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Scheduling expansion problems have typically been formulated to find the timing and 
scale of predefined projects that minimize the total present worth cost. The high capital and 
environmental costs of major infrastructure options have stimulated interest in optimizing 
operational decisions such as conservation rules as a way of delaying or avoiding 
investment in major infrastructure. This paper demonstrates the benefit of jointly 
optimizing staged infrastructure and operational decisions to cope with growth in urban 
water demand. It also demonstrates social equity problems that may arise from minimizing 
total present worth costs. It develops a multi-objective formulation for the scheduling 
expansion problem which enables cost and equity to be traded-off. 
 
Introduction  
 
Typically the demand for urban water resources increases with population growth. Capacity 
expansion involves the provision of additional yield by increasing the storage of existing 
infrastructure and the construction of new infrastructure tapping new sources of water or 
increasing storage. In its simplest manifestation capacity expansion deals with sizing 
reservoirs - for example, Khaliquzzaman and Subhash [1] developed a model for sizing 
multiple reservoirs, while Mousavi and Ramamurthy [2] proposed an optimization method 
to determine the optimal multi-reservoir system design for water supply. Other studies have 
explored capacity expansion options beyond sizing reservoirs – they include developing a 
water supply system layout [3], designing a water distribution system [4] and developing a 
drought management plan [5].  

All the aforementioned studies have focused on decisions at the start of planning period. 
However, decisions to expand capacity can be implemented at different points of time over 
the planning period to take advantage of delaying a portion of investment outlays. Although 
the construction of large infrastructure at the start of the planning period exploits the 
economies of scale, the time discounting of costs and the dynamics of growth may 
nonetheless favor smaller projects staged over the planning period. To analyze this trade-off 
several studies have considered expansion scheduling [6-14]. In these studies, the objective 
was to schedule a set of capacity expansion projects that minimized the total present worth 
cost.  

The high capital costs and environmental impacts associated with expanding or building 
major urban water infrastructure warrant investigation of dynamically scheduling system 
operating rules such as reservoir operating rules, demand reduction polices and drought 
contingency plans, as a way of delaying or avoiding the expansion of water supply 
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infrastructure [9, 15]. Lund [9] incorporated conservation rules into the scheduling capacity 
expansion problem. He demonstrated the benefit of using conservation rules to defer water 
treatment plant expansion. In Lund’s study the present worth of conservation cost and 
capacity expansion cost was minimized to find the optimum time of adding new capacity to 
the system. However, a drawback of this approach is that discounting conservation costs 
can lead to higher levels of demand reduction in the future than in the present. This raises a 
socially-sensitive equity issue. 

In this paper we propose application of multi-objective optimization for scheduling 
capacity expansion in an urban system with consideration of equity over the planning 
period. The paper is organized as follows: First, a description of the scheduling expansion 
concept is presented. Then the formulation of the multi-objective optimization problem for 
scheduling expansion is presented. Finally a case study involving the Canberra water 
supply system is presented to compare the results of single- and a multi-objective capacity 
expansion. 
 
Formulation of Multi-Objective Scheduling Capacity Expansion Problem 
 
Scheduling expansion problems have typically been formulated to find the timing of 
predefined projects that minimizes the total present worth cost (PWC). Indeed, given this 
perspective, the main aim is to find the best sequence of projects [16]. However, projects 
often can be established at different scales. Thus, the scheduling capacity expansion can be 
generalized to find the optimum timing and scale of predefined projects.  

Figure 1 illustrates the scheduling process. Given the initial yield of the system is d0, the 
system can meet demand up to time T1. At time T1, a decision is made to add extra yield E1. 
As a result, system yield will exceed demand until time T2. Similarly decisions are taken at 
later times to provide additional yield. Thus T1, T2 and so on represent change points at 
which decisions are made. The period between two change points is called a planning stage. 

Let xi denote a vector of decision variables at change point i occurring at time Ti. The 
vector xi defines the project or set of decisions for the ith planning stage and can represent a 
mix of infrastructure options and operating rules. 

 

 
Figure 1. Schematic of scheduling expansion over a planning period. 
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For the urban problem, the present worth cost of a particular sequence of projects over 
M planning stages X = {x1,..xM} can be expressed as 
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where T is number of years in planning period, r is the discount rate, 
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is the sequence of projects or decision vectors made on or 

before year t, Ct is the cost of infrastructure investments in year t, Ot is the operational cost 
for year t, CRt is the cost associated with restricting demand according to the drought 
management plan and Ut is the cost of unplanned demand shortfalls in year t.  

Eq. (1) is traditionally applied to capacity expansion problems in conjunction with 
demand restriction rules. However, discounting restriction costs results in the same 
frequency and severity of restrictions in the future being costed less than the same level in 
the present. As a result, minimization of Eq. (1) can lead to a higher frequency and severity 
of restrictions in the future, a situation which often would be politically unacceptable on 
social equity grounds. To overcome this practically important shortcoming, the restriction 
cost can be treated separately from infrastructure and operational costs by employing multi-
objective optimization. This allows exploration of the trade-off between operational and 
infrastructure costs and equity of the restriction costs. The first objective minimizes the 
present worth of infrastructure and operating costs over the planning period. The second 
objective minimizes the average of cost of actual restrictions averaged over the M planning 
stages – no discounting is employed so that the burden of restrictions on the community is 
treated equally regardless of the planning stage. The third objective minimizes the standard 
deviation of actual cost of restrictions over the planning stages to maximize equity over the 
planning stages.  

Restriction frequencies, and as a consequence, restriction costs, are dependent on future 
climate scenarios. To capture the uncertainty in future climate scenarios it is necessary to 
run the simulation model of the urban water resource system with many replicates of the 
future climate. Thus the three objectives can be formulated as 
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where L is the number of climate replicates and mlCR  is actual total restriction cost over 
planning stage m for the lth future climate replicate. 

The cost of restrictions can be expressed as [18] 
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where R is the fractional reduction in water consumption of a particular household in 
response to water restrictions, p1 ($/KL) is the current price, q1 (KL/month) is the 
household outdoor consumption and ε is the price elasticity.  

Urban Water Resource Case Study 

 
The case study seeks to identify the optimal capacity expansion scheduling for the 
headworks water supply system serving Australia’s capital city, Canberra. A network linear 
programming simulation model was developed using WATHNET [18]. In the WATHNET 
schematic, shown in Figure 2, the Canberra urban area is represented by a single demand 
node serviced by large reservoirs in two major catchments, Corin and Googong. In this 
study, the population of Canberra has been increased to 175% of the current population to 
enable investigation of a system in a highly stressed state. Releases from the reservoirs 
have to meet, not only the consumptive needs of the Canberra urban area, but also 
environmental flow requirements defined in water authority’s operating license.  

 

Figure 2. WATHNET schematic of Canberra water supply system. 
 

A planning period of 30 years was used with three planning stages of length 10 years. 
The first set of decisions x1 is implemented at the start of year 1, the second set x2 at the 
start of year 11, and so on. In all 30-year simulations, reservoirs are assumed to be full at 
the start of the first stage. The demand growth rate and discount rate were set to 1.2% and 
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5% respectively. To allow for the stochastic nature of inflows into reservoirs, all scenarios 
were run for 50 replicates. Each replicate has different inflow series for all reservoirs.  

Six decisions describing a mix of operational and infrastructure options can be 
optimized at each planning stage. These decisions and their lower and upper limits are 
presented in Table 1. When an infrastructure decision is equal to zero, it means that 
infrastructure option is not implemented. Once the first two infrastructure options are 
implemented, they cannot be augmented at a future planning stage. In contrast, the third 
infrastructure option involving rainwater tanks can be augmented in future stages. 

 
Table 1. List of decision variables. 

Decision description Lower limit Upper limit Category 

Cotter capacity(ML) 0 100000 Infrastructure 

First restriction trigger 0 1 Operational 
Trigger intervals 0.05 0.25 Operational 

Murrumbidgee diversion (ML) 0 6000 Infrastructure 
Murrumbidgee pump trigger 0 1 Operational 
Number of houses with tanks 0 15000 Infrastructure 

 
To investigate the importance of scheduling capacity expansion projects over a planning 

period, four scenarios, summarized in Table 2, are considered. They differ in timing of their 
infrastructure and operational decisions. In Scenario 1, all the decisions are made at start of 
the first planning stage. In Scenario 2, all infrastructure decisions are made at the start of 
the first planning stage, while operational decisions are flexible in the sense they can be 
changed in the first, second and third planning stages. In Scenario 3, all the decisions can 
be made at any planning stages subject to 0-1 constraints on the infrastructure options. The 
first three scenarios minimize a single objective, namely PWC. The fourth scenario 
minimizes three objectives with the same decision timing as Scenario 3. 

 
Table 2. Case study scenarios. 

Scenario Objectives Timing of decision 
Infrastructure Operational 

Sc 1 Minimize PWC Stage 1 Stage 1 
Sc 2 Minimize PWC Stage 1 Any stage 
Sc 3 Minimize PWC Any stage Any stage 
Sc 4 Eq. (2) to (4) Any stage Any stage 

 
In this study eMOEA is employed as the optimization method because of its good 

performance when compared with other available evolutionary methods [19]. Since 
eMOEA is a probabilistic method, it is necessary to run the optimization with different 
initial seed numbers. In this study all scenarios were run 10 times. The results report the 
best out of 10 runs. The probability of crossover was set to one, while the probabilities of 
mutation and inversion were set to 0.01 and 0.005 respectively. 
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Results 

 
Table 3 presents the results for the first three scenarios. To better understand the differences 
between the scenarios, the total PWC is disaggregated into its component values. Although 
the capital and operational cost is almost the same for all scenarios, the discounted 
restriction costs vary significantly. 

 
Table 3. Results for first three scenarios. 
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Sc1 462 393 69 60178 50.6 99.7 57.3 54.1 
Sc2 445 391 54 0 59.4 89.6 49.6 50.5 
Sc3 444 396 48 56099 34.4 53.2 35.9 36.9 

 
Scenario 1 has the maximum discounted restriction cost because, in this case, the 

optimizer had to select all the decisions at the beginning of the first planning stage. The 
discounted restriction cost of Scenario 2 is smaller because allowing flexible operational 
rules over planning stages reduces the chance of imposing unnecessary restrictions. The 
optimal strategy is to provide flexibility in timing and sizing of both infrastructure and 
operational decisions. This is clearly demonstrated in Table 3 where Scenario 3 has the 
lowest total PWC. However, it is noted that virtually all of the benefit of scheduling comes 
from allowing the operational decisions to change over time.  

In all the scenarios in Table 3, the third planning stage has a larger restriction cost 
compared to the second one and similarly the second stage has a larger restriction cost 
compared to the first stage. There are two factors responsible for this. First, the use of 
discounted restriction costs encourages the optimizer to postpone restrictions to future 
stages because that is the optimal strategy. Second, the system was initially full, so the 
chance of restrictions in the first planning stage is reduced - the flexible timing of 
operational decisions in Scenarios 2 and 3 exploits this initial condition. 

Scenario 4 attempts to treat all planning stages equitably with respect to the burden of 
restrictions. Figure 3 presents the Pareto frontier for this scenario. There is a trade-off 
between the infrastructure/operational costs and the cost of imposing restrictions. Indeed, 
the restriction cost can be very large in the absence of significant infrastructure investment. 
The figure also shows that restriction costs are virtually eliminated when the 
infrastructure/operational cost exceeds $800 million – it is noted this is far in excess of the 
$444 million total PWC obtained in Scenario 3. 
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Figure 3. Pareto frontier for scenario 4. 

 
Conclusion 
 
Urban population growth will result in a greater future demand for water. To cater for this 
growing demand, a variety of options are available including operational decisions such as 
imposing restrictions and promoting more efficient water use and infrastructure investments 
such as building dams. Because the water resource system is facing a growing demand, its 
performance will change over time. As a result, the main challenge is to find the best 
combination of these options both in scale and time.  

Many studies have investigated methods to find the optimum size and timing of 
capacity expansion of projects with the aim of minimizing the total present worth cost. This 
study has demonstrated the importance of scheduling operational as well as infrastructure 
decisions over the planning period. Indeed in the Canberra case study, virtually all of the 
benefit of scheduling over time was attributed to operational decisions.  

Some studies have considered the use of conservation and restrictions to delay 
infrastructure investment. However, it was shown that the minimum total present worth 
cost strategy can lead to more severe restrictions in future planning stages resulting in 
socially-unacceptable inequity. To remedy this problem, the scheduling problem can be 
reformulated as a multi-objective optimization allowing the trade-off between cost and 
equity to be explored. The Canberra case study demonstrated that the multi-objective 
approach produced far more equitable solutions than minimization of total present worth 
cost. 
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