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Abstract— This paper is concerned with the mathematical
analysis of signal transformation approach to triangular wave-
form tracking. We provide necessary and almost sufficient
conditions for stability and convergence of tracking error for
a general class of plants and compensators. Simulation results
are presented that reveal the conditions under which the incor-
poration of signal transformation blocks in a linear feedback
loop may introduce control performance improvements.

I. INTRODUCTION

Accurate tracking of a fast triangular waveform is one

of the major challenges in scanning probe microscopy [1],

[2] and other scanner-based devices such as optical scanners

and selective laser sintering (SLS) machines [3], [4]. Raster

scanning is also used in emerging probe-based data storage

devices that demand high speed positioning with limited

control bandwidth, due to measurement noise, actuator limi-

tations, etc. [5], [6]. The triangular waveform contains all odd

harmonics of the fundamental frequency. The high-frequency

content in a fast triangular waveform can excite the resonant

modes of the plant and subsequently degrade the tracking

performance.

In [7], the concept of signal transformation was put

forward as a novel method to track triangular waveforms in

a nanopositioning system. The method showed significant

closed-loop performance improvement compared with the

ordinary one degree-of-freedom (1-DoF) feedback-control-

system1 having a similar control bandwidth [7]. However,

only a second-order plant with no zeros and a double-

integrator compensator were considered in [7] without any

stability analysis.

In this paper, we provide an analysis of the signal trans-

formation method, which leads to sufficient and almost

necessary conditions for stability of the control system when

tracking a triangular waveform. As in [7], the plant will be

assumed to have a unity low-frequency gain. This condition

is not so restricting as long as a stable feedback loop with an

integrating compensator can be wrapped around the original

plant. Furthermore, the analysis in this paper includes plants

and compensators that have strictly proper transfer functions

with arbitrary poles and zeros. The remainder of this paper

is organized as follows. The signal transformation method
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is briefly reviewed in section II. Necessary and sufficient

conditions for exponential stability of the system are formu-

lated in section III. Steady-state behavior as well as sufficient

and almost necessary conditions for convergence of tracking

error to bounded limits are quantified in Section III-A. In

Section IV, empirical conditions are presented under which

the control performance is improved after incorporation of

the signal transformation in the ordinary feedback system.

II. SIGNAL TRANSFORMATION

Signal transformation method incorporates appropriate

mappings between non-smooth signals (e.g. triangular wave-

forms) and smooth signals (e.g. ramps) in a control system

to improve the tracking error while keeping the closed-loop

bandwidth low to limit the projected measurement noise [7].

The signal transformation method for control of a SISO

plant is described by the hybrid control system shown in

Figure 1, where Φ and Φ−1 refer to the signal transformation

mappings, which in the case of triangular signal tracking use

piecewise constant gains g1 and g2, as well as biases b1 and

b2, that can be presented in the following forms,

g1 = g2 = (−1)i−1, b2 = 2a0floor(i/2), b1 = (−1)ib2
(1)

Here, a0 is the amplitude of the desired triangular waveform

xd, which has period 2T , as shown in the left top insert in

Figure 1, and i is the index of half period defined as:

i(t) = k, if t ∈ [kT − T, kT ), k = 1, 2, 3, . . . (2)

The signal transformation blocks, which use g2 and b2, can

convert the non-smooth periodic triangular signal xd to a

smooth ramp signal denoted by r in the right top insert in

Figure 1. The signal transformation block between the plant

and compensator does the reverse action, i.e. it can convert

the smooth ramp signal into the non-smooth triangular signal.

Under the ideal circumstances, where the plant is a unity gain

transfer function and its output is perfectly following the

desired signal, the input/output signals at compensator block

will be smooth signals with no breaks or discontinuities and

the burden of providing appropriate non-smooth trajectories

at the actuator, which demands a high control bandwidth

in an ordinary feedback system, is done by the signal

transformation blocks. In this way, the compensator can be

designed with a smaller closed-loop bandwidth in favor of

rejecting the measurement noise without deteriorating the

steady-state error.
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Fig. 1. Schematic diagram of signal transformation method for triangular waveform tracking.

Fig. 2. Schematic diagram of the equivalent control system.

III. STABILITY ANALYSIS

We assume that the plant and compensator dynamics are of

degrees np and nc and are described by linear-time-invariant

state-space matrix sets [Ap, Bp, Cp] and [Ac, Bc, Cc] with

Xp and Xc referring to the corresponding state vectors,

respectively. The feedthrough matrices have been assumed

zero. To start the analysis we merge the plant and its adjacent

signal transformation blocks into a unified state-space model,

called equivalent plant. Hence, we wish to determine under

what circumstances, the simple control system shown in

Figure 2 is equivalent to the original hybrid control system in

Figure 1, i.e. with the same ramp signal r(t) in both control

systems, the time histories of variables e, v, Xc, and y in

the equivalent system shown in Figure 2 are the same as

the corresponding variables in the original system shown in

Figure 1. The following lemma provides the conditions for

the foregoing equivalence.

Lemma 3.1: In a time interval t ∈ (iT−T, iT ), the hybrid

control system in Figure 1 is equivalent to the control system

in Figure 2 and state Xe of the equivalent plant is related to

the plant state by equations

Xe :=
1

g1
(Xp + F ), F := A−1

p Bpb1, (3)

provided that the gains and biases are constants (in the time

interval) satisfying the following relationships

g1g2 = 1, b2 − g2CpA
−1
p Bpb1 = 0, (4)

and the equivalent state vector at the start of the time interval

is initialized according to (3).

Conditions (4) are satisfied with the selected gains and biases

in Equations (1) if the plant has a unity DC gain (δ0 = 1).

If the plant has a transfer function of the form:

Pol(s) :=
x(s)

u(s)
=

δ0 + δ1s+ · · ·+ δnp−1s
np−1

1 + ǫ1s+ · · ·+ ǫnp
snp

, (5)

its state-space realization can be written by the following

canonical form:

Ap =

[

0(np−1)×1, Inp−1;
−1

ǫnp

,
−ǫ1
ǫnp

, · · · ,
ǫnp−1

−ǫnp

]

,

Bp =

[

0(np−1)×1;
1

ǫnp

]

, Cp =
[

δ0, · · · , δnp−1

]

. (6)

The overall state vector X of the equivalent closed loop

system, defined as:

X :=

[

Xe

Xc

]

, (7)

obeys the following state-space equation
{

Ẋ = AX +Br
y = CX

(8)

where

A :=

[

Ap BpCc

−BcCp Ac

]

, B :=

[

0np×1

Bc

]

, (9)

C :=
[

Cp 01×nc

]

(10)

The equivalent plant state Xe must be initialized by (3)

at the start of each half period, which requires knowledge

of plant state Xp. To use the equivalent control system as

a stand-alone machinery for analysis, appropriate formulas

are necessary to update the equivalent state at the switching

moments t = iT . The following theorem gives the updating

relationships at the switching moments.

Theorem 3.2: With the triangular reference signal shown

in Figure 1, signal transformation parameters (1), and unity

DC gain for the plant, the overall state vector of the equiv-

alent control system just before a switching moment obeys

the recursive formula:

X−

1 := X(T−) = EX0 +H, (11)

X−

i+1 := X(t)|t=(i+1)T− = ÂX−

i +Ji+H, i = 1, 2, 3, . . . ,
(12)

and the state just after a switching moment is updated using

its value just before the switching moment as:

X+
i := X(iT+) = ÎX−

i + Li, i = 1, 2, 3, . . . , (13)

where L is the constant (np + nc)× 1 vector:

L := [2a0, 0, . . . , 0]
T , (14)
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and

Î :=

[

−Inp
0

0 Inc

]

, X0 :=

[

Xp(0)
Xc(0)

]

, (15)

E := eAT , H :=

[

1

T
(E − I)A−1 − I

]

A−1Ba0, (16)

Â := EÎ, J := (E − I)A−1Ba0 + EL . (17)

Proof: For brevity, a sketch of the proof is presented

here. In the original control system shown in Figure 1, the

gains and biases have discontinuous changes at the switching

times t = iT (i = 1, 2, 3, . . .), which makes the signals y and

u discontinuous. However, the states and outputs of the plant

and compensator (Xc, Xp, v, x) are continuous due to zero

feedthrough matrices and the inherent integration actions

in the compensator and plant state equations. Hence, the

equivalent plant state Xe has discontinuities at the switching

times because of g1 and b1 (see Equation (3)). Thus, to

maintain the equivalence of the simple control system shown

in Figure 2 with the original control system over time

intervals longer than a half period, we have to intentionally

incorporate appropriate jumps in the equivalent plant state

Xe at each switching time. Using the commutativity of

multiplication of A−1 and eAt, the solution of the state X
from state-equation (8) in the time interval t ∈ (iT, iT + T )
with ramp input r = a0t

T
, in terms of the state just after the

switching moment t = iT , can be written in the following

form.

X(t) = eAt′X+
i + [(eAt′ − I)(a0iI +A−1α)−αt′I]A−1B,

(18)

where

t′ := t− iT, α :=
a0
T
, X+

i := X(iT+). (19)

Equation (12) defines a discrete-time LTI dynamic system

with Â as the state matrix, [J,H] as the input matrix, and

[i, 1]T as the input vector whose first element is a discrete-

time ramp signal. Hence, a necessary condition for the

closed-loop system to be free from exponentially unstable

modes is that all eigenvalues of Â are inside the unit disk.

This condition is also a sufficient one because the state at the

arbitrary time t = iT +t′ depends on X−

i through Equations

(13) and (18) and variable t′ is limited to t′ ∈ (0, T ), which

shows that if X−

i does not have any exponentially unstable

mode, neither does X(t). In the more general case, where

the desired signal xd is an arbitrary bounded signal but

the signal transformation parameters are kept as before with

unity DC gain for the plant, Equation (13) will not change

but Equations (18), (11), and (12) can be represented in the

following forms:

X(t′+iT ) = eAt′X+
i +(eAt′−I)A−1Ba0i+W (i, t′), (20)

X−

1 = EX0 +W (0, T ), (21)

X−

i+1 = ÂX−

i + Ji+W (i, T ), i = 1, 2, 3, . . . , (22)

where

W (i, t′) = (eAt′ − I)A−1Ba0
1− (−1)i

2
+

∫ t′

0

eA(t′−τ)xd(τ + iT )dτB(−1)i (23)

Since vector W (i, t′) is bounded, because of the bounded-

ness of xd, the aforementioned condition about the absence

of exponentially unstable modes is not restricted to the

triangular waveform and is also valid for arbitrarily bounded

reference inputs.

Corollary 3.3: Assuming unity DC gain for the plant

and signal transformation parameters (1), the hybrid control

system is free from exponentially unstable modes if and only

if the eigenvalues of matrix Â, defined in (17), are inside the

unit circle.

A. Steady-state behavior with triangular reference

The signal transformation converts the original triangular

reference into a ramp signal. However, it is not desirable for

the plant states to grow linearly with time. The following

theorem provides conditions under which the states of the

plant remain bounded in steady-state conditions.

Theorem 3.4: Assuming the triangular reference input in

Figure 1, unity DC gain for the plant, signal transformation

parameters (1), and eigenvalues of matrix Â inside the unit

circle, the plant state in the hybrid control system will remain

bounded if and only if either of the following conditions is

satisfied.

δc := −CA−1B = 1 (24)

P (t′) := [Inp
, 0]eAt′ Î(I − Â)−1L+ 0.5L = 0, ∀t′ ∈ (0, T )

(25)

Proof: For brevity, a sketch of the proof is presented

here. Using equality −A−1
p Bp = [1, 0, . . . , 0]T and succes-

sive use of Equation (12), the coefficient of i in the steady-

state solution of the plant state vector can be expressed in

the following form:

(−1)iP (t′)(δc − 1), (26)

which reveals that the plant state tends to a bounded value

if and only if either the closed-loop DC gain δc is unity, or

all the elements in the time-dependent vector P (t′), defined

in (25), are identically zero.

Since condition (25) is almost impossible to occur, condition

(24) is almost a necessary condition for bounded-ness of

the plant state. The plant does not have any pole at the

origin because of its unity DC gain. Hence, the only way

for the closed-loop system to have a unity DC gain is that

the compensator has at least one pole at the origin. Thus, a

sufficient and almost necessary condition for bounded-ness

of the plant state is that the compensator has at least one

pole at the origin.

In the more general case of an arbitrary bounded reference

signal xd, using (22), the constant vector H should be

replaced by the bounded vector W (i−k, T ). In this way, all
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of the terms which grow with i, remain unchanged. Hence,

the aforementioned condition about the bounded-ness of the

plant state is not restricted to the triangular desired waveform

and is valid for any arbitrary bounded reference signal xd as

well.

Corollary 3.5: Assuming unity DC gain for the plant,

signal transformation parameters (1), and eigenvalues of

matrix Â within the unit circle, a sufficient and almost

necessary condition for the plant state to remain bounded

in the hybrid control system is that the compensator has at

least one pole at the origin.

The position error ep := xd − x is simply related to the

tracking error e := r − y by the following formula.

ep := xd−x = g−1
2 e = (−1)i−1(r−y), for iT−T < t < iT

(27)

Assuming the triangular desired signal shown in Figure 1

for xd, the conditions mentioned in Corollary 3.5, condition

(24), one can show that the profile of the error in steady-state

can be expressed in the following form:

lim
i→∞

ep(t
′ + iT ) = (−1)i−1C

[

eAt′ Î(I − Â)−1(E − I)

+ eAt′ − I
]

A−2Bα (28)

where t′ ∈ (0, T ). Equation (28) can be further simplified

into the following form if the compensator has at least two

poles at the origin.

lim
i→∞

ep(t
′ + iT ) = (−1)i−1CeAt′(Î −E)−1(Î − I)A−2Bα

(29)

Equation (29) is useful for fast and accurate calculation of

steady-state profile of the error. Moreover, for a first-order

plant, vector (Î − I)A−2B is vanished and the steady-state

error (29) is identically zero.

Remarks: The restriction of unity DC gain for plant may be

removed if one can wrap an ordinary stable inner loop with

integral action around the plant. In this case, the block named

plant in Fig. 1 should contain the original plant and the

inner loop. This method can also provide robustness against

disturbances.

IV. SIMULATION RESULTS

To compare the control performance of the signal trans-

formation method with that of an ordinary 1-DoF feedback

system, a number of simulation results are presented in this

section. To reduce effect of high frequency components of

the measurement noise at the output, the controllers are

designed such that the closed-loop transfer function from

measurement noise n to the plant output x in the feedback

system shown in Fig. 3 has a very low bandwidth. Such

a constraint limits the tracking performance of the control

system. In ordinary 1-DoF feedback control systems, for an

acceptable tracking of a triangular reference, the fundamental

frequency should be less than one third of the closed-loop

bandwidth [8].

Fig. 3. Illustration of the ordinary 1-DoF feedback control system with
measurement noise.

A. Comparison of performances with no plant zero

In this section, we consider two stable third order plants

P1(s) and P2(s) with no zeros and poles in the following

form.

Poles of P1 = −100,−103,−104 (rad/sec) (30)

Poles of P2 = −70± 70i,−104 (rad/sec) (31)

The plants have unity DC gains and almost the same −3dB

open-loop bandwidth of 16Hz. The dominant mode for the

first plant is governed by just one pole and for the second

plant by a pair of complex poles. It is pointed out that

dynamics of plants P1 and P2 are quite similar to typical

positioning systems with their dominant modes described

by over-damped and under-damped mass-spring systems,

respectively [9], [7]. The controller is a double integrator

with the following transfer function, which is a popular

controller for tracking of ramp signals [10].

K(s) :=
ki
s

+
kii
s2

, (32)

The state-space representation of controller can be realized

by the following matrices.

Ac =

[

0 kii
0 0

]

, Bc =

[

ki
1

]

, Cc =
[

1 0
]

(33)

The desired triangular signal has unity amplitude a0 = 1
and a half period of T = 1 sec. With unity controller gains

ki = kii = 1 for both plants, the open-loop bandwidth of

16Hz is reduced to the closed-loop bandwidth of 0.29Hz,

which would significantly reduce the effect of measurement

noise on the output (See Figure 4). Since the closed-loop

bandwidth is less than the fundamental frequency of the

triangular reference, the ordinary feedback system is not

expected to have a good tracking performance. The control

systems for the first and the second plant have almost the

same phase margins of +51◦ with different gain margins of

60dB and 42dB, respectively, and the following closed loop

poles in rad/sec.

With P1 = −0.5± 0.87i,−98.9,−103,−104 (34)

With P2 = −0.5± 0.87i,−69.5± 69.5i,−104 (35)

The steady-state errors with signal transformation and with

ordinary feedback system have the profiles shown in Figure

5(a) and (b), respectively. As expected, the ordinary feedback

system cannot provide an acceptable performance at such a

low bandwidth. With the proposed signal transformation, the

tracking performances become acceptable and the maximum

steady-state errors with the first and the second plants are
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295 and 53 times better than that of the ordinary feedback

system, respectively. The lower steady-state error associated

with the first plant is due to first-order behavior of its

dominant mode, which agrees with the conclusion mentioned

at the end of Section III-A for the first-order plants. The

following parameter can be considered as a measure of

transient performance for the signal transformation method.

γ :=
∣

∣

∣
λmax(Â)

∣

∣

∣
(36)

This parameter represents the magnitude of the pole of the

closed-loop discrete-time system (12), which is closer to the

unit circle than the other poles and should be less than 1 for

stability. Moreover, the smaller the value of γ, the faster is

the decay rate of matrices Âi−1 and Âi as i tends to infinity.

The value of this parameter with the selected parameter

values is 0.613 for the first plant and 0.615 for the second

one. The graphs of transient responses of the system with

signal transformation and zero initial states are shown in
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Fig. 6. Tracking of a 5Hz triangular reference with signal transformation
and low closed-loop bandwidth of 0.29Hz (a) steady-state error profiles in
a half period (b) Transient responses (c) Closed-loop responses with a more
bandwidth of almost 2Hz obtained by ki = kii = 10.

Figure 5(c). The mentioned results clearly show the overall

improvement obtained by the signal transformation method

in this example.

If we decrease the period of the desired triangular reference,

the steady-state error will increase with the signal transfor-

mation, and so will γ, which renders the system unstable,

while in the ordinary feedback system the stability is not

affected by the period. In the above example, if we increase

the fundamental frequency of the triangular reference to

5Hz (16 times more then the closed-loop bandwidth) while

keeping the other parameters unchanged, the first plant with

signal transformation has a very low steady-state error as

shown in Figure 6(a) with the thick solid line. However, the

transient response with the signal transformation is deteri-

orated as the period of the triangular reference decreases

and so is the settling time, as shown in Figures 5(c) and

6(b). With the fast triangular reference of 5Hz, the second

plant with a second-order dominant mode exhibits more

steady-state error compared with the first plant. Hence, if

the transient in the signal transformation method can be

tolerated, the frequency of the triangular reference should

not be increased much higher than the closed-loop bandwidth

for plants with dominant modes of second-order or higher.

In this example, we observed that the transient responses of

the signal transformation scheme can be improved without

deteriorating the steady-state performances by increasing the

compensator gains ki and kii at the expense of increasing

the closed-loop control bandwidth (see Figure 6(c) and its
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explanation).

B. Effect of plant zeros

Before finding a general criterion under which the con-

trol performance is improved by the signal transformation

method, it is helpful to consider the effects of plant zeros

by simulation, although plants with dominant zeros are not

usual in positioning applications. If we allow for two zeros

of −150 and −1500 rad/sec in the first plant described in

Section IV-A while keeping the plant’s DC gain unity, we

will still find the signal transformation method introducing

similar improvements mentioned there. The improvements

are also repeated even if either of the plant zeros has

a sign change, which renders the plant a non-minimum-

phase system. However, if we move the plant zeros to −15
and −150 rad/sec, where the dominant zeros are closer to

the origin than the dominant open-loop poles, the signal

transformation method produces large errors at the initial

moments of each half period, as shown in Figures 7(a) and

7(b) for a plant with the same poles as the first plant. In

this case, where the closed-loop bandwidth is 0.27Hz with

unity compensator gains, the signal transformation method

cannot improve the steady-state tracking performance of the

ordinary feedback system for a faster triangular reference

with fundamental frequency of 5Hz, as shown in Figures 7(c)

and 7(d). In the foregoing case, the ordinary feedback system

has an unlimited gain margin and a safe phase margin of 56◦.

However, its response to a unit step disturbance applied at

the plant input has an undesirable overshoot of 35, which is

mainly due to the dominant zero at −15 rad
sec

.

V. CONCLUSIONS

Signal transformation method can improve the steady-state

error in tracking of a periodic triangular desired signal while

keeping the closed-loop control bandwidth quite low for

reduction of projected measurement noise. When the plant

low-frequency-gain is unity and the signal transformation

parameters are defined according to (1), the closed-loop

system with signal transformation is free from exponentially

unstable modes if the eigenvalues of matrix Â, defined in

(17), are inside the unit circle. Moreover, a sufficient and

an almost necessary condition for the plant state to remain

bounded is that the compensator has at least one pole at

the origin. Simulation shows that when the compensator is

simply a linear combination of an integrator and a double

integrator, as defined in (32), the signal transformation makes

the control performance better in comparison with an ordi-

nary 1-DoF feedback control system. This is true, provided

that the dominant plant zeros have magnitudes larger than

the dominant plant poles, the period of the reference signal

is high enough in comparison with the settling-time of the

open-loop plant, and the ordinary closed-loop system, which

does not include any signal transformation, has acceptable

performance characteristics, which means acceptable phase

and gain margins and input disturbance response.
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