will apply the same approach as it has been done in [3, 4, 5] in the case of
structural elastic and elasto-plastic interphases that allows us to overcome problems connected
with possible nonlinearities. We can refer here also to other methods to deal with the thin inter-
phases [6, 7] as well as to construct effective homogenesation properties of composite materials

8, 9, 10].

Problem formulation

Let us consider a bimaterial structure matched together with a thin intermediate layer of the
constant thickness 2h (Fig. 1). The heat transfer equations are satisfied in the surrounding
materials:

oT'
Vk::I:VT;i: + Q:I: = p:l:czlza_tia (IE, y) € Qﬂ:v (1)
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where Ty and ()1 are temperature and the thermal sources within the respective materials
occupied domains 4 while k4, ¢y and p4 are their thermal conductivities, heat capacities and
densities, respectively. We are not going to solve the problem but to derive the transmission
conditions modelling the heat-resistant layer. As a result, we do not need to accurately describe
here properties of the surrounding materials.

Within the thin interphase, a similar equation is given by

VEVT +Q = pcaa—:tr, (z,y) € Q, (2)

where T" and () are temperature and the thermal sources within the interphase and
k=kxyt,T), c=clx,ytT), p=plwytT),

which can depend on the space and time variables as well as the unknown temperature. As
usual, the heat flux inside the interphase is defined by Fourier’s law:

q=—kVT.

Transmission conditions along the material interfaces T'y = {(z,y),x € (—a,a),y = *h}
between the domains Q and €, respectively, (see Fig.1) should be written in form:

[n ’ q]|r+ =0, [T]|F+ =0, (3)

m-qflr. =0, [Tl =0. (4)
Here, as usual, [f]|r = f(z,a+) — f(x,a—) is the jump of the function f across the interface
I'={(z,y),z € (—a,a),y = a}.

ylk
Q+
2h p+ac+ak+ Q
I
[ »
b ,k
p,c I p.,c .k
Q

Fig. 1: Bimaterial structure with a thin interphase

ASSuMPTION 1. We consider throughout this paper that the domain

Q={(z,y):ye(=hh), zc(-aa)}

representing the intermediate interphase is thin enough in comparison with characteristic sizes
of both surrounding adherends Q. (see Fig. 1), thus h = eh (e << 1).

ASSUMPTION 2. The next crucial point for this analysis is that the interphase itself is heat-
resistant so that the thermal conductivity of the intermediate layer is much smaller than those
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of the bonded materials. In other words the ratios k/k are of the same order of € as it occurred
for the interphase thickness: .
k = ek. (5)

AssuMPTION 3. Finally, we want to allow that the thermal conductivity of the interface k,
sources () and the multiplicator pc are smooth but maybe fast changing functions with respect
to the interphase thickness:

];:l;:(x7y/€’t7T’)a Q:Q(xay/€7t)’ chp<x,y/€,t,T) 'C(x7y/€7t’T)v (6)

After appropriate rescalling of the space variables as shown in Fig. 2, we use the standard
asymptotic approach applied in case of thin domains following for procedure from [11]:

y=¢e (v,y) €

Then, equation (2) can be finally rewritten in an equivalent form as:
£€(=hh), we(-aa) (7)
where

and it follows from assumption (6) that:

I;’:];'(Zf,f,t,j:’), Q:Q(xagat)a ﬁc:pC(ajaéataT)-

y rescaling ¢

2a

4
i 4

2a

Fig. 2: Thin interphase domain before and after rescalling.

We will seek for the solution within the interphase layer in the form of an asymptotic expansion:
T(x, &t €) = Ty(x, &) + €Ty (x,6,t) + ETy (2, E,1) + ... (8)

and the heat flux is calculated from the asymptotic expansion:

—|T = —k(x, &,t,T)[0, 1]3T0 +0(e), €—0. (9

Q(z,&,t.€) = —h(z,6,t.7) [e5 - J€

Then from Eq. (7) we receive a consequence of the boundary value problems within the inter-

phase:

%]E(%,f,t,j}])%fo = 07 5 € (_B7 ﬁ)’ (10)
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0 - 0 -
¢ o’
It is important to note an important difference between Eqgs. (10) and (11). Namely, the first
one is nonlinear while Eqgs. (11) which correspond to the next terms of the asymptotic expansion
are linear with respect to functions TJ Note here that the derivative with time appears only in
the right hand side of Egs. (11).

Transmission conditions (3) and (4) can be rewritten in new notations in the forms:

k(z,6,t,To)==T; = Ry(x,&,t, T, ... Tj—1), j=1,2,.... €€ (=h,h). (11)

Ty(xz,eh,t) = Ty(x, h,7) + €Ty (x, h,t) + €Tz, b t) + ..., (12)
T (x,—eh,t) = Ty(x, —h,t) + €Ty (x, —h, t) + €Ty (x, —h, t) + ..., (13)
q;j(x,eﬁ,t) —k(z, h,t, T(z, h,t)) <885T0( h,t )—I-E%Tl( h,t) + ) , (14)

q, (v, —eh,t) = —k(z, —h,t,T(z, —h,t)) <§£ o(z, ht)—i—e(%Tl( ﬁt)—l—...). (15)

Expanding the left-hand sides of (12)-(15) and right-hand sides of (14)-(15) in Taylor series,
we can receive the consequence of the transmission conditions. We restrict ourself in this paper

only to find the main asymptotic term, i.e. Tp, of the expansion (8). As a result, we can stay in
Egs. (12)-(15) only with the terms:

T, (z,0,t) = Ty(x, B,t), T (z,0,t) = To(x,—h,t), z € (—a,a), (16)
k(x, h,t, Ty(z, B,t))%fo(x, ht) = —q;(as,O,t), x € (—a,a), (17)
%(I,—E,t,f0($7—B,t))%fg([ﬁ,—ﬁ7t) = _Qy_(x707t)7 LS (—(I,CL). (18)

Integrating equation (10), we obtain:

Fa. 6.t To) S To(a,6.8) = Ol t), €€ (R, (19)

73
Comparing (17) and (18) with (19), we immediately receive the first transmission condition:
gy (,0,t) = ¢, (x,0,t), x € (—a,a), (20)
and can additionally conclude that:
C(z,t) = —q;t(m,O,t), x € (—a,a). (21)

Now, it remains to consider the ordinary differential equation (19) with respect to the variable
¢, while z and ¢ are the only parameters. Unfortunately, it is not possible to solve Eq. (19) in a
closed form for an arbitrary function k. However, we are able to do this for some specific classes
of this function.

SPECIAL CASE 1. Let l%(:c,é“,t,To) = I%l(x,i,t), so that the heat conductivity does not
depend on the temperature distribution. Then, Eq. (19) can be integrated to receive:

3
To(x,€,1) = Oz, 1) / ﬁ + Dy(x,t), €€ (=hh). (22)
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Constant D; and the second transmission conditions can be found from the two conditions
given in Egs. (16):
Dy(z,t) =T (x,0,t),

and
Ty (x,0,t) = T_(x,0,t) = —Aq(z, t)q;t(x, 0,1), (23)
where _
/ d / d
Ai(z,1) :/~—z :/—y. (24)
| ki (z, 2,t) A ki(z,y,t)
—h -

SPECIAL CASE 2. Let k(x,&,t,Ty) = ko(x,t,Tpy), so that in this case the heat conductivity
depends on time and temperature distribution but does not directly depend on the position of
the point in the direction perpendicular to the interface. Then, again Eq. (19) can be integrated
in other manner:

To (x7£7t)

ko(z,t, 2)dz = C(z,t)€ + Dy(x,t), €€ (=h,h). (25)
T_(z,0,t)
Constant Dy and the second transmission condition can be found from the two conditions in

(16):
Dy(z,t) = q;t(:v, 0,t)h,

and
AQ(xv t? T+(:E’ O’ t)) - AQ(xa ta T (IL‘, Oa t)) = _q;:@, 07 t)a (26)
where . .
Ao(z,t, z) = %/kg(l’,t, 2)dz = o7 ko(x,t, z)dz. (27)

In the case when k(z, &, t,Ty) = k. (z,t) both of the conditions (23) and (26) coincide to each
other and:

2h 1
D) ﬁk* (x,t)z.

GENARAL CASE. Let us assume that we have solved somehow the ordinary differential equa-
tion (19) and ®(Tp, z,q) = E is the integral of the equation. Then the respective transmission
conditions for the heat-resistant interface takes in this case the following general form:

(T (), 2, q(x)) = ©(T(2),2,q(x)) = 0, q(z) = q+(x) = ¢-(2). (28)

Al(‘rat>: AQ(ZE,t,Z):

Concluding remarks

We can summarise the derivation procedure for two special cases in the table 1, where functions
Ay and A, are defined in (24) and (27), respectively.

As it follows from this analysis, the imperfect transmission transmission conditions can
be successfully derived in the case of thin heat-resistant interphases for a wider class of their
thermal properties. Moreover, having in hand any specific formulae for the heat conductivity
one can try to derive respective nonlinear transmission conditions with taking into account
relations (28).



92 Diffusion in Solids and Liquids

On the other hand, it is highly important to know what is the range of the material param-
eters where the condition can be applied, and when it is necessary to take into account some
specific effect (for example high time gradient). This investigation will be done in the next
paper presented in this issue by very accurate FEM simulations. The further question is how
to implement the transmission conditions in a standard commercial code in order to decrease
(and in a drastic way) the number of elements involved in the simulations without any loss of
the calculation accuracy.

k=k(z,y,t) ayo=0 A7 (z,8)[T]—0 = —n"q|y
k=k@t,T) -dly=0=0 [As(z,t,T)]|lr=rs(won = —1-dly=o

Table 1: Transmission conditions for thin heat-resistant interface. Functions A; and A, are
defined in (24) and (27), respectively.
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Abstract. Imperfect transmission conditions modelling a thin 2D intermediate layer between
two bonded materials in a dissimilar strip have been derived and analytically analysed in
another paper of this issue. In this paper, the validity of these transmission conditions for heat
conduction problems has been investigated due to the finite element method (FEM) for various
cases: namely, steady-state under uniform boundary conditions with constant or functional-
dependent, i.e. temperature or spatial coordinate, conductivities of the interphase, non-uniform
boundary conditions and finally for transient analysis. It is shown that the accuracy of the
transmission conditions is excellent over the whole range of the interphase and that typical
edge effects known from structural problems are not observable under the chosen problem
parameters.

Introduction

Thin films, e.g. adhesive layers, are nowadays an important part of technological processes
and components [1]. As an example, adhesive layers allow for joining materials with essen-
tially different properties at very high quality. The application of such hybrid structures in
safety-relevant applications requires a highly accurate and efficient prediction of their physi-
cal behaviour, which necessitates the development of robust simulation models and techniques
based on, and verified by, appropriate experimental procedures.

P.. . k. 1
-~
VA N
P.C —> k(y,T) T
X
p..c, k. 1
L

Fig. 1: Schematic representation of the problem.

In the scope of this paper, imperfect transmission conditions applied to a thin heat-resistant
layer in a hybrid model structure (cf. Fig. 1) are going to be numerically investigated in order
to verify the applicability and accuracy of the analytical relations for conduction problems.

All rights reserved. No part of contents of this paper may be reproduced or transmitted in any form or by any means without the
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Finite Element Modelling

The commercial finite element code MSC.Marc is used for the simulation of the thermal be-
haviour of the modelling thin intermediate layer between two adherends. Both adherends reveal
constant material properties for all simulations. It should be noted here that the theoreti-
cal derivation of the transmission conditions has been performed under the precondition that
the conductivity of the thin interphase is much smaller (i.e. a heat-resistant layer) than the
conductivities of the adherends. In the simulations, the intermediate layer has the thickness
2h = H/100 = 0.01 while the length of all components is equal to L = 10. The two-dimensional
FE-mesh is built up of four-node, isoparametric elements with bilinear interpolation functions.
In order to cover possible edge effects [2], a strong mesh refinement is performed near the free
surface of the interphase. Further details of the finite element mesh can be found in [3]. In ad-
dition, the mesh is generated in such a way that it is possible to evaluate the temperatures and
fluxes along the axes of geometrical symmetry, and along both interfaces (i.e. the line or surface
where the thin layer and the adherends are in contact) as well as along lines perpendicular to
the interfaces.

Results

All numerical simulations have been performed for the same aluminium adherends which reveal
a constant conductivity of kL = 237 % at 300 K. Furthermore, it has been assumed that the
temperature dependence of all adherend material parameters can be neglected.

Uniform boundary conditions, steady-state. The following examples refer to a steady-
state solution where constant Dirichlet boundary conditions have been prescribed at the top
(y = +H/2) and bottom (y = —H/2) surface (cf. Fig. 2). The thin interphase has been assumed
to be made of an epoxy resin which exhibits different formulations of its thermal conductivity:
namely, a constant conductivity (Eq. (1)), an interphase which linearly depends on the temper-
ature (Eq. (2)) and finally a conductivity quadratically depending on the vertical coordinate

(Eq. (3)):

ko= 02 W n
BT) = L(-1154043-7) Wo=c 4+ T, 2
k(y) = 0-2+800-y2 %203_9_04.3/2' (3)

These three different formulations of the interphase thermal conductivity yield to quite
different expressions for the transmission conditions which relate the temperature jump [T] =
T(x,y =+h) —T(x,y = —h) to the heat flux ¢ = ¢, in the middle of the layer:

q-2h

k =const. : [T]= — (4)
k=kT) : [T]- <01 + %2 (TTY+T) | =F(TY) - F(T")=—q-2h, (5)
k=k(y) : [T]:—\/%arctan g z—i -q:—é-q-Qh. (6)

Details of the derivation are given in another paper of the authors in this issue or in the case
of constant material parameters in [4, 5].
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It should be noted here that due to the absence of any heat sources or sinks, thermal equi-
librium demands that the heat flux g, is constant over the thickness. Figure 2 illustrates the
shape of the temperature profile perpendicular to the interphase for x = 0. The temperature
is linearly changing in the adherends since the thermal conductivity has been assumed to be
constant in space and temperature. Furthermore, the curves for different formulations of the
conductivity practically coincide inside the adherends in the presented scale of the figure. Look-
ing at the magnification of the temperature distribution (cf. Fig. 2, right) inside the interphase,
different behaviour of the temperature can be observed: constant conductivity yields to a linear
temperature profile while y- and T-dependency results in non-linear temperature distributions.

Temperature T, K

Fig. 2: Temperature distribution perpendicular to the interphase (along the line x
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3: Verification of the transmission condition validity along the interphase for different

Figure 3 presents the verification of the transmission conditions (cf. Egs. (1)-(3)) along the
whole interphase by independently extracting the right and left hand side of the equations from
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FEM evaluation. As can be seen in different magnifications, the coincidence is perfect up to
the free boundary of the specimens. It must be noted here that in the case of a structural-
mechanical problem, different edge effects [2, 3| are occurring near the free boundary due to
the contraction of the material. This cannot be observed for these heat conduction problems
under the chosen properties and parameters.

Non-uniform boundary conditions, steady-state. The following steady-state example
refers to the case where quadratically changing Dirichlet boundary conditions have been as-
signed at the top (T'(x,y = 0.5) = 360 + 3 - 2%) and the bottom (T'(x,y = 0.5) = 290 + 3 - 2%)
of the specimen. The interphase reveals the temperature-dependency given in Eq. (2).

450 380
Jk =Kk(T) y=0 k = Kk(T)
425 A i interphase
i 360 —
w400 ] v
= _ & .
> 375 ] > 340
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Fig. 4: Temperature distribution along (middle line, y = 0) and perpendicular (along the line
x = 0) to the interphase for non-uniform boundary conditions ('parabolic’ case).

The altering temperature distribution at the boundaries is reflected in the shape of the
temperature profile along the interphase (cf. Fig. 4, left) while the characteristic perpendicular
to the interphase (cf. Fig. 4, right) is the same as in the previous example.
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Fig. 5: Verification of the transmission condition validity along the interphase for non-uniform
boundary conditions ('parabolic’ case).
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Looking at the graphical comparison of the left and right hand sides of the corresponding
transmission condition (cf. Fig. 7), one can see that both terms yield to a curvilinear distribu-
tion. Nevertheless, the same excellent coincidence (rel. error 10™* %) is obtained up to the end,
i.e. the free surface, of the specimen.

In the final example of this section (so-called ’edge’ case), an additional horizontal temperature
gradient is superimposed to the vertical gradient by applying Dirichlet conditions to the upper
right and lower left specimen corners:

T(x=-50,-05<y<—0205)=T(-50<z<—468,y=-05)=20K, (7
T(x=5.0,0205<y<05)=T(4.68 <z <50,y=05) =360 K. (8)
380 k = k(T) y=0 328 Txk=km
. interphase
360 327 H
N N
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g g
= =
2 2 325 4
£ 320 £
g g 324
£ 300 =
BCs: 323 BCs:
280 - T(upper right corner) = 360 K T(right corner) = 360 K
T(lower left corner) = 290 K Tx=0 T(left corner) = 290 K
T I T l T I T I T 322 T l T I T l T I T
-5 3 -1 1 3 5 -0.5 -0.3 -0.1 0.1 0.3 0.5
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Fig. 6: Temperature distribution along (middle line, y = 0) and perpendicular (along the line
x = 0) to the interphase for non-uniform boundary conditions (‘edge’ case).

Looking at the temperature distribution along the interphase (cf. Fig. 6, left), an approx-
imately linear increasing distribution can be observed while the shape perpendicular to the
interphase reveals the same characteristics as in the previous examples.
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Fig. 7: Verification of the transmission condition validity along the interphase for non-uniform
boundary conditions (‘edge’ case).
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Figure 7 indicates that the superimposed horizontal heat flux does not change the validity
of the transmission conditions in the vertical direction and the same good coincidence as in the
previous examples is obtained.

Transient analysis. The following section addresses a transient analysis where the definition
of the interphase conductivity and the boundary conditions (‘edge’ case) are taken as in the
previous example. The boundary temperatures were linearly changed from the uniform initial
temperature of 325 K, which was assigned to all nodes of the model, to the values of the previous
example: 360 K at the upper right corner and 290 K at the lower left corner. For this transient

analysis, the mass density g and specific heat at constant pressure ¢, need to be defined for all
components:

oa1 = 26988 1% and ¢, a1 = 8982 T, (9)
opp = 1200 2% and ¢, g, = 790 (10)

For simplicity, the temperature dependency of the density and the specific heat has been
neglected in Egs. (9)-(10).
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Fig. 8: Temperature distribution along (middle line, y = 0) and perpendicular (along the line
x = 0) to the interphase for a transient analysis.

The temperature distribution along the interphase is shown in Fig. 8 (left) for a certain point
of time in the transient regime and for the steady-state condition. As can be seen, a significant
temperature change is included in the transient simulation. The high non-uniformity of the
temperature perpendicular to the interphase (especially in the region close to the free surface)
is shown in Fig. 8 (right).

Looking at the verification of the transmission condition shown in Fig. 9, one can see that
the condition is fulfilled in general along the whole range of the interphase (left figure) while
a slight deviation can be observed very near the free surface (rel. error 0.5 %), i.e. the region
where higher gradients prevail during time steps of the transient regime.
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Fig. 9: Verification of the transmission condition validity along the interphase for a transient
analysis.

Discussion and Outlook

Finite element analysis could proof the applicability of transmission conditions for heat-resistant
inhomogeneous interphases. Extremely good accuracy could be observed over the whole range
of the interphase for different formulations of the interphase conductivity and different bound-
ary conditions. Only in the case of transient problems with high gradients per time step [6],
an extension of the applied conditions seems to be appropriate. The implementation of the
investigated transmission conditions into a commercial finite element code as special interphase
elements is reserved for our future research work.
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Abstract

A thin heat-conducting adhesive layer is considered in a two-dimensional approach. The material of the
adhesive layer exhibits an arbitrary non-homogeneous thermal conductivity which is a function of the spa-
tial coordinate perpendicular to the interface. Based on the weighted residual method, a new finite element
formulation for a four-node, rectangular element is derived which is able to easily incorporate high conduc-
tivity gradients in the new thermal conductivity matrix. The approach is not based on any assumptions of
the temperature distribution (e.g. linear or cubic) but considers that the heat flux must be constant in the
case that no heat sources or sinks are present. A numerical example of a simple bonded joint illustrates the
implementation into the commercial finite element code MSC.Marc due to special user subroutines. The
numerical results are compared to a classical approach based on standard elements and the differences are
discussed.
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1. Introduction

Thin adhesives are nowadays an important part of technological processes and com-
ponents [1]. They allow joining of materials with considerably different properties
with very high quality compared to other joining technologies. The application
of such bonded structures in safety-relevant applications, e.g. structural parts for
the aerospace and automotive industries, requires a highly accurate prediction of
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their mechanical behaviour, which necessitates the development of robust simu-
lation models and techniques based on, and verified by, appropriate experimental
procedures.

The theoretical treatment of thin interphases can be classified into three different
major approaches where considerable work has been related to their mechanical
properties. The first of these, and the most popular, assumes that the bi-material
interface is of zero thickness, which allows the so-called “perfect contact condi-
tion” to be satisfied along the whole length of the interface [2, 3]. The perfect
contact conditions occur in the case of heat conduction problems where the tem-
peratures and fluxes remain continuous across the whole interface. However, such
an approach makes it impossible to take into account any internal properties of
the real interphase between the bonded materials. On the other hand, properties
of adhesive materials may differ fundamentally from those of the bonded mate-
rials. For this reason, a second approach has been implemented in the theoretical
modelling of bonded dissimilar materials. It consists in the assumption that there
is an additional thin layer of finite thickness with its own mechanical properties
(see review in [4]). However, in modern technology very thin adhesive layers (thin
films) are used [5]. This fact makes it difficult to perform numerical calculations
using FEM, since the need to build a complicated mesh of fundamentally different-
sized elements can lead to a loss in accuracy, unstable calculations and even loss
of convergence [6]. In such a case, the third approach may be very successful: the
so-called imperfect interface approach. This consists in using some special non-
classical transmission conditions which take into account the intrinsic properties
of the thin interphase, but the conditions are still applicable along the imaginary
zero-thickness interface (bondline). Such transmission conditions can be obtained
from some phenomenological assumptions or from an accurate asymptotic analysis
taking into account various features of the intermediate layer. Imperfect transmis-
sion conditions applied to a thin heat-resistant layer in a hybrid model structure
were analytically derived in [7] and their applicability and accuracy were verified
in [8].

At the early stage of numerical finite element simulation of adhesive layers, con-
ventional finite elements were used [9, 10] to investigate the stresses within an
adhesive layer. Later on, so-called interface elements [11] were developed which
were applied to various fields of civil engineering such as soil-reinforcement in-
teraction [12], rock joints [13] and discrete cracking in concrete mechanics [14].
Furthermore, interface elements are suited to model delamination and failure in
composite structures [15] when combined with damage models.

The objective of this study was to develop a new finite element formulation for
thin heat-conducting interphases which includes material non-homogeneities. In the
scope of this paper, a spatial dependency perpendicular to the bondline is consid-
ered.
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2. Basics of Heat Transfer
Heat conduction analysis is based on Fourier’s law (conduction rate equation)

q=-kVT, (1)
where q = {g, qy}T is the heat flux vector and VT = {%—f %}T is the temper-
ature gradient vector which is generated by the Nabla operator V. The continuum
conductivity matrix k reduces for isotropic materials to k = k - I, where & is the
isotropic heat conductivity (scalar) and I = [11] is the identity matrix.

To solve a heat conduction problem means to determine the temperature field
T =T (x,y,t) in its spatial and temporal dependencies. Then the heat flux field
can be determined according to Fourier’s law, equation (1). The unknown temper-
ature field is obtained by solving the so-called heat diffusion equation. This partial
differential equation can be obtained by applying the first law of thermodynamics
to a differential control volume which gives after some transformations the continu-
ity equation of thermodynamics. Combining the continuity equation with Fourier’s
law and introducing a third law describing the relationship between temperature

and energy gives the heat diffusion equation in its general form as [16, 17]

oT T .
oc—- =V (kVT) +1, (2)
where o is the mass density, ¢ the specific heat, ¢ the time and 7 the energy rate per
unit volume, i.e. a heat source or sink with the unit of thermal energy per time and
volume.

3. Derivation of the New Finite Element Formulation

Let us consider in the following the special case of the two-dimensional, steady-
state (07 /dt = 0) heat diffusion equation where no sources or sinks are present
(n =0) and the material reveals isotropic properties (k — k). The basic idea of the
weighted residual method [18] consists in multiplying a partial differential equation
with a weighting function w and to require that the entire integral vanishes over the
whole domain. For the exact solution, this expression is independent of the weight-
ing function and is always fulfilled. Replacing the exact solution by an approximate
solution produces a ‘residual’ function R such that R = VT(kVT) # 0. This error
will be distributed according to the scalar weighting function and the integral over
the entire domain 2 will be forced to be zero in a certain average sense, i.e.,

/ w(VI(&VT))dQ = / wRdQ2 =0. (3)
Q Q
The application of the Green—Gauss theorem [19], i.e.

/wVT(kVT)dQ:f w(kVT)TndF—/(VTw)(kVT)dQ:O, (4)
Q r Q
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or
/ (VIw)(kVT)dQ = f wkVT) 'ndr, (5)
Q r

gives the formulation which forms the basis for the derivation of the principal finite
element equation. The basic idea of the finite element method is to approximate the
unknown temperature 7" not in the entire domain €2 as given in equation (5) but in
a sub-domain €2, i.e. a so-called finite element. Let us consider in the following
the two-dimensional sub-domain Q¢ = Qc(—a < x < a,—h <y < h) as shown
in Fig. 1.

For such a case, the left-hand side of equation (5) can be written as

h a - h a 3 . %
/h % wk)Vdedy-tz/h/ k[ 5% 8—1;] ar | dxdy -2, (6)
—hJ—a —hJ—a 3y

where ¢ is the constant thickness of the element. The constant thickness assumption
in equation (6) is a common approach for two-dimensional elements. Rescaling the
problem, i.e.

=)

y=e-x, h=e-h, (7)
dy=¢-dy, k=¢-k, (8)
which stretches the vertical dimension in the same range as the horizontal dimen-

sion (cf. Fig. 2) gives (the second equation of (8) implies that a heat resistant
interface, i.e. that the thermal conductivity of the intermediate layer is much smaller

q3
4 = ! T
S 2
4 yf_,
2h q4 X 92
1 2182
T4 71 ! r
1
q1
2a

Figure 1. Two-dimensional rectangular sub-domain (—a < x < a, —h < y < h) with boundaries I';
and boundary heat fluxes g;.

y X

4 3 . 4 3
Rescaling o N

1 2 1 2

2|

2a 2a

-—

Figure 2. Thin interphase domain before and after rescaling of the vertical dimension.
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than those of the bonded materials, is considered)

h ra T
= dax
/;~/_aek[%—f 2—1;]|:13_T:|dxsdx-t

e dy

_dw aT 10w 19T
// k—w—dxedx t+// ——w——dxedxt )

0(£?2)

™ =

Neglecting the terms of higher orders in equation (9), the left-hand side of equa-
tion (5) can be approximated as

h pa

- ~dw dT
] el éa—”’][mr}dxsdx r~f [ E axaxr. a0
—hJ—a —a

g oy

The temperature distribution within an element is obtained by multiplying the nodal
temperature vector T with the vector of the so-called shape functions N, which are
prescribed in terms of independent variables (such as the spatial coordinates). The
weighting function w is approximated within an element in a similar manner as the
temperature, i.e. w = §TT N, where 8T, is a vector of arbitrary temperatures. Since
the nodal temperatures are not a function of the spatial coordinates, the derivatives
in equation (10) can be expressed as derivatives of the shape functions and the
approximation of equation (5) is obtained as

//~8Ne(8Ne) dxdy - 1. (11)

Equation (11) forms the basis for the derivation of the 4 x 4 elemental heat conduc-
tivity matrix Ke of the special element.

Let us assume in the following that the conductivity of the interphase element is
only a function of the y-coordinate and is evaluated at the centre of the element in
the x-direction. In addition, let us assume that no sources are present in the inter-
phase. It follows immediately from Fourier’s law that the heat flux in y-direction,
or after rescaling in y -direction, can be expressed as:

oT . c(x)

0 kGO’
where c is an arbitrary function, independent of x. Rearrangement and integration
of equation (12) gives:

(12)

X d -
T(x. 01 =c1<x>+cz<x>/ﬁfi)=c1<x)+cz(x)(w<x> i), (3)

where the following identity is satisfied: 9y (x)/dx = 1/k(x). The integration can
be performed in the same manner from the opposite side, i.e. from /4 until x. Com-
bination of both solutions is also a solution and the consideration that the ¢; are
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arbitrary functions gives: ~ _

T(x, x) = ca) (¥ 0 — ¥ () + c2) (¥ () — ¥ (=h)). (14)
Assuming that linear elements are applied to the surrounding adherends, a linear
x-dependency of the functions ¢; and c4 is assumed in the following:

T(x,x)=(x+ B[00 —v®)+yx+)W) —v(=h). (15

The unknown constants ¢, . .., § can be determined by evaluating the nodal temper-
atures 711, ..., Ty (cf. Fig. 2, right):
Ti =—Ay((=D)aa+B) fori=1,2, (16)
Ti=—Ay((=D)*"'ya+8) fori=3,4, (17)
where Ay = ¥ (h) — ¥ (—h). From equations (16) and (17), the four unknowns
o, ..., 6 can be determined and equation (15) can be finally written as:
Tx,x)= -yl —-—-1)T
(x, x) = 2Aw(l/f()() v ( ))( ) 1

+m(1ﬁ(){)—¢(h))< >

+m(‘/’(){)—lﬁ( h))( )T3

+m(1/f(x)—lﬁ( h))(——l)Tm (18)

from which the nodal shape functions in the (x, x)-coordinate system can be identi-
fied as the multipliers of the nodal temperatures 71, ..., T4. The derivatives of these
shape functions can easily be obtained by considering dv(x)/dx = 1/k(x) and

Y (—h)/dx =0 as:
N _ DG 1 =14,
— = —, 1if .
dx 2AY (;_C+1) k(x) i=2,3.
Introducing the derivatives of the shape functions into equation (11) enables the

calculation of the elemental conductivity matrix. In the following, the components
of the elemental conductivity matrix will be determined:

fl 1 5 1 1
ki = k——( — 1)?>—adt dyt
. /:_E/:_l TayaE— D ads dy
dx

—1)2 h 1
LE-D adst/ e _ a /1(5—1)%15

(19)

o kii:

1 4Ay? _ik(r) 4AY
———
Ay
TA4AY 3 3 Ay
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o kin:

ki =

1
2 e A1 at
4A1//_/1($ Dds = 4A 3 3 Ay’ @h

In a similar way, the other 14 components can be obtained and the 4 x 4 elemental
conductivity matrix can be composed as
2 1 -1 =2
at 1 2 =2 -1

*T3AY -1 -2 2 1| @2)
-2 -1 1 2
where
Aw=/h;dx=/h;1dy=/h Loy, o
—h k(x) —n (1/&)k(y) & nk(y)

It should be noted here that this element formulation has been derived under the
assumptions that all internal angles of the element are equal to 90° and that the thin
interphase is parallel to the x-axis. A transformation to more general cases is easy
to obtain.

In the special case k = const, the evaluation of Ay gives

Ay = /— ——/hd—% (24)
nk k)T T e

and the constant stiffness matrix of a thin element with k = const is immediately
obtained as:
2 1 -1 =2
atk | 1 2 -2 -1
Ke=n|-1 2 2 1| 23)
-2 -1 1 2
For the evaluation of the right-hand side of equation (5), the boundary integral can
be split in the following four contributions:
[O ] dx (26)
11
y=h

h a
aT — aT
/ wk— [ 1i|dy+/ wk—
—h dx x=—a 0 —a ay
|: :|dx. 227
—1
y=—nh

+/h Pl [l]d +/a Pl
wk— y w
—h a'x XxX=a 0 —da 8y

Using the same rescaling relationships as in equations (7) and (8) gives

[ (Gl [o)+ 5[] )
_hw ¢ x|, LO x|,__,L0 Y
a /9T 0 oT 0
G2 RS - N e S
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where the integral in equation (28) is of order O (£2) in comparison with the integral
in equation (29). Thus, we can approximate the boundary integral as

a /3T aT
f w(kVT)TndFe%/ wk(— [0]+— [ 0 Ddx, (30)
. —a N\ i L1] 0 ax i L1

where the same approximation for the weighting function, i.e. w = §TI N, can be
introduced. The vector of arbitrary temperatures, i.e. STeT, can be canceled with
the corresponding expression on the left-hand side of equation (5) (after replacing
the weighting function w with its approximation, i.e. w = §T{N,) and the integral
needs to be evaluated for each node along the element boundary. For node 1, the
shape function Nj is equal to one and identically zero for all other nodes. In ad-
dition, all other shape functions are identically zero for node 1 (cf. equation (18)).
The nodal evaluation of the left-hand side of equation (30) at node 1 can be written

as
~aT
(—k—> , (31)
aX node 1

which is equal to the heat flux entering the element at node 1. Similar results can be
obtained for all other nodes and the right-hand side of equation (5) can be finally
written after rescaling as

/ Ne(kVT)Tndl. ~ , (32)
Ie

(+k %)node 4

which can be assembled with classical elements into the global load vector.

4. Implementation Into a Commercial Code and Example Calculation
4.1. General Model Description

The commercial finite element code Marc® (MSC Software Corporation, Santa
Ana, CA, USA) is used for the simulation of the thermal behaviour of thin in-
termediate layers between two adherends. One of the real strengths of this code (as
in the case of the commercial code ABAQUYS) is the user subroutine feature which
allows the user to substitute his own subroutines for those existing in the code. This
feature provides the user with a wide latitude for solving non-standard problems
such as the implementation of new finite element formulations. When such a rou-
tine is linked to the main code, the user is simply replacing the one which exists
in the comercial program using appropriate control setup. The new finite element
formulation is implemented as a new heat conductivity matrix by means of a special
user subroutine (the so-called uselem routine in Marc®) written in Fortran.
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Figure 3. Schematic representation of a thin interphase acting as an adhesive layer.

Both adherends reveal constant material properties for all simulations. In the
simulations, the intermediate layer has the thickness 24 = H/100 = 0.01 while
the length of all components is equal to L = 10, cf. Fig. 3. We do not assign any
specific units since the finite element computation requires only a consistent set
of units. One may assign meter, m to lengths, degree Kelvin, K for temperatures
and % for conductivities. The two-dimensional FE-mesh is built up of four-
node, isoparametric elements (so-called quad4) with bilinear interpolation func-
tions.

Details of the different meshes and the principal idea of the new finite element
formulation are shown in Fig. 4. For the classical approach shown in Fig. 4a, several
elements (in the present example, eight quad4 elements are used to model the thin
layer) over the thickness of the interphase are required to approximate strong ma-
terial gradients in y-direction. The new finite element formulation should be able
to consider such gradients based on its formulation and only a single element is
required to reproduce the behaviour of the interphase, cf. Fig. 4b.

As a direct result, the number of elements assigned to the adhesive layer is sig-
nificantly reduced. In our example, the adhesive elements are reduced by a factor
of eight. For a good finite element mesh, the so-called aspect ratio must be con-
sidered. This ratio is the quotient between the longest and the shortest element
dimensions and is by definition greater than or equal to one. If the aspect ratio
is 1, the element is considered to be ideal with respect to this error estimate. Ac-
ceptable ranges for the aspect ratio are element and problem dependent, but a rule of
thumb is that the ratio should be smaller than 3 for linear elements. As can be seen
from Fig. 4b, the approach based on the new finite element formulation allows the
application of much larger adherend elements. Thus, not only the number of adhe-
sive elements but also the adherend elements are significantly reduced. It should be
noted here that for the new approach, the number of transition elements (cf. Fig. 4a),
i.e. the elements with internal angles < 90°, can be dramatically reduced or even
avoided as in our example. This can be interesting for some load cases where these
elements exhibit due to their distorted geometry only poor results (so-called skew-
ness).
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Figure 4. Mesh details: (a) classical approach with eight quad4 elements over the thickness of the
interphase; (b) a single new finite element approximating the interphase.

4.2. Results

All numerical simulations have been performed for the same aluminium adherends
which exhibit a constant conductivity of 237. Furthermore, it has been assumed that
the temperature dependence of all adherend material parameters can be neglected
and that no heat sources or sinks are located within the adherends. The different
model formulations of the adhesive material are shown in Fig. 5. As can be seen,
different parabolic shapes (k(y) = ¢1 + ¢2 - y?) have been assigned to the adhe-
sive layer in order to simulate changing material properties within the interphase.
It should be noted here that within the present study, only a dependency on the
vertical, i.e. y, direction has been considered. A constant Dirichlet (temperature)
boundary condition of 290 has been prescribed at the bottom (y = —H /2) surface
(cf. Fig. 3). At the opposite side, a constant Neumann (flux) condition of +600 has
been assigned to each node.

The temperature distribution over the thickness is shown in Fig. 6. As can be
seen from this graphical representation, the formulation of the adhesive layer signif-
icantly influences the temperature at the upper boundary (y = +H/2): The higher
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Figure 5. Different parabolic formulations of the adhesive heat conductivity k in dependence of the
vertical spatial coordinate y. Parameter ¢y determines the curvature of the parabolic shape (c; is
constant for all curves).

the coefficient c;, the lower is the boundary value of the temperature. The same
tendency can be observed for the temperature distribution within the interphase, cf.

Fig. 6b.
As a direct result of the applied boundary conditions, i.e. prescribed tempera-
ture and flux, the temperature at the lower interface (y = —0.005) is practically

constant for all adhesive conductivity formulations. Only at the upper interface
(y = +0.005), the influence of the non-linear adhesive behaviour on the temper-
ature is observable. Thus, a reasonable way to investigate the performance of the
new finite element implementation under the chosen boundary conditions is to eval-
uate the temperature 7 = T (y = 0.005). This temperature for both finite element
approaches, i.e. the classical approach with many elements over the thickness and
the new interphase element, is shown in Fig. 7. It can be observed that the new finite
element formulation which is based on a single element over the adhesive thickness
is in perfect coincidence with the classical approach based on 8 elements in the
example presented.

5. Discussion and Outlook

It has been shown in the work presented that the new finite element implementa-
tion is able to reproduce the same results as the classical approach which is based
on a finite element mesh with many elements over the interphase thickness. The
new finite element approach is based on the constancy of the heat flux and no as-
sumptions for any specific temperature distribution. The major advantage of the
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Figure 6. Temperature distribution: (a) entire thickness of the specimen; (b) within the interphase of
thickness 2k = 0.01.

new approach is that the number of elements and, thus, the number of degrees of
freedom is significantly reduced. As a direct result, the computation is much faster
and the generation of the finite element mesh is less time-consuming. However, it
should be noted here that the temperature distribution within the interphase is no
longer available in the post-processor if only a single new element over the thick-
ness is used. This stems from the fact that the temperature values are computed at
the nodes and these values can be graphically displayed in the post-processor. Intro-
duction of the interphase elements means that there are no more nodes in the range

239



A. Ochsner, G. Mishuris 1377
Journal of Adhesion Science and Technology 22 (2008) 1365-1378

440
4 y=0.005
420
~ 400 —
8" =
3 380 —
s 4
Q
g- 360 —_
o
& 340 -
320 8 x quad4
O New element
1¢1 =0.2
300 T I T l T I T
—-4000 -2000 0 2000 4000

Coefficient, ¢,

Figure 7. Comparison of the performance of the new finite element formulation by evaluating the
temperature at the upper interface, i.e. y = 0.005.

—h <y < h (cf. Fig. 1) and a detailed temperature distribution cannot be displayed.
Only an evaluation of equation (18) would yield this result for the single element
approach.

Further numerical testing of the new element by adjusting the horizontal (2a) and
vertical (24) dimensions revealed that the new element is not sensitive to the aspect
ratio under similar boundary conditions and internal angles equal to 90°. Consider-
able errors can only be expected if a temperature gradient in the x-direction occurs
since the approximation of equation (10) would be violated.

It should be noted here that the classical approach with linear shape functions
would give for a rectangular element with dimensions 2a and 2h:

a2 4 h2 %az_hz _%az_%hz —a2+%h2

[ %az_hz a2+ h2 _a2+%h2 _%az_%hz

3ah | <l el e daeor |0
—a’+ %hz —%az — %hz %az — h? a®+ h?

which converges in the special case & < a (neglecting 4 inside the matrix) to equa-
tion (25). Based on this theoretical derivation, it can be concluded that a single
classical element can be used for non-homogeneous interphases if the element is
thin (h « a) and if the average, i.e. integral, conductivity over the thickness is
computed. However, it must be highlighted that in the case of the classical element,
the computation of the average conductivity must be done and assigned manually
in the pre-processor of the finite element code. The advantage of the new element
formulation becomes clear in the case of conductivity changes along the x-axis (i.e.
a variation in the x-direction with each element) and if the geometry of the element
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exhibits internal angles not equal to 90°. In such cases, a manual computation of
the average conductivity is no longer possible from a practical point of view.

The theoretical derivations presented within this study were based on the as-
sumption that the adhesive layer was only dependent on the vertical (y) spatial
coordinate (cf. equation (12)) and that the layer was heat resistant compared to the
adherend properties (cf. equation (8)2). In our future research work, more compli-
cated and interesting cases, e.g. that the adhesive conductivity is a function of the
temperature, will be investigated and implemented in the code.
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Abstract. Imperfect transmission conditions modelling a thin reactive intermediate layer be-
tween two bonded materials in a dissimilar strip are derived in this paper. The interphase
material is assumed to be heat-resistant and situated in a thin rectangular domain between
the main materials. Different types of the interphase are investigated in detail: constant and
temperature dependent sources.

Introduction

Thin interphases are commonly used in modern technology [1]. An inhomogeneous structure
obtained in such a way may exhibit a wider variety of thermal and mechanical properties. On
the other hand, finite element modeling of composites with thin interphases is still a difficult
numerical task as it requires high inhomogeneity of the constructed mesh which can lead to a
loss of accuracy and even numerical instability. This explains the high interest to model the
interphases as a zero thickness object described by specific so-called transmission conditions
along the infinitesimal interface. In the case of constant heat conductivity, the problem has been
completely solved in [2], where the general approach was developed independent of the range
of the heat conductivity of the thin (in comparison with the matched adherents) interphase.
Such interphases often manifest clear nonlinear or homogeneous properties connected with the
manufacturing and exploitation processes [1] and the respective transmission conditions have
been evaluated in [4]. In the scope of this paper, we consider other important case [5] when the
nonlinearity is assigned to the source term and defines a so-called reactive interphase. Again,
we concentrated our interest to a heat-resistant interphase which is the most important case
from an application point of view. We will apply the same approach as it has been done in
[3, 4, 6, 7]. We also refer here to other methods to deal with thin interphases [8, 9] as well as
to construct effective homogenesed properties of composite materials [10, 11, 12].

Problem formulation

Let us consider a bimaterial structure matched together with a thin intermediate layer of the
constant thickness 2h (cf. Fig. 1) and length 2a . The heat transfer equations are satisfied in
the surrounding materials:

oT'
ijiVTi + Q:I: = p:l:czlza_tia (IE, y) € Qﬂ:v (1)
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where Ty and Q)+ are temperatures and the thermal sources within the respective materials
occupied domains 4 while k4, ¢y and py are their thermal conductivities, heat capacities and
densities, respectively. We are not going to solve the problem but to derive the transmission
conditions modelling the heat-resistant layer. As a result, we do not need to accurately describe
here properties of the surrounding materials domains 2.

Within the thin interphase, a similar equation is given by

T
AT +Q = pcaa—t, (z,y) € Q, (2)

where T" and () are the temperature and the thermal sources within the interphase and ¢ =
c(x,y,t,T),p = p(z,y,t,T), which can depend on the space and time variables as well as the
unknown temperature. We also assume for simplicity that k& = const. As usual, the heat flux
inside the interphase is defined by Fourier’s law:

q=—kVT.

Transmission conditions along the material interfaces 'y = {(z,y),z € (—a,a),y = *+h}
between the domains €2 and €21, respectively, (see Fig.1) should be written in the form:

[n ) q”F+ =0, [T”F+ =0, (3)

m-qllr. =0, [T]r_=0. (4)

Here, as usual, [f]|r = f(z,a+) — f(z,a—) is the jump of the function f across the interface
I'={(z,y),z € (—a,a),y = a}.

ylk
Q+
2h p+,c+9k+ Q
L
[ 1 »
6k x
p, ¢ I p.,c k.
Q

Fig. 1: Bimaterial structure with a thin reactive interphase €2.

AssUMPTION 1. We consider throughout this paper that the domain

Q={(z,y):ye (=h,h), z€(—a,a)}

representing the intermediate interphase is thin enough in comparison with characteristic sizes
of both surrounding adherends Q. (see Fig. 1), thus h = eh (e << 1).

ASSUMPTION 2. The next crucial point for this analysis is that the interphase itself is heat-
resistant so that the thermal conductivity of the intermediate layer is much smaller than those
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of the bonded materials. In other words the ratios k/ky are of the same order of € as it has
been appeared for the interphase thickness:

k = ek. (5)

AssuMPTION 3. Finally, we want to allow that the thermal conductivity of the interface k,
sources () and the multiplicator pc are smooth but may be fast changing functions with respect
to the interphase thickness:

Q=2QT), pe=plaesy/et.T) clasy/et.T), pofbn 1, ()

After appropriate rescalling of the space variables as shown in Fig. 2, we use the standard
asymptotic approach applied in case of thin domains following for procedure given in [13]:

y:€§7 (ZL’,y) € (.

Then, Eq. (2) can be finally rewritten in an equivalent form as:

1.9 - 02 . 1. 1_9T -

—k—T+k—T+ —=Q=—pc—, —h,h), —a,a),

2 e + 02 +62Q P ot el ), T€(—a,a) (7)

where )
T(l’,f,t) = T(l’,y, t)a pc - pc<x7£7t7T)
y rescaling . g
2h}] k | x 2h k X
‘ 2a
I g
2a

Fig. 2: Thin interphase domain before and after rescalling.

We will seek for the solution within the interphase layer in the form of an asymptotic expansion:
T(ZL’, 57 i, 6) = T()(I‘? 67 t) + GTl(xa 57 t) + EQTI(xv 57 t) + . (8)

and the heat flux is calculated from the asymptotic expansion:

N -0 0, - o -
q(x, & te) = —k [e%, 0_§]T = —k[0,1]=To + O(¢), € — 0. (9)

U3

Then from Eq. (7) we receive a consequence of the boundary value problems within the inter-
phase:

. .
ka_éﬁTO + Q(TO) = 07 6 € <_h> h)? (10)
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2

a£2T L+ QT Ty = Ry, &, Ty, o, Ti), j=1,2,..., €€ (=h,h). (11)

It is important to note an important difference between Eqs. (10) and (11). Namely, the first
one is nonlinear while Eqgs. (11) which correspond to the next terms of the asymptotic expansion
are linear with respect to functions TJ Note here that the derivative with time appears only in
the right hand side of Egs. (11).

Transmission conditions (3) and (4) can be rewritten in new notations in the forms:

Ty (x,eh,t) = Ty(x, h, 1) + €Ty (x, h,t) + ETo(z, b t) + ..., (12)
T_(x,—€h,t) = Ty(z, —h,t) + €T\ (x, —h,t) + 62T2( h,t) (13)
- 0 - 0
44 (z, eh,t) = —k (85 o(z, h,t) + 68_§T1 ) (14)
8 5, 0
q_(x,—eh,t) = k(@f o(z, —h, t)+68_£T1( —h t)+...) : (15)

where g+ = [0, 1]+ are the second components of the vector of flux in the respective domains.

Expanding the left-hand sides of (12)-(15) and right-hand sides of (14)-(15) in Taylor series,
we can receive the consequence of the transmission conditions. We restrict ourself in this paper
only to find the main asymptotic term, i.e. Tp, of the expansion (8). As a result, we can stay in
Egs. (12)-(15) only with the terms:

T, (z,0,t) = To(z, h,t), T_(z,0,t)=Ty(z,—h,t), =€ (—a,a), (16)
/28% [o(x, h,t) = —q.(x,0, 1), /EC%TO(:U, —h,t)=—q_(2,0,t), x€(-a,a). (17)
Integrating Eq. (10), we obtain:
2
(kaafTo(x 3 t>) = C(z,t) — ®(Ty(z,&, 1), €€ (=h,h), (18)

where we have introduced the notation:
T
T) = 21%/@(,2)(1;:. (19)
T

Comparing (17) with (18), we immediately receive C(z,t) = ¢*(2,0,t) and additionally we
have the first transmission condition:

¢ (2,0,t) — ¢*(2,0,t) + (T (x,0,)) =0, =z € (—a,a). (20)

ASSUMPTION. In the following, we assume that the temperature is a monotonic function within
the interphase with respect to the £-direction. In other words

Ti(x,6,t) #0, x€(—a,a), asaresult: ¢ (z,0,t)-q_(z,0,t) > 0. (21)
Then we can conclude that

¢ (x,0,t) > O(Ty(x,&,1), =z € (—a,a). (22)
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Then Eq. (18) can be rewritten in an equivalent form:

0

kDol &.0) = —a-(r.0.01 - 9B €.0)/a2. € € (~h.h). (23)

It is important to note that if ®(7,) = 0, i.e. that the sources in average sense are compen-
sated within the interphace, then ¢, (z,0,t) = ¢_(x,0,t), as it follows from (20).

Now, it remains to consider the ordinary differential equation (23) with respect to the
variable £, while x and ¢ are the only parameters. Let us introduce an auxiliary function:

_ / \/FCSW' (24)
T_
Then the solution to (23) can be written in the general form:
k(g (2,0,), Ty, &, 1)) = =€+ h)q-(,0,1), &€ (=h,h). (25)
The second transmission condition can be immediately extracted from Eq. (25):
kW (q_(x,0,t), Ty (2,0,t) = —2hq_(x,0,t). (26)

Unfortunately, it is not possible to write the transmission conditions (20) and (26) in terms
of simple functions. Below, we present some specific examples where the conditions can be
written in closed forms.

SPECIAL CASE 1. Let the source being essential but independent on the temperature dis-
tribution @ = ¢ 'Qo. Then, function ®(T) from (19) is calculated as ®(T) = 2kQo(T — T-)
and the first transmission condition can be rewritten in the form:

qi(x,O,t) —¢*(x,0,t) = —2k QO(T+($,O,t) — T_(x,O,t)), x € (—a,a), (27)
whereas the second transmission condition takes after some algebra the following form:
¢4+ (2,0,t) — q_(x,0,t) = 2hQy, = € (—a,a). (28)
Taking into account Eq. (28), the first transmission condition can be also additionally simplified
to obtain:

Ty(x,0,t) —T_(x,0,t) = -7 (q+(z,0,t) + q_(x,0,t)), z € (—a,a). (29)

SPECIAL CASE 2. Let Q = ¢ 'QoT, then ®(T) = kQo(T? — T?). Note here that a power
law, e.g. Q = ¢T™, is very common for low temperatures [5] for small temperature increments.
The first transmission condition (20) can be now written in the form:

¢ (2,0,t) — ¢*(2,0,t) = —kQo (T3 (2,0,t) — T?(x,0,t)), € (—a,a). (30)

After some algebra, the second transmission condition (26) in the case ()o > 0 can be rewritten
in the following form:

T \/iQo

arcsin — arcsin

kQ /
= "~ 9 @sgn (2,0,1)),
\ @3+ EQoT? a2+ kQoT? k

z € (—a,a).

(31)
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In case when @)y < 0 condition (26) is written in other form:

T/ —Qok - =
I |Q+| + 1y QO — _9j, l;QO Sign(q_(q;707t)), T € (—CL, CL). (32)

lq-| +T_ —Qok

Note that in both cases the standard heat-resisting interface [4] will be obtained if one assumes
Qo — 0 from the derived transmission conditions:
2h

=0 Tp-T.=-—q, =€ (—a,a). (33)

Concluding remarks

Let us underline again that the second transmission condition (26) (and consecutively, the
conditions (28), (32), (31) and (32)) have been justified only under additional assumption
that the temperature is monotonic in &-direction inside the interphase. Thus if one use the
transmission conditions for numerical simulation one needs to check at the end of computations
the validity of the assumption (21). If this is not fulfilled, additional analysis is necessary.

However, even if the assumption is true, it is highly important to know the range of the
material parameters where the condition can be applied, and when it is necessary to take some
specific effects (for example high time gradient) into account. This investigation will be done
in the next paper presented in this issue by very accurate FEM simulations.
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Abstract. Imperfect transmission conditions modelling a thin reactive 2D intermediate layer
between two bonded materials in a dissimilar strip have been derived and analytically analysed
in another paper of this issue. In this paper, the validity of these transmission conditions for
heat conduction problems has been investigated due to the finite element method (FEM) for
two formulations of a reactive layer: namely, based on a constant and a temperature-dependent
source or sink formulation. It is shown that the accuracy of the transmission conditions is
excellent for the investigated examples.

Introduction

Thin films, e.g. adhesive layers, are nowadays an important part of technological processes
and components [1]. As an example, adhesive layers allow for joining materials with essen-
tially different properties at very high quality. The application of such hybrid structures in
safety-relevant applications requires a highly accurate and efficient prediction of their physi-
cal behaviour, which necessitates the development of robust simulation models and techniques
based on, and verified by, appropriate experimental procedures.

P S, k, !
=
VA N
P.C —> k O(T) T
X
.S, k. |
- L »

Fig. 1: Schematic representation of the problem.

Transmission conditions for 2D heat conduction problems without reaction were investigated
in [2, 3]. In the scope of this paper, imperfect transmission conditions applied to a reactive
thin heat-resistant layer in a hybrid model structure (cf. Fig. 1) are going to be numerically
investigated in order to verify the applicability and accuracy of the analytical relations for
reactive conduction problems.
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Finite Element Modelling

The commercial finite element code MSC.Marc is used for the simulation of the thermal be-
haviour of the modelling thin intermediate layer between two adherends. Both adherends reveal
constant material properties for all simulations. It should be noted here that the theoretical
derivation of the transmission conditions has been performed under the precondition that the
conductivity of the thin interphase is much smaller (i.e. a heat-resistant layer) than the conduc-
tivities of the adherends. A reaction in the interphase is modelled as a thermal heat source or
sink. The source or sink formulation is implemented by means of a special user subroutine (flux)
written in FORTRAN. The application of this subroutine requires a transient solution in order
to incorporate the source expression. However, only the steady-state solution (for the given
parameters, this solution is obtained in all investigated cases for 2 - 10° s) will be discussed in
the following. In the simulations, the intermediate layer has the thickness 2h = H/100 = 0.01
while the length of all components is equal to L = 10. The two-dimensional FE-mesh is built
up of four-node, isoparametric elements with bilinear interpolation functions. In order to cover
possible edge effects [4], a strong mesh refinement is performed near the free surface of the
interphase. Further details of the finite element mesh can be found in [5]. In addition, the mesh
is generated in such a way that it is possible to evaluate the temperatures and fluxes along the
axes of geometrical symmetry, and along both interfaces (i.e. the line or surface where the thin
layer and the adherends are in contact) as well as along lines perpendicular to the interfaces.

Results

All numerical simulations have been performed for the same aluminium adherends which reveal
a constant conductivity of ki = 237 % at 300 K, a mass density of p. = 2698.8 % and
a specific heat of ¢, = 898.2 ﬁ Furthermore, it has been assumed that the temperature
dependence of all adherend material parameters can be neglected and that no heat sources or

sinks are located within the adherends.

Constant source The following examples refer to a steady-state solution where constant
Dirichlet boundary conditions have been prescribed at the top (y = +H/2) and bottom (y =
—H/2) surface (cf. Fig. 1). It could been shown in [3] that for such uniform boundary conditions,
no edge effects at the free surface can be observed and that the verification of the transmission
conditions can be done based along any arbitrary line = const. The thin interphase has been
assumed to be made of an epoxy resin (k = 0.2 %, o= 1200 %, c =790 kgLK) which exhibits
different values of its constant source and sink formulation:

Q = =*c. (1)
In the case of such a constant source formulation, it could be shown in another paper of
this issue that the first (1**TC) and second transmission condition (2"4TC) can be obtained as

q?k(xv +h) - q%(l’, _h) = _QkQ(T-F('Ta +h) - T_;,_(l‘, _h>> ) (2)

and

qu(x, +h> o q,(l’, _h> = 2h’Q7 (3)
where the values of the temperature and the heat flux in y-direction at the interface, i.e.
y = *h, are evaluated. Figure 2 illustrates the shape of the temperature profile perpendicular
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to the interphase for x = 0. In the case that no source or think is acting, i.e. Q = 0, a linearly
changing temperature distribution is obtained. A heat source (¢ > 0) results in an increase
of the temperature in the interphase and a deviation from the linear distribution while a heat

think (@) < 0) inverts this effect.
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Fig. 2: Temperature distribution perpendicular to the interphase (along the line x

y-coordinate, m

different formulations of the source.

y-coordinate, m

0) for

In the case that no heat sources or sinks are present, thermal equilibrium demands that
the heat flux g, is constant over the thickness, cf. Fig. 3 solid line. A heat source or think, i.e.
energy addition to or substraction from the system, results in a non-uniform distribution (some
kind of z-shape) of the vertical heat flux.
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Fig. 3: Distribution of the heat flux perpendicular to the interphase (along the line z = 0) for
different formulations of the source.

It should be noted here that the jump of the heat flux ¢, can be checked based on a simply
energy balance (which is equivalent to the 28 TC), i.e. the fluxes (heat transfer rate per unit
area perpendicular to the direction of the transfer) at the interface (y = +h) in relation to the
source (energy rate per unit volume) by computing |¢; — ¢¢| = |@Q] - 2h. In the scope of a finite
element analysis where the heat flux is evaluated at the integration points, it is better to take
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the values of the heat flux at y = +H/2 since the values at y = +h are extrapolated from the
integration points and averaged with the surrounding values.

Table 1 presents the verification of the transmission conditions (cf. Egs. (2)-(3)) along the
line x = 0 by independently extracting the right and left hand side of the equations from FEM
evaluation. The absolute value of the error has been obtained by calculating the difference of the
LHS and RHS and relating this difference to the RHS of the respective transmission condition.
As can be seen for different formulations of the source, the coincidence is practically perfect. It
should be noted here that the transmission conditions work very good in the case Q = £5-107°
where a non-monotonic temperature distribution is obtained (cf. Fig. 2). This was one of the
conditions for the derivations of the respective transmission conditions.

Q LHS 15°TC RHS 1*TC  error LHS 2™TC RHS 2™TC error

0 0 0 0 0 0 0
+1-10° —2.584126337 - 105 —2.5841200-10% ~ 1076 1000.004 1000.000 ~ 107
—1-10° 2.584126337 - 10° 2.5841200 - 105 ~ 107  —1000.004  —1000.000 ~ 107°
+5-10°  —1.292060000 - 10"  —1.2920600 - 10" ~0 5000.000 5000.000  ~0
—5-10° 1.292060000 - 107 1.2920600 - 10"  ~0 —5000.000  —5000.000  ~0

Table 1: Verification of the transmission condition validity along the line x = 0 for different
values of the constant source or sink, cf. Egs. (2) and (3).

Linear temperature dependence of the source The following examples refer to a steady-
state solution where boundary conditions and materials properties are chosen as in the previous
example. The thin interphase exhibits now different formulations of temperature-dependent
sources and sinks in the form:

Q==xc-T. (4)

In the case of a linear temperature dependency, the the first (1*TC) can be obtained as
The second transmission condition (2"9TC) can be written for the case of a source (Q > 0) as

T VkQ T VERQ Q

———————— —arcsin ——————== —2h/ — - sign(q_), 6
V& +kQT? V@ + kQT? k (@) ©
and in the case of a sink (Q < 0) as

T/ —QFk | —
In :Zf: iT:/% = —2h TQ - sign(q-). (7)

The basic characteristic of the temperature (cf. Fig. 4) and flux distribution (cf. Fig. 5)
perpendicular to the interphase is the same as in the previous example: A heat source (Q > 0)
results in an increase of the temperature in the interphase and a deviation from the linear
distribution (@ = 0) while a heat think (@ < 0) inverts this effect while the distribution of
the flux takes again a z-shape. Table 2 presents the verification of the transmission conditions
(cf. Egs. (5)-(7)) along the line x = 0 by independently extracting the right and left hand
side of the equations from FEM evaluation. The error is for the presented cases of the same

arcsin
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Fig. 4: Temperature distribution perpendicular to the interphase (along the line x = 0) for
different formulations of the source.
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Fig. 5: Distribution of the heat flux perpendicular to the interphase (along the line z = 0) for
different formulations of the source.

magnitude. Increasing the magnitude of the source expression (e.g. to £1000 - T) results in
a non-monotonic temperature distribution inside the interphase (cf. Fig. 6) and the second
transmission condition (6) and (7) fails. Such a case requires further theoretical treatment and
is not covered within the given set of transmission conditions. It should be noted here that if
the numerical simulation provides the same flux sign from different sides of the interface, then
the conditions are justified. This means that there is a simple criteria for the user to decide if
any further adjustment is necessary to be implemented in the computation.

Discussion and Outlook

Finite element analysis could proof the applicability of transmission conditions for reactive heat-
resistant interphases. Extremely good accuracy could be observed over the whole range of the
interphase for different formulations of the interphase reactivity if the temperature distribution
is monotonic in the interphase. The investigation of non-monotonic temperature distributions
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Q 15¢TC 2ndTC

LHS in 10° RHS in 10°  error LHS RHS error
+350 - T —2.953040092 —2.953714114 ~ 10~* 0.4182537246 0.4183300133 ~ 10~
—350-T 2.926256300 2.925572089 ~ 10* 0.4183936650 0.4183300133 ~ 10~*
+700-T —5.934144040 —5.936940450 ~ 10~* 0.5913703654 0.5916079783 ~ 10~*
—700-T 5.826983886 5.824374720 ~ 107* 0.5918125961 0.5916079783 ~ 10~*
+10% - T —8.512875735 —8.518489254 ~ 10~* 0.5223167368 0.7071067812 ~ 107!
—-10%.T 8.293877599 8.288563544 ~ 10™* 0.3000266983 —0.7071067812 ~ 10°

Table 2: Verification of the transmission condition validity along the line x = 0 for different

values of the temperature-dependent source or sink, cf. Egs. (5)-(7).
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Fig. 6: Heat flux and temperature distribution perpendicular to the interphase (along the line
x = 0) for a strong source.

and the implementation of the investigated transmission conditions into a commercial finite
element code as special interphase elements is reserved for our future research work.
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Abstract. Imperfect transmission conditions modelling a thin reactive intermediate layer be-
tween two bonded materials in a dissimilar strip are derived in this paper in most general
case extending results obtained previously in [1]. The interphase material is assumed to be
heat-resistant and situated in a thin rectangular domain between the main materials.

Introduction

Thin interphases are commonly used in modern technology [2]. An inhomogeneous structure
obtained in such a way may exhibit a wider variety of thermal and mechanical properties. On
the other hand, finite element modeling of composites with thin interphases is still a difficult
numerical task as it requires high inhomogeneity of the constructed mesh which can lead to a
loss of accuracy and even numerical instability. This explains the high interest to model the
interphases as a zero thickness object described by specific so-called transmission conditions
along the infinitesimal interface. In the case of constant heat conductivity, the problem has been
completely solved in [3], where the general approach was developed independent of the range of
the heat conductivity of the thin (in comparison with the matched adherends) interphase. Such
interphases, however, often manifest pronounced non-linear or non-homogeneous properties
connected with the manufacturing and exploitation processes [2] and the respective transmission
conditions have been evaluated in [4]. In the scope of this paper, we consider another important
case [5] when the non-linearity is assigned to the source term and defines a so-called reactive
interphase. Again, we concentrate our interest to a heat-resistant interphase which is the most
important case from an practical point of view. We will apply the same approach as it has been
done in [6, 7, 8, 4]. We also refer here to other methods to deal with thin interphases [9, 10] as
well as to construct effective homogenised properties of composite materials [11, 12, 13].

Problem formulation

As in [1, 14], a bimaterial structure consisting of two different materials bonded together with
a thin intermediate heat resistant interphase of thickness 2h (cf. Fig. 1) is considered in the

following. Inside the layer, the thermal sources Q(T') are presented and k is the thermal con-
ductivity of the interphase. It was shown that to solve the problem for the temperature, T,

All rights reserved. No part of contents of this paper may be reproduced or transmitted in any form or by any means without the written permission of the
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distribution in the structure, the heat resistant interphase can be replaced by non-linear trans-
mission conditions obtained from the classical perfect transmission conditions defined on both
sides of the thin interphase:
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Fig. 1: Bimaterial structure with a thin reactive interphase 2.

T, (z,0,t) = Ty(x, h,t), T_(z,0,t) =Ty(z,—h,t), =€ (—a,a), (1)
%% ~0($,B,t) - _Q+(I707t>a %%Tg(l’, _E7t) - _Q—('r707t)7 S (—CL,CL), (2)

where T and ¢4 are temperature and heat flux along the top and the bottom of the thin inter-
phase, respectively, whereas Ty is the leading asymptotic term of the temperature distribution
within the thin heat resistant interphase after rescaling of the problem (see for details [1]),
which satisfies the equation:

(ifa%ft)(%&t)) = ¢ (2,0,t) = &(To(2,,1)), €€ (=h,h), (3)

where we have introduced the notation:
T
O(T) = 2k / O(2)dz. (4)
T

One of the transmission conditions can be written as:
¢ (2,0,t) — ¢*(2,0,t) + (T (x,0,t)) =0, =z € (—a,a). (5)
Moreover, it follows immediately that
@ (2,0,t) > O(Ty(z, &, 1), z€(—a,a), (6)

for any internal point § inside the interphase.
For values of ¢ situated close enough to —h, Eq. (3) can be rewritten in the form:

];}%T()(l’, ga t)

= = —q- ("E’ 0, t) ) (7)
V1= (Tl 6.6) /g2 (.0.1)
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where we have taken into account the fact that ®(7_) = 0. To construct the second transmission
condition, it was assumed in [1] that the temperature within the interphase is distributed
monotonically. Although such assumption is quit realistic, it has been shown in [14] that specific
cases may appear when it is not valid (for example, if significant heat sources act within the
interphase).

In this paper, we are going to consider a more general case without any assumption on the
behaviour of the possible solution within the interphase. We only leave the condition that the
sources within the interphase have the same sign (all non-negative, Q(T) > 0 or all non-positive
Q(T) < 0). As a result, the only conclusion can be made that the function ®(7}) is monotonic
(non-decreasing or non-increasing, respectively).

REMARK 1. If one is interested in the case when the sources take different signs within
the interphase, the respective situation is much more complicated as the temperature field
may be extremely non-uniform in direction perpendicular to the interphase. If any additional
information is available (for example that the field is independent on the other variable, i.e. in
direction along the interphase), one can consider the initial thin interface as a set of N thinner
interphases in every of them the previous condition of the source sign will be valid and the
result reported below could be further generalised.

ASSUMPTION. Let now ¢, - g- < 0, than there exists a point { = &, inside the interphase
such that q(&,) = 0 (or T}(&,) = 88—7;0]525* = 0) and it follows from Eq. (3) that in this point

¢ =0(T), T.=Ty&)=27"(¢2). (8)

Note that the inverse function ®~! exists because of the monotony of the function ®. Let us
consider in the following a function ¥ with

~ 0 dz
(g T) = / N oy (9)

Then, Eq. (7) can be integrated in the intervals (—h,£,) and (&,, h) under consideration of the
sign of flux ¢(&) within the corresponding intervals to give:

FU(g,T)=—q - (§+h), kW(q,Ty)—k¥(q,T)=—q -(E—h). (10)

These two relations can be written in the intermediate point & = &, in equivalent forms by
adding and subtracting each other as:

]{W(q_)j—’_i_) = _2(]— ’ g*a kqj(Q—7T+) - 2];:\1[(Q—af*) = 2(]— ' iL (11)

Equation (11), provides the remaining transmission condition if we take into account Eq. (8)

FU(q,Ty) — 2k0 (g, @ (¢*)) = 2q - h. (12)

REMARK 2. It is easy to check that in the special case of &, = h (or T.=T 't ) the obtained
transmission condition coincides with that evaluated in [1].

REMARK 3. When the problem has been solved due to the transmission conditions (5)
and (12), the position of the extremal value of the temperature within the thin heat resistant
interphase layer can be easily found from Eq. (11);.
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REMARK 4. If the position of the extremal value of the temperature is situated outside the
interphase then the chosen transmission condition (12) maybe not valid for the considered case
and one should exchange it by the transmission conditions (26) defined in the previous paper
[1]. The verification condition to be checked is:

k -
M lwg T ‘g 5 13
o7 (¢, 1) < lq-| (13)

As in the previous papers [1, 14], transmission (5), (12) cannot be written in the general case
in terms of simple functions. Below, we present some specific examples where the conditions
can be written in relatively simple expressions.

SPECIAL CASE 1. Let the source be essential but independent of the temperature dis-
tribution, i.e. Q@ = € 'Qp. Then, function ®(T) from Eq. (4) can be calculated as ®(T) =
2kQo(T — T) and the first transmission condition (5) can be rewritten in the form:

¢ (2,0,t) — ¢* (,0,t) = —2k Qq - (T4 (2,0,t) = T_(2,0,1)), =€ (—a,a). (14)

The auxiliary function (9) allowing to recover from (10) the distribution of the temperature T
within the interphase can be easily computed to give:

(g, T) = ZK - \/1— o)

Then, after some algebra, the second condition (12) takes the following form:
Sgi (qf(a:a()?t)) ) ‘q+<l‘,0,t)| —|—q,($,0,t) = _2BQ07 LS <_a7&)‘ (15)

However, it holds due to our initial assumption that sgn (¢_(x,0,t)) = —sgn (¢+(z,0,t)). This
means that condition (15) can be equivalently rewritten in the form:

q+(z,0,t) — q_(x,0,t) = 20Qo, T € (—a,a), (16)

which completely coincides with the condition obtained in [1] under other assumptions for the
same source distribution. This in turn allows us to simplify the first transmission condition to
the form

Ty (z,0,t) —T_(2,0,t) = —= - (¢4 (x,0,t) + ¢_(z,0,t)), =z € (—a,a). (17)

ESHINK

REMARK 5. As we have shown in our previous paper [14] for a high level constant source, the
temperature 7'(£) is not necessarily a monotonic function within the interface (the flux (&) can
change its sign), whereas the transmission condition previously evaluated under monotonicity
assumption were valid. Our recent analysis has clarified this phenomenon.

SPECIAL CASE 2. Let Q = ¢ 'Q, T, then ®(T) = kQq-(T%—T2). Note here that a power law,
e.g. Q =c-T™, is very common for low temperatures [5] of for small temperature increments.
The first transmission condition (5) can be written now in the form:

qi(x,O,t) — ¢ (2,0,t) = —kQ, (Tf(x,O,t) — TE(LE,O,t)) , x € (—a,a). (18)
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Now, the auxiliary function (9) takes different forms depending on whether we consider a source
(Qo > 0) or a sink (Qo < 0). Namely:

\I/(q_,T) ]q ’ \/k

T_\/kQy
= arcsin — arcsin ——
\VE V-2 + kQoT? \/ -2+ kQoT?

After some algebra, the second transmission condition (12) in the case @)y > 0 can be
rewritten in the following form:

7\/kQ

. , on
arcsin = — + arcsin = gn
\ 4-% + kQoT? \ a2+ k;QOT2 k‘

where the following verification condition holds:

Loy k@ N < 9, |20 (20)

arcsin ——— — arcsin — —.
Va2 + kQoT? ¢-2 + kQoT? k‘

In the case when @y < 0, one can compute the auxiliary function (9) as

Qo >0:

x € (—a,a), (19)

ol T\ ~kQo+ /(T2 — T2)iQo + ¢

\/ —%Qo T —%Qo + Jq-|

Then, transmission condition (12) can be written under consideration of Eq. (18) in another

form as:
(!q+] + T/ —Qok) (lg-| + T/ —Qok) _ QB,/;Q()sgn (q-), (21)
kQoT? + ¢2 | k

where the following additional condition

QO <0: \I/(q_,T) =

will be satisfied automatically during the computations. Finally the verification condition takes

place:
qe| + T/ —Q k . [=
ge T Ty —@ok)_or [=Q0 (22)

g |+ T/ —Qok K

Unfortunately, the situation is even more complicated than it may look from the first glance
from our analysis. Namely, all the transmission conditions and respective verification conditions
have to be checked at every point x along the imperfect interface. Effectively this means that
several intervals can exist where the type of the transmission conditions may change. The
respective borders should be found adaptively from an iterative procedure in such a way that
all the verification conditions provide in the edge points equalities instead of inequalities.

On the other hand, it is highly important to know the range of the material parameters
where the conditions can be applied, and when it is necessary to take some specific effects (for
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example high time gradient) into account.

In the following, the example presented in [14] will be re-evaluated by means of the new con-
ditions. Table 1 compares the new approach with the values from [14] where a significant drop
(factor 10%...10%) in the accuracy has been reported for strong temperature-dependent sources.
As can be seen, the new evaluation of the second transmission condition based on Egs. (19)
and (21) brings the accuracy back in the same range as for for moderate sources (error 107%).
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+10°-T 0.5223167368 0.7071067812 ~ 107! Ref. [14]
—10%-T 0.3000266983 —0.7071067812 ~ 10° Ref. [14]
+10°-T  2.436062015 2434485873 ~ 10~* Eq. (19)
—10%-T 0.7074743000 0.7071067812 ~ 10~* Eq. (21)

Table 1: Comparison of transmission condition evaluation along the line z = 0 for a strong
temperature-dependent source or sink.
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Abstract

The numerical simulation of random cellular metals is still connected to many unsolved problems due to their
stochastic structure. Therefore, a periodic model of a cellular metal is developed for fundamental studies of the me-
chanical behavior and is numerically investigated under uniaxial compression. The influence of differing hardening
behaviors and differing boundary conditions on the characteristics of the material is investigated. Recommendations for
the numerical simulation are derived. In contrast to common models, experimental samples of the same geometry are
easy to manufacture and the results of the experiments show good agreement with the finite element calculations. Based
on the proposed concept of a unit cell with periodic boundary conditions, it is possible to derive constitutive equations
of cellular materials under complex loading conditions.
© 2003 Elsevier Ltd. All rights reserved.

Keywords: Cellular metal; Nonlinear behavior; Plasticity; Finite element analysis; Compression test

1. Introduction

Cellular metals, e.g. metallic foams, exhibit unique properties and are currently being considered for use
in lightweight structures such as cores of sandwich panels or as passive safety components of automobiles
(Ashby et al., 2000). Many methods for fabrication of these materials have been developed and can be
classified into four groups: foams made from melts, from powders, by sputtering and by deposition
(Banhart, 2001). Some methods have been known since the fifties, and each production method results in a
characteristic cellular structure. A typical open-cell aluminum structure made by the melt route is shown in
Fig. 1(a). However, there are technological problems related to the control of structure and properties of
the material, which remain to be solved. The vast majority of existing techniques do not allow precise
control of shape, size and distribution of the pores. That brings about a wide scatter in mechanical and
other characteristics of the materials and components.
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(d)

Fig. 1. Random cellular material and different modeling approaches. (a) Open-cell Al foam (Duocel®), (b) polyhedron cells (beam
elements) (Strohla et al., 2000), (c) CT scan (Strohla et al., 2000) and (d) perforated cube.

The mechanical properties of cellular metals, in particular their resistance to plastic deformation, the
evolution and progress of damage and fracture within the material, are determined by the microstructure
and the cell wall material respectively. The most important structural parameters which characterize a
cellular metal are the morphology of the cell (geometry, open or closed cell), the topology, the mean cell size
and the relative density, p/pg (the macroscopic density, p, divided by that of the solid material of the cell
wall, pg).

A schematic uniaxial compression stress—strain curve (cf. Fig. 2 starts with linear elasticity at low
stresses, followed by a transition zone which extends over a long collapse plateau, truncated by a regime of
densification in which the stress rises exponentially. Many investigations focus on the large strain defor-

Compression

@ Linear Elasticity
@ Transition Zone
® Plateau

@ Densification

k Plat //

bl
|

© ® ®

Macroscopic stress o, MPa

P

Macroscopic strain &,

Fig. 2. Schematic uniaxial compression stress—strain curve for a metal foam.
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mations. The initial yield stress & is then equated with the plateau stress kp, so that the transition zone,
which can be clearly marked in the case of certain cellular metals, remains unconsidered. In this paper, we
will investigate the elastic zone up to the first part of the plateau under uniaxial compression loading. There
are two strategies used to simulate the mechanical behavior of random (cf. Fig. 1(a)) cellular solids. Almost
all theoretical structure—property relations are based on periodic unit cells (e.g. Gibson and Ashby, 1997;
Daxner et al., 2000). Geometrically identical specimens of these periodic unit cells, for experimental veri-
fications, are difficult to realize and the prediction of the mechanical properties of random cellular solids
requires the introduction of fitting parameters (e.g. damage variable). Recently produced so-called lattice
block materials are of regular periodic structure, but the manufacturing route is quite elaborate (Desh-
pande, 2001). The other possibility is an exact scan of the geometry using computertomography (CT scan,
cf. Fig. 1(c)). This requires the availability of this high-tech equipment and if high resolution in the FE mesh
is needed, then only a small part of the object (not representative) can be scanned due to the resulting large
amount of elements (this is limited by the hardware of the computer, i.e. RAM, disk). Therefore, the simple
model of a perforated cube (cf. Fig. 1(d)) was developed for fundamental studies which is easy to manu-
facture at low price (CNC drilling) and offers the possibility of an experimental validation of numerical
simulations. With a hole diameter of 3 mm (smaller diameters can result in a failure of the drill bit) and a
hole spacing of 4 mm, a relative density of p/pg = 0.2712 could be realized.

2. Modeling considerations of the perforated cube structure

The commercial finite element code MSC.Marc was used for the simulation of the macroscopic prop-
erties of the chosen cell structure, Fig. 1(d). First, the influence of the mesh density on the results was
investigated.

For the purpose of achieving a proper mesh quality, one eighth of the unit cell was subdivided into four
bodies. Each of these bodies consists of six faces which in turn are made up of four edges and four vertices.
The parameters N; and N, indicate the number of elements along the edges of these sub-bodies and must
not be confused with geometric dimensions (see Fig. 3, center). For a preliminary series of compression test
simulations, the mesh parameters N, and N, have been varied according to Table 1 in order to determine a
suitable mesh density. The table also shows the resulting amount of nodes and elements of the differing
finite element meshes. Dependent upon different mesh densities, Fig. 4(a) illustrates the resulting stress—
strain curves that have been evaluated from the uniaxial compression tests on a macroscopic level. Espe-
cially within the domain of elastic material behavior, an essential influence of the mesh density on the

Mesh_15x30

o
N1 Mesh_N,;xN,

N, ,: mesh parameters
(amount of elements along edge)

Fig. 3. One eighth of the perforated cube and mesh parameters.



576 A. Ochsner, K. Lamprecht | Mechanics Research Communications 30 (2003) 573-579

Table 1
Mesh parameters and computing resources
Notation Nodes Elements Result file [MB] Computing time [10° s]
2x4 135 56 1.09 0.482
3x6 352 189 3.21 0.645
5x 10 1296 875 13.95 2.753
7x 14 3200 2401 37.60 7.002
10 x 20 8591 7000 108.49 44.828
15x 30 27139 23625 363.63 317.378
< 35 - 12 7400
a compression test < compression test -
= 30| linear hardening & linear hardening —6— Yield stress IR | ~
- e = 114 —&— Young’s modulus E ([~ 7300 %
625 ] L
a i mesh density: (cf. Fig. 2) g& 10 L7200 &
12} B v
g 20 —— 2x4(N,=2,N,=4) 9 i 3 B
7 4 2 9 reference =
ols4 4 | 3x6 (N, =3,N, = 6) b7 p -7100 ©
s 1/ |- 5x10 (N, =5,N, = 10) = 84 DN L 3 g
2 10 4 “——— TXI4(N;=7,N,= 14) = - 7000
s sl |- — 10x20 (N, = 10, N, = 20) s 7] r %‘)
S = ] = 6900
< /o= 02712 - 15x30 (N, = 15, N, = 30) g Foie =0, 7 G
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(a) Macroscopic strain lg,l, % (b) Number of nodes,

Fig. 4. FE results for different mesh densities.

results of the calculations cannot be observed on basis of the representation in Fig. 4(a). If one considers the
model with the finest discretization (Mesh_15 x 30) as reference, significant deviations in the stress—strain
curve can only be recognized after the elastic limit is exceeded. But even for models with extremely coarse
meshes (Mesh_2 x 4) the maximum deviation of the macroscopic stress o, is only about 6%. Minor devi-
ations from the reference result can be achieved by increasing the density of the finite element mesh. In
addition to the o,—¢,-curves the initial yield stress R, and Young’s modulus £ were evaluated on a mac-
roscopic level. Fig. 4(b) shows a graphical representation of both values as a function of the mesh density
(number of nodes within the finite element mesh). It is quite obvious that both R, and E show a strong drop
(semi-logarithmic representation!) at first, but then reach an almost constant value as the mesh density
increases. In order to avoid excessive computing time the finite element mesh 10 x 20 was chosen for all
further investigations. This allows a reduction in computing time of almost 85% compared to the reference
simulation (cf. Table 1), without a significant influence on the results of the calculations.

The mechanical behavior of a cellular metal and its mathematical characterization can be described
based upon the principles of continuum mechanics, if a ‘representative volume element’ (RVE) is consid-
ered, Fig. 1(d). In the case of cellular materials, this RVE needs to comprise of at least 5-10 unit cells, in
order to avoid edge influence and to obtain macroscopic values of the structure. The precise number de-
pends, however, on the corresponding cell structure and should be examined separately. Since the intention
of this paper is to model only isotropic solids, no further account was taken of the anisotropy caused by the
particular pore distribution and only strain states having principle strain distributions parallel to the x-, y-
and z-axes (cf. Fig. 3) should be considered. A fine mesh with solid elements (linear shape functions) of such
a structure consisting of 5-10 unit cells would lead, however, to a large amount of unknowns and a huge
amount of computing time. Therefore, only a typical repeating portion (unit cell) was simulated. Due to the
symmetry of the unit cell, only one eighth needs to be considered. The mechanically correct constraints are
in this case of great importance, Fig. 5. One possibility would be to consider one surface of the unit cell as a
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Fig. 5. Unit cell with differing boundary conditions.

free boundary. However, to simulate the mechanical behavior of a cell structure, only a periodic boundary
provides the correct constraint. With the aid of so-called multiple point constraints (MPC), the used FE-
system offers the possibility to realize such a boundary condition where all nodes on a certain surface have
the same x-displacement: u,, = - - - = u,,. The effect of differing boundary conditions on the deformation is
shown in Fig. 5.

3. Results of FE simulations

The results of the simulated compression tests for a unit cell, a unit cell with MPC and a cell structure
(Fig. 1(d)) are compared in Fig. 6(a). The stress—strain diagram of the cell structure coincides quite well
with the MPC unit cell. The curve for the unit cell is clearly below the other two and shows right from the
beginning clear deviations in the elastic range. The progress of Poisson’s ratio of the structure and the unit
cell with MPC shows a clearer difference than the progress of the stress—strain diagram does. Thus one can
conclude, that a cell structure consisting of 5x 5x 5 cells still cannot be regarded as a representative
volume since the edge influence is still too big. It is noticeable here, that greater cell structures are not
computable due to actual hardware limitations of the computers. The progress of Poisson’s ratio of the unit
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Fig. 6. Macroscopic stress—strain diagrams.
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cell is considerably higher than the two other simulations. Thus it can be stated, that the simulation of a cell
structure by means of a simple unit cell can lead to considerable errors.

For the investigation of the influence of the cell wall material on the macroscopic stress—strain behavior,
the following simulations were carried out with a periodic boundary condition. Besides the realistic
hardening behavior of an aluminum alloy (AlICuMgl), the two border cases — ideal plasticity (k = 301.0611
MPa = const.) and linear hardening (k = 1/20 - E - ¢5;) — were considered. A clear dependence in the plastic
region can be seen, Fig. 6(b).

4. Comparison of FE results with experiments

To compare the numerical simulations with experimental data, specimens were machined from cubes
made of aluminum alloy AICuMgl. From three sides, 49 holes with a diameter of 3 mm were drilled in a
square pattern in a cube with the outer dimensions of 28 mm x 28 mm x 28 mm. Fig. 7 shows a specimen
before and after the compression test.

The compression tests were performed elongation controlled (elongation speed 1 mm/min) in a universal
electro magnetic testing machine (SCHENCK) with a capacity of 100 kN. The strains were recorded by
means of a mechanical strain-gauge extensiometer (SANDNER) attached between the two pressure feet. A
typical compression stress—strain diagram is shown in Fig. 8. It can be seen that the overall behavior of the
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Fig. 7. Experimental specimen before and after compression test.
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Fig. 8. Comparison of experimental data with FE simulation.
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specimen is in agreement with the finite element simulation. The scatter at the beginning of the diagram
comes from the load cell which is not sensitive enough in this range. The transition from the elastic to the
plastic zone is in the case of the experiment a little bit smoother. The simulation of the cell structure and
unit cell have already shown this effect which results partly from the edge influence.

5. Conclusions

In the current work, a simple model of a cellular metal was proposed for fundamental studies of the
mechanical behavior. Within the scope of the numerical simulation of the macroscopic behavior of cellular
metals based on unit cells, the use of periodic boundary conditions provides a dramatic reduction of CPU
time and a correct representation of the mechanical behavior. Furthermore, a reasonably good agreement
with experimental results can be shown. Under certain circumstances it may be necessary that a cell
structure built up from several cells should be modeled (e.g. anisotropic damage). Then, the resulting
calculation of a unit cell with periodic boundary conditions provides an elegant way to show whether the
number of the cells in the structure can be regarded as a representative structure. The numerical and ex-
perimental investigation of the plastic behavior under multi-axial loading conditions to obtain appropriate
constitutive equations is reserved for future research work.
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STRUCTURAL MODELING OF THE MECHANICAL BEHAVIOR
OF PERIODIC CELLULAR SOLIDS: OPEN-CELL STRUCTURES
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The numerical simulation of random cellular metals, e.g., metal foams, is still connected with many unsolved
problems due to their stochastic structure. Therefore, a periodic model of cellular metals is developed and its
mechanical behavior is investigated numerically under uniaxial and multiaxial stress states. The main advan-
tage of the model is that a wide range of relative densities can be covered and that test specimens of the same
geometry are possible to manufacture without oversimplifying their shape. The influence of different harden-
ing behavior and different boundary conditions on the characteristics of the material is investigated. Further-
more, the effect of internal pore pressure on its uniaxial behavior and on the shape of yield surface are
determined.

Introduction

Nature frequently uses cellular materials for creating load-carrying and weight-optimal structures. Natural materials
such as wood, cork, bones, and honeycombs, thanks to their cellular design, fulfil structural as well as functional demands. For
a long time, the development of artificial cellular materials has been aimed at utilizing the outstanding properties of biological
materials in technical applications. As an example, the geometry of honeycombs (hexagonal structures) was identically con-
verted into aluminum structures, which have been used since the ‘60s as cores of lightweight sandwich elements in aviation and
space industry [1]. Nowadays, especially foams made of polymeric materials are widely used in all fields of technology. For ex-
ample, Styrofoam® and hard polyurethane foams are widely used as packaging materials. Other typical application areas are
the fields of heat and sound absorption. During the last years, techniques for foaming metals and metal alloys and for manufac-
turing novel metallic cellular structures have been developed [2]. These cellular materials, owing to their specific properties,
have a high potential for future oriented applications [3]. The combination of specific mechanical and physical properties dis-
tinguishes them from the traditional dense metals, and applications with multifunctional requirements are of special interest in
the context of such cellular metals. Their high stiffness, in conjunction with the very low specific weight, and their high gas per-
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Fig. 1. Different types of cellular metals: a) open-cell metal foam (Duocel®); b) hollow alumina
spheres embedded in a magnesium matrix [2]; ¢) lattice block material [5].
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Fig. 2. Representative volume element (RVE) of a simple perforated cell structure.

meability, combined with the high thermal conductivity, can be mentioned as examples. Possible applications are expected in
the area of weight-optimal safety components in automotive industry and in lightweight composite structures [4].

Cellular materials comprise a wide range of different arrangements and forms of cell structures (Fig. 1). Metallic
foams (Fig. 1a) are being investigated intensively, and they can be produced with a closed- or open-cell structure. Their main
characteristic is the very low density. The most common foams are made of aluminum alloys. Quite a regular arrangement of
cells are obtained in structures with hollow spheres, which are often called syntactic foams (Fig. 1b). A perfect regular structure
results from interconnecting networks of straight beams, which are known as lattice block materials (Fig. 1c).

What all these different cellular materials have in common is that their mechanical properties, in particular the resis-
tance to plastic deformation and the evolution and progress of damage and fracture in the materials, are determined by their
microstructure and the cell wall material. The most important structural parameters characterizing these cellular metals are the
cell morphology (geometry, open or closed cells), their topology, the mean cell size, and the relative density p,o] =p/p (the
macroscopic density p divided by that of the solid material of cell walls p ). Usually, material properties of cellular materials
are given in the literature as functions of the relative density.

In this paper, an attempt is made to investigate the elastoplastic properties of cellular materials by using a regular
model structure that covers a wide range of the relative density. Uniaxial and multiaxial stress states are considered in order to
derive the corresponding material characteristics.
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Fig. 3. Geometrical interpretation of stress invariants: a — in the space of principal stress; b —
in an octahedral plane. 1 — hydrostatic axis; 2 — octahedral plane.

Constitutive Modeling of Cellular Materials

The mechanical behavior of cellular metals can be described by applying the principles of continuum mechanics to a
“representative volume element” (RVE) (Fig. 2). In the case of a cellular material, the RVE must comprise at least 5 to 10 unit
cells (UC), in order to reflect its macroscopic properties. Their precise number depends on the corresponding cell structure and
should be examined separately. The aim of this paper is to model only isotropic solids, therefore, the anisotropy caused by a
particular pore distribution is disregarded, and only strain states with principle strains parallel to the x- and y-axes are consid-
ered (Fig. 2). This modeling technique, which is based on homogenous cell structures, has already been used for describing the
plastic behavior of porous metals [6, 7] and for modeling damage effects [8-10]. First investigations were done for uniaxial
loads by the present authors in [11].

Elastic behavior. Under the classical assumptions of small strains and a linear relationship between the second-order

stress tensor 6;; and the strain tensor €;;, the elastic stress—strain relation is given by the generalized Hooke’s law

ij ij»

_I+v % 5
% =5 %1 T oM ) 0

where E is Young’s modulus and v is the Poisson ratio. In uniaxial tension or compression, the only nonzero stress component

G, causes an axial strain €, and transverse strains € ,, =€ ..

»y
Thus, one can determine the elastic constants, i.e., Young’s modulus and the Poisson ratio from Eq. (1) as
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Plastic behavior. Three essential elements of a plastic analysis are the yield criterion, the flow rule, and the hardening
rule, [12]. The yield criterion relates the stress state to the onset of yielding. The flow rule relates the stress state to the corre-

sponding increments of plastic strains dsg. , when a plastic flow occurs. The hardening rule describes how the yield criterion is

modified upon deformation beyond the initial yield point. In what follows, we will concentrate on the mathematical and graphi-
cal representation of the yield criterion, which is one of the main topics in this paper. The yield criterion for an isotropic mate-
rial can generally be expressed as

F:F(Gij,K,al‘j (3)
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Ny

Fig. 4. Meshing of the geometry: a — subdivision of a unit cell (one eighth) for a regular mesh-
ing; b — mesh parameters Ny and N, .

where k is the parameter of isotropic hardening and o ;; are the parameters of kinematic hardening. The stress tensor 6 ; can be

split in its spherical 62 and deviatoric cs'l-j parts. In terms of the three stress invariants J 10 ,J5,and J5, where J 10 is the first in-
variant of the stress tensor and J5 and J5 are the second and third invariants of the deviatoric tensor [13], Eq. (3) can be written
in the form

0 ! !
and the initial yield criterion in the form
0 ! ’
F:F(J 5J23J3 ) (5)

In the 6D stress space, the yield condition F' = 0 defines a closed hypersurface, called the yield surface. In the 3D space
of principle stresses 61, 61y, and oy, this surface is two-dimensional. In this space, all planes perpendicular to the hydrostatic
axis are called octahedral planes. The octahedral plane passing through the origin is called the deviatoric plane, or m-plane [13].

The geometrical interpretation of the stress invariants introduced is given in Fig. 3 [14].

Finite-Element Simulation

General remarks. For simulating the macroscopic properties of a perforated cell structure, the commercial FE code
MSC.Marc was used. Due to the symmetry of all geometry and of the loads applied, only one eight of the unit cell was consid-
ered.

First, the geometry of structural elements has to be meshed before calculations. For optimal results, the shape of the el-
ements should show a minimum distortion [15]. To fulfill this requirement, the Mapped-Meshing algorithm provided by the
commercial code, which automatically generates a homogenous mesh for simple geometries, was used. Then, after meshing
with quadratic elements, the subbodies obtained are reunited, and the coincident nodes are merged. The simple geometries are
created by dividing the one eighth of the unit cell into four subbodies (Fig. 4a). In order to merge the meshes of the subbodies,
the number of elements of two facing surfaces must be identical. Consequently, the mesh created can be characterized by two
mesh parameters, N; and N,, as indicated in Fig. 4b.

After the discretization, material properties and boundary conditions must be specified. Within this project, the mate-
rial properties of an AICuMgl aluminum alloy (£ = 72,700 N/mmz, v = 0.34, and the initial tensile yield stress kg = 300
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Fig. 6. Influence of boundary conditions on the stress—strain curve and Poisson ratio. 1 — with-
out MPCs, 2 — with MPCs, 3 — ¢, /e ,, (without MPCs), 4 — ¢, /& ,, (with MPcS). p =0.2.

N/rnmz; the subcsrip s denotes the solid base material), which were obtained at the Institute of Applied Mechanics
(Erlangen-Nuremberg University), were used. The boundary conditions can be separated into those related to the applied mac-
roscopic load and the restrictions caused by the influence of neighboring geometry of the periodic structure. In what follows,
only boundary conditions of the second group are described. First, the boundary conditions must be symmetric in order to
model the behavior of the whole geometry of the cell structure, although only one eighth of it has been meshed. Then, the free
boundaries of the unit cell must be considered. Here, two different approaches were investigated: a free surface and multipoint
constraints (MPCs) imposing a periodic boundary. These MPCs ensure that all nodes on a certain surface have the same dis-
placement perpendicular to this surface. Figures 5 shows the effect of the boundary conditions on deformations of the structure
and the stress distribution inside the model geometry. On the left figure, the deformation of the model with a free surface is dis-
played. A strong contraction of the neck along the y-axis is visible. In contrast to this behavior, the special definition of MPCs
leads to a lower uniform deformation and a different distribution of the equivalent von Mises stress inside the structure.
The influence of MPCs becomes more evident when the results of an FE analysis are visualized.
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Fig. 7. Influence of mesh density: a — convergence of Young’s modulus £ (A) and the initial
yield stress &, (@) with increasing mesh density; b — the wall time ¢, (A) and file size v (@)
vs. the number of nodes n. p o =0.1.

Figure 6 illustrates the stress—strain curves and Poisson ratios v obtained with and without the application of MPCs. It
is seen that the MPCs considerably affect the stress—strain curve and significantly lower the Poisson ratio. Since the MPCs al-
low for the influence of neighboring unit cells of the periodic structure and only RVEs are considered, the MPCs are utilized in
all further investigations.

Investigation of mesh density. According to [15], the results obtained by the FEM converge to exact solutions with in-
creasing mesh density. Consequently, a sufficiently fine and homogenous mesh should be generated. However, the computer
hardware (i.e., the disk space or RAM) available restricts the fineness of discretization. Figure 7a shows Young’s modulus and
the macroscopic initial yield stress in relation to the number of nodes, which indicates the mesh density. Both the characteristic
quantities considered converge to a constant value for high mesh densities. By taking the results given by the finest mesh as a
reference, a 6.35% deviation for Young’s modulus and 16.89% for the initial yield stress can be observed for the lowest mesh
density. For the second highest mesh density, these deviations decrease to 0.08% (Young’s modulus) and 0.01% (the initial
yield stress). Figure 7b illustrates the size v of the result file and the wall time ¢, in relation to the number of nodes. Both the
quantities show an exponential increase with rising mesh density. As a compromise between the accuracy of the FE-analysis
and wall time, the second highest mesh density was chosen. Similar investigations were performed for all other relative densi-
ties. The final results for the mesh density, represented by the number of nodes and elements, are summarized in Tab. 1. Figure
8 illustrates all the relative densities of the perforated cell structure considered.

Results

Uniaxial tensile tests. To determine Young’s modulus £, the Poisson ratio v, the macroscopic initial yield stress &, , and
the 0.2%-yield strength R, » of the material, uniaxial tensile tests were simulated. A Fortran subroutine was implemented to
calculate the macroscopic stresses and strains. The results obtained are illustrated in Fig. 9. The figure contains stress—strain
curves for each relative density. In the linearly elastic region, all the curves show a characteristic linear increase. The slope of a
curve defines Young’s modulus for the respective relative density. With rising relative densities, the stress level and Young’s
modulus both increase (also see Fig. 10).

For the tensile tests, two different types of hardening behavior were used: the real behavior of the AICuMgl alloy

(polynomial approximation of the flow curve with respect to the equivalent plastic strain as kg (agﬁ )=300 + 2455.482ff -
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TABLE 1. Selected Mesh Density in Relation to the Relative Density

Relative density p Number of nodes Number of elements
0.1 14,329 2808
0.2 19,197 3968
0.3 19,660 4131
0.4 20,207 4300
0.5 17,435 3700
0.6 28,532 6253
0.7 28,485 6272
0.8 35,515 7936
0.9 32,249 7168

. I T,
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Pre1 = 0.4 Prel = 0.5 Pre1 = 0.6
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Fig. 8. 3D view of structures with different relative densities.

P 2 p 3 p 4 5,.p \5 P \6 ie.p . . 2
13,304.0(aeff) +49’557'2(8eff) —l.Z(Seff) +1.5-10 (Seff) —88,689.9(aeff) ,1f8eff < 0.52; otherwise 611.8 N/mm

= const) and perfect plasticity (k, =300 N/mmz). Both the cases are shown in Fig. 9. The dash-dot lines correspond to the per-
fectly plastic behavior, and the continuous lines shows the stress—strain curves in the case of polynomial hardening. For the per-
fectly plastic behavior, the stress—strain curves are taking a slightly lower course in the plastic region, because the hardening of
the base material is neglected.

From the uniaxial stress—strain curves, the basic material parameters can be determined. First, Young’s modulus is
calculated according to Eq. (2). Figure 10 shows a disproportional increase in Young’s modulus with relative density. At the
relative density p ) = 0.058, the connectivity of the material is lost, and Young’s modulus reaches the zero value. In the cases
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Fig. 9. Macroscopic stress—strain diagrams for different relative densities. Explanations in the
text.
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Fig. 10. Relative Young’s moduli vs. the relative density: (@) — FE analysis; (A) — 2D exper-
iment [16]; (V) — 3D experiment [16].

of high relative densities, Young’s modulus converges to the stiffness of the solid material. The figure also contains experimen-
tal results from 2D and 3D investigations. It is seen that the experimental values agree excellently with FE results.

In Fig. 11, the Poisson ratio as a function of relative density is shown. For relative densities exceeding 0.4, the graph
shows a linear relationship, whereas for lower densities a slight nonlinearity is visible. Like Young’s modulus, the Poisson ratio
reaches the zero value close to the relative density p ,; = 0.058 and converges to its value for the solid material with growing
relative density.

Finally, the yield stresses were determined. To this end, the first increment for which the equivalent stress reached the
yield stress of the base material was recorded, and the macroscopic stress in the y-direction was equated to the initial macro-
scopic yield stress. The normalized initial yield stress k; / ks depends linearly on the relative density. In contrast, the normal-
ized 0.2%-yield strength Ry, 5 /ky, as well as Young’s modulus, increases disproportionately with the relative density.

Pure shear test. With the intent to directly determine the shear modulus, pure shear tests were also simulated. Our
main concern was to verify the validity of the continuum mechanics approach. This analysis requires the generation of a pure
shear stress state. In Fig. 13, different possible boundary conditions for a periodic cellular material are illustrated. Figure 13a
shows the generation of a pure shear state by applying the shear stresses t xy to a material. However, to define appropriate
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Fig. 12. Relative yield stress vs. the relative density: Ry 5 /kis (®); k¢ /kis (&).

boundary conditions in the case of a periodic cellular material, it is advisable to transform the shear stresses into the principal
stresses. Since our intent is to simulate isotropic solids, all the normal stresses must be applied in the same material axes. There-
fore, only possibility 2 (Fig. 13b) can be chosen in order to be in agreement with the uniaxial tests.

The shear modulus G can be determined in two different ways. The first possibility is to calculate G from the ratio be-

tween the shear stress 1, and the shear strain y ., with |1, [=[c, |and [y, |=e, [+ e

N

xy
G:|Txy|/|ny|' (6)
As an alternative, G can be calculated from Young’s modulus and the Poisson ratio according to the relation
_E
21+v) ™

Table 2 shows the values of the shear modulus determined by using both the methods. As is seen, the maximum differ-
ence does not exceed 0.12% and decreases with growing relative density. Thus, we can assert that the continuum mechanics ap-
proach provides realistic results within the linearly elastic region for an equivalent isotropic solid.
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Fig. 13. Different loading conditions for the realization of pure shear stress states. Explanations
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TABLE 2. Comparison of Poisson Ratios

Prel G, N/mm?, (6) G, N/mm?, (7) Deviation, %
0.1 606.07 605.30 0.12
0.2 2562.32 2559.67 0.10
0.3 4672.07 4668.00 0.09
0.4 6923.86 6917.96 0.09
0.5 9364.75 9358.07 0.07
0.6 12,047.55 12,050.60 0.03
0.7 15,034.03 15,034.03 0.06
0.8 18,431.41 18,420.88 0.06
0.9 22,371.66 22,359.89 0.05
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Influence of internal pore pressure. Possible applications of cellular metals can be found in heat exchangers, baffles,
flame barriers, and other items influenced by an internal pore pressure p;. The effect of this pressure was investigated for dif-
ferent relative densities.

Figure 14 shows stress—strain curves for a perforated cell structure with p ,o; = 0.5. As a reference, the case without an
internal pore pressure is shown. Also, the stress—strain curve obtained under the influence of an internal pore pressure (the ini-
tial value is 35 N/mmz, which is modified during deformation according to the ideal gas law) is presented. Compared to the ref-
erence curve, the initial macroscopic tensile yield stress is shifted to lower values, whereas the compressive yield stress reaches
higher negative values. The deviation of the macroscopic initial yield stress from the corresponding value of the reference
curve (p; =0 N/mmz) is 25.5 N/mm? both in tension and compression. The third graph in the figure shows that the deviation is
still existent after the initial tensile strain (for ¢ , = 0) is removed by simply shifting the stress—strain curve to the origin of coor-
dinates.

A symmetric deviation can also be observed in Fig. 15. Here, the initial yield stresses are shown for different internal
pore pressures varying from 0 to 50 N/mm?. The deviation of the yield stresses is linear and grows with internal pore pressure.
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Fig. 14. Influence of internal pore pressure p; on the macroscopic stress—strain diagram: (—)
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Fig. 15. Influence of internal pore pressure on the initial uniaxial yield stress: (@) — uniaxial
tensile yield stress; (A) — uniaxial compressive yield stress; (¥) — deviation of the tensile
yield stress; (®) — deviation of the compressive yield stress. 1 — uniaxial yield stress without
an internal pressure. p o = 0.8.

For all the other relative densities investigated, the same linear character is observed. Furthermore, the deviation of the initial
yield stress seems to be independent of the relative density.

Multiaxial tests. To investigate the shape of yield surface, multiaxial stress states are simulated, and the shape in the
corresponding octahedral plane is drawn according to the following transformation, which projects the principle stresses first

onto the octahedral plane (angle of transformation 3, cos & = ]7/\/5) and then into the Cartesian coordinate system (x, y) shown

in Fig. 16a:

J/=i[01 —05(op +onp)l, (8)

>

x:i(c —oqr)
7 om o) ©)
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Fig. 17. Yield surface in the space of principal stresses. 1 — hydrostatic axis.

Here, it is important whether the plastic behavior is pressure sensitive, i.e., depends on J 10 or not. If there is no such a depend-

ence, i.c., the yield surface does not change along the hydrostatic axis, all stress states can be considered in a single octahedral

plane. Otherwise only stress states with the same hydrostatic stress can be represented in the same octahedral plane with J 10 =

const. As a results, e.g., uniaxial tensile (J 10 =o7) and pure shear (J 10 = 0) tests cannot be represented in the same octahedral

plane. In order to construct the yield surface for the pressure-sensitive material examined, different multiaxial stress states with

Jl0 =0,e.g.,01 =—oy (o =0) or o] =20 =20 (0] >0V o <0), were realized, and the corresponding yield stresses

were plotted in the deviatoric plane, Fig. 16. The regular hexagon obtained corresponds to the outer bound of convex yield con-
ditions in the octahedral plane [14]. The filled circles in Fig. 16 are results from the finite-element simulation. It should be
noted here that this shape changes only in size (self-similarly) along the hydrostatic axes.
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To clarify the influence of the hydrostatic stress on the yield surface, its sections through the hydrostatic axis for 6=0° v

60° (Fig. 3) are shown in Fig. 16b. In this figure, the second invariant.J5 is plotted on the left vertical axis, and a concave curve
is obtained. However, to investigate the convexity of a yield surface (as required by Drucker’s stability postulate), the so-called

Haigh—Westergaard coordinates J 10 and \/2J5 are appropriate. In this coordinate system (Fig. 16b), a straight line is obtained,

and the convexity is confirmed. Figure 17 illustrates the yield surface in the space of principal stresses, and a double-sided pyr-
amid generated by twelve planes is seen.

Conclusion

A periodic model of a cellular metal has been developed for fundamental studies of the mechanical behavior of cellu-
lar materials over a wide range of relative densities. The numerical simulation of its uniaxial mechanical behavior agreed well
with experimental results for 2D and 3D cellular structures. The effect of different hardening behavior was much smaller than
the effect of different relative densities. The investigations of the mechanical behavior in the case of internal pore pressure re-
vealed that, even under quasi-static conditions, the uniaxial stress—strain behavior was significantly influenced, and different
results in tension and compression were obtained. Under the condition that all normal stresses are applied in the same material
axes, a convex yield surface depending on all three stress invariants were obtained. These results will be used to simulate the
mechanical behavior of sandwich structures with periodic cellular core materials in our further research work.
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On an elastic-plastic transition zone in cellular metals

A. Ochsner, W. Winter, G. Kuhn

Summary A theory of plasticity is proposed for cellular metals to describe their elastic-plastic
transition zone at small strain. Under certain conditions, only a plane strain test is necessary to
determine the yield surface. The method to derive the elastic-plastic behaviour [14, 15] was
originally proposed for classical metals. A simple cubic model of a cellular metal is used to
demonstrate the method by the finite element method. Recommendations for the numerical
simulation are given. The influence of the relative density and the hardening behaviour of the
cell wall material is investigated.

Keywords Cellular metal, Nonlinear behaviour, Plasticity, Yield surface, Relative density

1

Introduction

Cellular metals, e.g. metallic foams, exhibit unique properties and are currently under con-
sideration for use in lightweight structures of automobiles, aircrafts, etc. as well as passive
safety components, [3]. There have been developed many methods for their fabrication and one
can classify them into four groups: foams made from melts, from powders, by sputtering and
by deposition, [5]. Some fabrication methods have been known since the fifties, and each of
them results in a characteristic cellular structure. There are technological problems related to
the control of the material structure, since the vast majority of existing technologies do not
allow for precise control of the shape, size and distribution of the cellular pores. That brings
about a wide scatter in mechanical and other characteristics of these materials and compo-
nents.

Recently developed fabrication methods for hollow spherical structures result in quite
homogeneous pore structures, Fig. 1. First experimental investigations show that the material
properties of comparable samples seem to be entirely reproducible, [1]. The mechanical
properties of cellular metals, in particular their resistance to plastic deformation, the evolution
and progress of damage and fracture within the material, are determined by the microstructure
and the cell wall material, respectively. The most important structural parameters which
characterize a cellular metal are the morphology of its cell (geometry, open or closed cell), the
topology, the mean cell size and the relative density, p/pg (the macroscopic density, p, divided
by that of the solid material of the cell wall, pg).

A schematic uniaxial compression stress-strain curve for a cellular metal is shown in Fig. 2.
It shows linear elasticity at low stresses, followed by a transition zone which is followed by a
long collapse plateau, truncated by a regime of densification, in which the stress rises expo-
nentially. Many investigations focus on the large deformations taking place in zones 3 and 4.
The initial yield stress k is then equated with the plateau stress kpiy, so that the transition zone,
which can be clearly distinguished in certain cellular metals, remains unconsidered.
Relationships for the elastic and plastic (plateau) behaviour of low-density foams are given in [9].

In this paper, we will investigate the elastic-plastic transition zone 2 under multi-axial
loading conditions and apply to cellular metals an interesting method to characterize the
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Fig. 1. a Syntactic foam: hollow alu-
mina spheres embedded in a magne-
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elastic-plastic behaviour that was originally proposed for full dense metals, [14, 15]. Beside a
uniaxial test for the determination of the elastic constants, only a plane strain experiment is
necessary to describe the elastic-plastic behaviour. A simple cubic cell structure is used, Fig. 3,
that exhibits properties similar to those of the samples shown in Fig. 2 to demonstrate prin-
cipally the procedure, and to verify the theory by finite element (FE) simulations. Transfer to
other cell structures should be possible too.

2

Constitutive modeling of cellular metals

The mechanical behaviour of a cellular metal and its mathematical characterisation can be
described based upon the principles of continuum mechanics, if a representative volume element
(RVE) is considered, Fig. 3. In the case of cellular materials, this RVE needs to comprise of at
least five to ten unit cells (UC), in order to represent macroscopic values. The precise number
depends, however, on the corresponding cell structure and should be examined separately.
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Since the intention of this paper is to model only isotropic solids, no further account is taken of
the anisotropy caused by the particular pore distribution, and only strain states having prin-
ciple strain distributions parallel to the x- and y-axes are considered (cf. Sec. 3). This modelling
technique, based on homogenous cell structures, has already been applied for the description of
the plastic behaviour of porous metals, [8, 10], and for the modeling of damage effects, [11, 16,
17]. However, the elastic-plastic transition zone (cf. Fig. 2) was not investigated in those works.

2.1

Elastic behaviour

Under the classical assumptions of small strains and linear relationships between the second-
order stress tensor g and the strain tensor ¢;;, the elastic stress-strain relation is given by the
general Hooke’s law

I+v \J _
g =% (Uij 1 5ij0kk> = Cjsij (1)

where E is the Young’s modulus, Cjj; the fourth-order stiffness moduli tensor and v the
Poisson’s ratio. In a uniaxial tension or compression test, the only non-zero stress component
Oxx causes axial strain &y, and transverse strains ¢,, = &,,. Thus, one can determine the elastic
constants, i.e. the Young’s modulus and the Poisson’s ratio from Eq. (1).

2.2
Plastic behaviour
The three essential ingredients of plastic analysis are: the yield criterion, the flow rule, and the
hardening rule, [2]. The yield criterion relates the state of stress to the onset of yielding. The
flow rule relates the state of stress o;; to the corresponding increments of plastic strain def,
when an increment of plastic flow occurs. The hardening rule describes how the yield criterion
is modified by straining beyond initial yield.

The vyield criterion for an isotropic material can generally be expressed as

F = F(ay, 1,n5) =0 , (2)

where « is the isotropic hardening parameter and #; the kinematic hardening parameters
respectively. The state of stress ¢;; can be split in its spherical ¢} and deviatoric part o, = s;;
and then expressed in terms of the combinations of the three stress invariants J7, J; and Jj,
where J{ is the first invariant of the spherical stress tensor and J;, and J; are the second and
third invariants of the deviatoric tensor, [4]. Thus, one can replace Eq. (2) by

F:F(]fJQJQ,Kﬂﬁj):O . (3)

The elastic relation (1) prevail when F < 0. When the stresses are such that F = 0, yielding
begins or is already in progress. The case of F > 0 is not physically possible. The flow rule is
stated in terms of a function Q, which is described in units of stress, and is called a plastic
potential. With d/. a scalar called plastic multiplier, the plastic strain increments are given by
aQ
d.gl.j =dl B0y . (4)
The flow rule is said to be associated if Q = F, otherwise it is nonassociated. Hardening can be
modelled as isotropic (i.e. initial yield surface expands uniformly without distortion and
translation as plastic flow occurs) or as kinematic (i.e. initial yield surface translates as a rigid
body in stress space, maintaining its size, shape and orientation), either separately or in
combination.

23

Elastic-plastic behaviour under plane strain condition

Under the assumption of small strains, the total strain increment de;; is assumed to be the sum
of the elastic strain increment def; and the plastic strain increment ds‘g-

dej = de§y + def; (5)
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where the elastic strain increment can be obtained from Hooke’s law (1) and the plastic strain
increment from the flow rule (4). The elastic-plastic transition zone of metals can be described
according to [15] by the following yield criterion:

2
F=o(]}) +], —(K)’=0, (6)
——
f
where the parameter o and the shear yield stress k* control the transition in the elastic-plastic
range. When o is zero, Eq. (6) reduces to the well-known von Mises criterion, e. g. [12].

Application of the chain rule gives the derivative of the scalar function F, with respect to the
stress tensor g;; as

OF(J?,J;) OF 9} OF oJ,

dg; 9]¢ da;  OJ; 0oy

= 20(]?51']‘ +sij - (7)

If Hooke’s law (1) is applied for the elastic component and the associated flow rule (4) for the
plastic component, the complete stress-strain relationship for a material obeying the yield
criterion (6) is expressed as

0 14v v

Here the scalar parameter o must be determined experimentally. Following [14, 15], a plane
strain state is examined for that purpose. In a plane strain state of a planar cube (no wall
friction, principal directions are I, II, IIT), we may have e.g.

or>0 A g 7& 0, (9)
o 7é 0 A e = 0 y (10)
om=0 A e #0, (11)

where g1, oy and ¢; are the measured values. Using Egs. (9)-(11) with the associated flow rule
(4) and (8), the increments of the plastic strains are given by:

dSZI):di|:20((01+0'1[)+;‘(20'1—0'[1):| y (12)
dslI)I =dA [fo((n + o) + % (2071 — 01)] ) (13)

Dividing Eq. (13) by (12) and rearranging, the function o is obtained as

de 2+def
a2 @) -t

x= 6 de“’;l
(o1 + o) <1 - _dép)
I

For small plastic strains (respectively at the beginning of the yielding), the quotient is
del /def < 1 (respectively = 0) and the quantity o can be approximated by

1 -2
L. 0200 (15)
6 or+ oy

The increment of plastic strain can be determined from Eq. (5)

def = dey — det | (16)
dejy = ig,_H,_dE?I = —dey (17)

=0
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while the elastic strain increment can be obtained from Hooke’s law (1).

In the hardening theory of plasticity, the hardening parameter in the yield criterion must be
related to the experimental uniaxial stress-strain curve. To this end, one needs to define a stress
variable, called effective stress, which is a function of the stresses and some strain variable,
called effective strain, which is a function of the plastic strains, so that they can be plotted and
used to correlate the test results obtained by different loading conditions, [7]. Since the
effective stress should reduce to the stress o; in a uniaxial test, it follows that the function f(c;;)
must be some constant ¢ multiplied by the effective stress g, to some power n

flog) =c-ap (18)

For the uniaxial test, o5 = o; and o;; = g1 = 0, coefficient comparison gives ¢ = « —&—% and
n = 2, and the effective stress can be expressed as

a(]f)z +7 Plﬁzt;ai“ 3a(or + 011)2 + a2 + 0% — o107
o+ 3 30+ 1 '

(19)

The effective plastic strain increment deiﬁ( can be defined in terms of the plastic work per unit
volume in the form

pl.strain

dwP = Geﬁdsgﬁ = O'ijdb‘g = 0[61857 + O'Hdélz;[ + om d8ZI)H . (20)

=0

It follows from Eq. (20) using Egs. (1) and (19), that in the case of a plane strain test the
effective plastic strain increment is given by the following equation

1

def, =
eff Teff

1
O'1d£1; — E G[I(dO'H — VdG[) . (21)

3

Finite element simulation

The commercial FE code MSC.Marc was used for the simulation of the macroscopic properties
of the chosen cell structure, Fig. 3. A fine mesh with solid elements (quadratic shape functions)
of such a cell structure consisting of five to ten unit cells would lead, however, to a large amount
of unknowns and a huge computing time. Therefore, only a typical repeating portion (unit cell)
was simulated. Due to the symmetry of the unit cell, only one eighth needs to be considered.
The mechanically correct constraints are of great importance in this case, Fig. 4. Some
researchers use one surface of the unit cell as a free boundary. However, to simulate the
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Fig. 4. Finite element model of a unit cell with boundary conditions and applied loads for uniaxial tension
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mechanical behaviour of a cell structure, only a periodic boundary provides the correct con-
straint. With the aid of multiple point constraints (MPC), the used FE-system offers the pos-
sibility to realize such a boundary condition where all nodes on a certain surface have the same
x-displacement.

The effect of different boundary conditions on the deformation can be seen in Fig. 4. The
possible errors due to inadequate boundary conditions on the Young’s modulus E, the Pois-
son’s ratio v and initial tensile yield stress k™ can be taken from Table 1. All the following
simulations were carried out with this periodic boundary. Six different relative densities were
realised (cf. Table 2) and the influence of the different hardening behaviours of the base
material on the results were investigated . Besides the realistic hardening behaviour of an
aluminium alloy (AICuMgl), the two limiting cases: ideal plasticity (k = 301.06 MPa = const.),
and linear hardening (k =1/20 - Es - s‘z ) were considered. The base material was assumed to
be isotropic and to obey the von Mises yield criterion with the associated flow rule. A number
of computer runs were carried out to ensure the convergence of the selected mesh. The final
mesh data is summarized in Table 2.

Under certain circumstances it may be necessary that a cell structure built up from several
cells should be modelled (e.g. anisotropic damage). Then, the resulting calculation of a unit cell
with periodic boundary conditions provides an elegant way to show whether the number of the
cells in the structure can be regarded as a representative structure.

4
Results

4.1

Uniaxial tension tests

From the point of view of continuum mechanics, a state under pure shear stress (result: shear
modulus G) and a state under pure hydrostatic stress (result: bulk modulus K) should aim to
determine the elastic constants, since the constants are independent from each other in this
case. However, the experimental determination of the elastic constants is mostly based on a
simple realisable tension or compression test, from which Young’s modulus and Poisson’s ratio
can be obtained. Therefore, a uniaxial tension test is considered in the following. A typical
stress-strain diagram for such a uniaxial tension test is shown in Fig. 5. The initial elastic
region appears as a straight line, where the Young’s modulus can be calculated from Eq. (1).
Application of Eq. (1) also gives the Poisson’s ratio as a negative ratio of the lateral to the axial
strain. The initial (macroscopic) yield stress is recorded when the equivalent stress of an
integration point reaches the yield stress of the base material.

The results for the normalized Young’s modulus and Poisson’s ratio as a function of the
relative densities are summarized in Fig. 6. A clear decrease of the elastic stiffness and con-
traction number with decreasing relative density can be seen. These values form the basis for
the evaluation of the plastic material behaviour. In this graph, the limit of the relative density

(contact of two pores) of the chosen cell model, (p/ps) ;i = 0-48, is marked. Since the chosen

Table 1. Comparision of uniaxial tensile test results for different boundary conditions

Unit cell Unit cell with MPC’s Deviation
E = 39969 MPa E = 42784 MPa 6.58%
v =0.3229 v = 0.2784 15.98%
k™' = 81.4 MPa k™* = 114.7 MPa 28.97%

Table 2. Selected mesh density

Relative density Number of nodes Number of elements
0.95 11297 2400
0.90 8713 1800
0.80 4835 960
0.70 7421 1500
0.60 11769 2352

0.50 13464 2700
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cell structure should be an idealised model of a cellular metal where in the theoretical case
E/Es — 0 for 9/og — 0 holds, the investigated relative densities of the cell structure should not
be so close to (p/ps) imir> Since E/Es — 0 for 9/05 — (p/Ps) imi: is valid. This drop in stiffness is
not discussed in this paper. It should be noted here, that Young’s modulus and Poisson’s ratio
can be converted into shear and bulk moduli by the classical relationships for isotropic
materials, e. g. [6].

4.2
Multiaxial tests

For the determination of the yield criterion, one needs to realize different multi-axial stress or
strain states. Figure 7 shows the numerical results obtained for the yield stress and the slope of
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the yield criterion at points of first yielding and a subsequent yield surface obtained by con-
necting points with the same value of plastic work wf. Altogether ten states of strain were
analysed. It can be seen that the points can be fitted by a yield criterion according to Eq. (4),
which is an elliptical curve in the (1/J5,]J?) - plane (semi axes: k°/\/a and k*). This elliptical
shape is also common in the context of soil mechanics or sintered metals. To check the
normality criterion (associated flow rule), the angle between the incremental plastic strain
vector and the tangent to the yield surface has been calculated and is shown in Fig. 7. An
acceptable agreement has been obtained for most of the stress states. It should be noted that the
values were more accurate for smaller plastic strain increments.

4.3
Plane strain tests
The results of the measured stresses of a plane strain test are shown in Fig. 8. In the elastic
region &, = 0 is valid and from Eq. (1) we get v = g;/g; = 0.2784, a new relationship for the
calculation of Poisson’s ratio. This value was obtained from the uniaxial tension test, see
Table 1. This ratio changes in the elastic-plastic transition zone and converges towards the
straight line o = 0.41850; (case of rigid-plastic yielding of a von Mises material; cf. Eq. (17)
with (13)). It is interesting that in the case of ideal plasticity the convergence is not so marked
since the stress increase is prevented due to the constant yield stress. In conventional plasticity,
it is assumed that the volume remains constant for the material undergoing plastic deformation
(dsik = 0). In the deformation of cellular metals, however, the volume does not remain con-
stant in the plastic region.

The progression of the parameter o = oc(siﬁ) according to Eq. (14) is shown in Fig. 9. For the
first few increments after initial yielding, the approximation according to Eq. (15) was used.
The parameter decreases constantly from the initial value « = 0.05777 but does not reach zero,
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as in the case of classical metals. The progression of k or k* is not shown here, since the results
can also be obtained from the uniaxial test, Fig. 5.

Under the given assumptions, it is now possible to determine the yield surface by a plane
strain test. Figure 10 summarizes the shape of the initial yield surface for differing relative
densities.

5

Conclusion

A method that was originally proposed for the elastic-plastic transition zone of metals [14, 15],
has been successfully applied to a simple model of a cellular metal. Under the assumption of the
validity of a yield criterion according to (6) and the associated flow rule, a simple plane strain
test offers the possibility to determine the yield surface for different relative densities. The
application of the method to other cell structures (e.g. for open cell structures with low density)
and experimental realisations are reserved for future research.
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