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Abstract—This paper is concerned with the linear minimum
mean square error (MMSE) estimation for discrete-time systems
with random delays in the observations. It is assumed that the
delay process is modeled as a finite state Markov chain and
only its transition probability matrix is known. To overcome
the difficulty of estimation caused by random delays, the
random delay system is firstly rewritten as a constant delay
system with multiplicative noises. By applying the measurement
reorganization approach, the system is further transformed into
the delay-free one with Markov jump parameters. Then the
estimator is derived by using the innovation analysis method in
the Hilbert space, and the solution is given in terms of Riccati
difference equations.

Index Terms—Linear estimation, discrete-time system, Markov
jump delay, innovation analysis method, Riccati equations.

I. INTRODUCTION
Linear estimation for time-delay systems has been an

active research area since the 1960’s, see e.g. [1]. There
have been many different kinds of estimators designed under
different conditions. For the systems with constant delays,
many effective techniques have been developed, such as
the classical state augmentation method [1], the polynomial
approach [2], the linear matrix inequality (LMI) algorithms
[3], and the reorganization innovation analysis method [4]. It
is worth pointing out that most of the estimation problem
in systems with constant delays have been well studied.
However, in the case of systems involving random delays,
the estimation problem becomes very difficult and it remains
to be challenging.
Time delays occur in a random way, rather than a de-

terministic way, for a number of engineering applications.
Examples include real-time distributed decision making sys-
tems, multiplexed communication networks [5], [6]. Hence,
there is a great need to develop new estimator approaches
for the system with randomly varying delays, and some
efforts have been made in this regard so far. For the case of
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observations with irregular times, the minimum variance state
estimators were designed in [7]. On the filtering problems
with intermittent observations, the initial work can be tracked
back to Nahi [8] and Hadidi [9]. Recently, this problem
has been studied in [10] and [11], respectively. For the
situation that the one-step sensor delay was described as a
binary white noise sequence, a reduced-order linear unbiased
estimator was designed via state augmentation in [12]. When
the random delay was characterized by a set of Bernoulli
variables, the unscented filtering algorithms [13], the linear
and quadratic least-square estimation method [14] and H∞
filter [15] have been presented. The rationality of modeling
the random delay as Bernoulli variable sequences has been
justified in the references above. In addition, modeling the
random delay as a finite state Markov chain is also a
reasonable way. The concerning estimation results for this
type of modeling can be found in [16], [17], and the reference
therein.
Although estimation problems with random delays have

been studied for several years, there are still some interesting
problems that deserve further research. For example, most of
the proposed results focus on the case that the random delay
is known online via time-stamped data, while few results
study the case that the random delay is unknown. And further,
most existing results employ the state augmentation method
to deal with time delays. In fact, there exist another efficient
way to handle the delay terms, which reorganizes delayed
observations as delay-free ones [4].
Motivated by [4], the purpose of this paper is to investigate

linear MMSE estimation for systems with unknown random
delays, where the delay process is characterized by a finite
state Markov chain space.The key technique applied for
treating the random delay is the re-organization analysis
method. In order to solve the estimation problem, the random
delayed measurement is firstly rewritten as a two-channel
constant delayed measurement system with multiplicative
noises, where the noises are jump variables and are mutually
independent. Then, with the application of measurement
reorganization, the delayed measurement system is further
transformed into a two channel delay-free system, and thus
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the proposed estimation problem can be reformulated as the
one for a class of Markov jump linear systems without delays.
Finally, the estimator is derived by using the innovation
analysis method in the Hilbert space, and the solution is given
in terms of two Riccati equations.
Notation: The notation in this paper is fairly standard. For

L ∈ Rn×n, LT denotes the transpose of L, and L ≥ 0 (L >
0) means that the symmetric matrix L is positive semi-
definite (positive definite). For a collection of N matrices
D1, · · · , DN , with Dj ∈ Rn×m, diag{Dj} ∈ RNn×Nm

represents the diagonal matrix formed by Dj in the diagonal
and zero elsewhere. In addition, 1{.} stands for the Dirac
measure, and E(.) represents the operator expected value.

II. PROBLEM FORMULATION
Consider the following discrete-time systems with random

jump delays

x(k + 1) = Φ(k)x(k) + Γ(k)w(k), (1)
yd(k)(k) = H(k)x(k − d(k)) + v(k − d(k)), (2)

where x(k) denotes the Rn-valued state sequence, w(k) and
v(k) are random disturbances in Rq1 and Rm, respectively,
y.(k) is the Rm-valued output sequence, and d(k) is the
random time delay of the system. Φ(k),Γ(k) and H(k)
are matrices of appropriate dimension. We first make the
following assumptions for the above system.
Assumption 1: w(k) and v(k) are zero-mean, second-

order, independent wide sense stationary sequences with
covariance matrices Qw and Qv. Here the covariance matrix
Qv is positive definite.
Assumption 2: The initial state x(0) is also a second-order,

independent wide sense stationary sequence with zero mean
and covariance matrix E[x(0)xT (0)] = V .
Assumption 3: d(k) is a discrete-time Markov chain with

finite state space {0, d}, and transition probability matrix
P = [pij ]. We set pi(k) = Prob(d(k) = i), i = 0, d and
denote pk = [p0(k) pd(k)]

T , which satisfies the difference
equation pk = PT pk−1.
Assumption 4: x(0) and {d(k)} are independent of

{w(k)} and {v(k)}.
Given the above statements, we know that the measurement

output may or may not experience sensor delays, and thus
it can be written as two equivalent random measurement
channels

y0(k) = γk,0H(k)x(k − 0) + γk,0v(k − 0), (3)
yd(k) = γk,dH(k)x(k − d) + γk,dv(k − d), (4)

where

γk,i =

{
1, if d(k) = i;
0, if d(k) �= i,

for i = 0, d. As remarked in [6], γk,0 as well as γk,d is a
Markov process which represents the jumping characteristics

of d(k). Namely,

Prob(γk,0 = 1) = Prob(d(k) = 0) = p0(k),

Prob(γk,d = 1) = Prob(d(k) = d) = pd(k),

Prob(γk,0 = 0) = 1− p0(k) = pd(k),

Prob(γk,d = 0) = 1− pd(k) = p0(k).

In addition, γk,0 has the same transition probability matrix
as d(k), while the one of γk,d is described as[

pdd pd0
p0d p00

]
.

Let y(k) denote all possible observation sequences of the
systems (1), (3) and (4) at the time k, then we have that

y(k) =

{
y0(k), 0 ≤ k < d;[
yT0 (k) y

T
d (k)

]T
, k ≥ d.

(5)

So the estimation problem can be stated as: Given the
observations {y(s)|0≤s≤k}, find a linear minimum mean
square error estimator x̂(k|k) of x(k).

III. OPTIMAL ESTIMATION
In this section, we shall present an analytical solution to

the above optimal estimation by reorganizing the observation
sequences and applying the innovation analysis method. For
the convenience of latter discussion, we denote k1 = k − d.

A. Re-organized Observations
Define a new observation sequence

ȳd(s)
�
=

[
y0(s)

yd(s+ d)

]
, 0 ≤ s ≤ k1, (6)

ȳ0(s)
�
= y0(s), k1 < s ≤ k, (7)

where y0(s) and yd(s+d) are as in (3) and (4). Then the re-
organized observations ȳ0(s) and ȳd(s) satisfy the following
difference equations:

ȳd(s) =

[
γs,0H(s)

γs+d,dH(s+ d)

]
x(s) +

[
γs,0v(s)

γs+d,dv(s)

]
0 ≤ s ≤ k1, (8)

ȳ0(s) = γs,0H(s)x(s) + γs,0v(s), k1 < s ≤ k. (9)

Seen from (8), ȳd(s) is composed of different observations
associated with the same state x(s). Obviously, there no
longer exist delays in the observation equations (8) and (9).
Moreover, it is apparent that the following lemma is true.
Lemma 1: For the given time instant k, the linear space

generated by {y(s)|0≤s≤k} is equivalent to the linear space
of

L{ȳd(s)|0≤s≤k1
; ȳ0(s)|k1<s≤k}. (10)

Proof: This follows the same arguments as in [4], and
is omitted here.
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B. Re-organized Markov Chains
The purpose of this subsection is to reconstruct a set of new

Markov chains associated with the re-organized observations
(6) and (7). For any given time k, the state of the jumping
process at time s (0 ≤ s ≤ k) is determined by the vector
of the binary variables γs,0 and γs,d. Let

θ̄(s) = [γs,0 γs+d,d]
T , 0 ≤ s ≤ k1, (11)

θ(s) = γs,0, k1 < s ≤ k. (12)

For 0 ≤ s ≤ k1, θ̄(s) takes a random walk on the finite set

S̄v =

{[
1
1

]
,

[
1
0

]
,

[
0
1

]
,

[
0
0

]}
�
= {ē1, ē2, ē3, ē4}.

Set λ̄ij
�
= Prob(θ̄(s + 1) = ēj |θ̄(s) = ēi), and denote Λ̄

�
=

[(λ̄ij)], then Λ̄ can be obtained via the transition probability
matrices of γs,0 and γs+d,d, that is

Λ̄ =

[
p00 p0d
pd0 pdd

]
⊗

[
pdd pd0
p0d p00

]
, (13)

where Λ̄ is a matrix all of whose entries are non-negative and
each of whose rows sum to 1. Hence Λ̄ is a transition prob-
ability matrix. Alternatively, we define π̄i(s)

�
= Prob(θ̄(s) =

ēi), and further denote π̄(s)
�
= [π̄1(s) · · · π̄4(s)]

T , then the
expression of π̄(s) is given by

π̄(s) =

[
p0(s)
pd(s)

]
⊗

[
pd(s+ d)
p0(s+ d)

]
, (14)

where the initial value

π̄(0) = [p0(0)pd(d), p0(0)p0(d), pd(0)pd(d), pd(0)p0(d)]
T .

Recalling that ps+1 = PT ps, and in view of (13) and (14),
we show that

π̄(s+ 1) = Λ̄T π̄(s). (15)

From (13)-(15), we know that the distribution of θ̄(s) depends
only where it was at the time it jumped and not on where
it was in the past. Thus θ̄(s) is indeed a Markov chain,
while (13)-(15) give a complete description of its Markovian
characteristics.
Next, for k1 < s ≤ k, we can also show that θ(s) is a

Markov chain with finite state Sv = {1, 0}
�
= {e1, e2} and

transition probability matrix

Λ
�
=

[
λ11 λ12

λ21 λ22

]
=

[
p00 p0d
pd0 pdd

]
, (16)

where λij
�
= Prob(θ(s + 1) = ej |θ(s) = ei), i, j = 1, 2. Let

the probability distribution be π(s) �= [π1(s) π2(s)]
T , which

is determined by π1(s) = p0(s) and π2(s) = pd(s). We have

π(s+ 1) = ΛTπ(s), k1 < s ≤ k. (17)

We define θ̄(s) and θ(s) as the re-organized Markov
chains. With these preparations, it is easy to complete the
description of (8) and (9), which are given by

ȳd(s) = H̄θ̄(s)(s)x(s) + v̄θ̄(s)(s), 0 ≤ s ≤ k1, (18)
ȳ0(s) = Hθ(s)(s)x(s) + vθ(s)(s), k1 < s ≤ k, (19)

where

H̄θ̄(s)(s) =

[
γs,0H(s)

γs+d,dH(s+ d)

]
,

v̄θ̄(s)(s) =

[
γs,0v(s)

γs+d,dv(s)

]
,

Hθ(s)(s) = γs,0H(s),

vθ(s)(s) = γs,0v(s).

It can be seen that

H̄θ̄(s) ∈

{[
H(s)

H(s+ d)

]
,

[
H(s)
0

]
,

[
0

H(s+ d)

]
,[

0
0

]}
�
= {H̄1(s), H̄2(s), H̄3(s), H̄4(s)}, 0 ≤ s ≤ k1,

Hθ(s) ∈ {H(s), 0}
�
= {H1(s), H2(s)}, k1 < s ≤ k.

Meanwhile, v̄θ̄(s)(s) and vθ(s)(s) are independent wide sense
stationary sequences with zero mean and covariance matrices

Q̄v̄(s) = diag{p0(s)Qv, pd(s+ d)Qv}, 0 ≤ s ≤ k1,

(20)
Qv(s) = p0(s)Qv, k1 < s ≤ k. (21)

C. Re-organized State Variables
It follows from Assumption 3 that the random commu-

nication delay d(k) is an unknown variable, and thus the
new jumping parameters θ̄(s) and θ(s) which represent the
same jumping properties as d(s) can not be determined at
the time s. In this paper, we shall estimate (x(s), θ̄(s)) and
(x(s), θ(s)) simultaneously by introducing the new stochastic
variables

zd(s, i) = x(s)1{θ̄(s)=ēi}, 0 ≤ s ≤ k1, i = 1, · · · , 4,(22)
z0(s, i) = x(s)1{θ(s)=ei}, k1 < s ≤ k, i = 1, 2. (23)

Let

zd(s) = [zd(s, 1)
T · · · zd(s, 4)

T ]T ∈ R4n,

z0(s) = [z0(s, 1)
T z0(s, 2)

T ]T ∈ R2n,

then it is obvious that

x(s) =

4∑
i=1

zd(s, i), 0 ≤ s ≤ k1, (24)

x(s) =

2∑
i=1

z0(s, i), k1 < s ≤ k. (25)
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Given (24) and (25), we will show that the estimator x̂(t|t)
can be obtained directly from the estimators of zd(s, i)(0 ≤
s ≤ k1; i = 1, · · · , 4) and z0(s, i)(k1 < s ≤ k; i =
1, 2). Consider the definition of (22) and (23), the state
representation (1) can be reformulated as

zd(s+ 1) = M̄(s)zd(s) + ξ̄(s), 0 ≤ s ≤ k1, (26)
z0(s+ 1) = M(s)z0(s) + ξ(s), k1 < s ≤ k. (27)

where

M̄(s, j) = [

4 blocks︷ ︸︸ ︷
1{θ̄(s+1)=ēj}Φ(s) · · · 1{θ̄(s+1)=ēj}Φ(s)]

M̄(s) =
[
M̄T (s, 1) · · · M̄T (s, 4)

]
,

ξ̄(s) =

⎡
⎢⎣
1{θ̄(s+1)=ē1}Γ(s)w(s)

...
1{θ̄(s+1)=ē4}Γ(s)w(s)

⎤
⎥⎦ ,

and

M(s, j) = [1{θ(s+1)=ej}Φ(s) 1{θ(s+1)=ej}Φ(s)],

M(s) =
[
MT (s, 1) MT (s, 2)

]
,

ξ(s) =

[
1{θ(s+1)=e1}Γ(s)w(s)
1{θ(s+1)=e2}Γ(s)w(s)

]
,

Meanwhile, the observation equations (18) and (19) can be
reformulated as

ȳd(s) = H̄(s)zd(s) + v̄θ̄(s)(s), 0 ≤ s ≤ k1, (28)
ȳ0(s) = H(s)z0(s) + vθ(s)(s), k1 < s ≤ k, (29)

where

H̄(s)
�
= [H̄1(s) H̄2(s) H̄3(s) H̄4(s)],

H(s)
�
= [H1(s) H2(s)].

In view of (28) and (29), the new stochastic variable
zd(s)(0 ≤ s ≤ k1) and z0(s)(k1 < s ≤ k) can be estimated
directly from the observation sequences {ȳd(τ)|0≤τ≤s} and
{ȳd(τ)|0≤τ≤k1

; ȳ0(τ)|k1<τ<s}. Also, as in the derivation of
the Kalman filter, the new innovation processes need to be
defined further.

D. Re-organized Innovation Sequences
According to the re-organized observations (28) and (29),

we introduce the following stochastic sequences

εd(s) = ȳd(s)− ˆ̄yd(s|s− 1), 0 ≤ s ≤ k1, (30)
ε0(s) = ȳ0(s)− ˆ̄y0(s|s− 1), k1 < s ≤ k. (31)

where ˆ̄yd(s|s− 1) is the projection of ȳd(s) onto the linear
space of

L{ȳd(τ)|0≤τ≤s−1}, (32)

and ˆ̄y0(s|s − 1) is the projection of ȳ0(s) onto the linear
space of

L{ȳd(τ)|0≤τ≤k1
; ȳ0(τ)|k1<τ≤s−1}. (33)

We then have the following equations

εd(s) = H̄(s)z̃d(s|s− 1) + v̄θ̄(s)(s), 0 ≤ s ≤ k1,(34)
ε0(s) = H(s)z̃0(s|s− 1) + vθ(s)(s), k1 < s ≤ k,(35)

where

z̃d(s|s− 1) = zd(s)− ẑd(s|s− 1), (36)
z̃0(s|s− 1) = z0(s)− ẑ0(s|s− 1), (37)

with ẑd(s|s − 1) is the projection of zd(s) onto the linear
space of (32), and ẑ0(s|s− 1) is the projection of z0(s) onto
the linear space of (33). The following lemma shows that
εi(s)(i = 0, d) are in fact the innovation sequences for the
new re-organized observations ȳd(s) and ȳ0(s), respectively.
Lemma 2: The elements of the sequence

{εd(s)|0≤s≤k1
; ε0(s)|k1<s≤k} (38)

are mutually uncorrelated, and spans the same linear space
(10).

Proof: This follows from the same arguments as in
Lemma 2.1 in [4], and thus is omitted here.
Based on Lemma 2, the estimation problem proposed in

this paper can be further converted into the one of estimat-
ing zd(s) and z0(s) based on the innovation process (38),
which due to its orthogonality, can significantly simply the
calculation of the projection.

E. Optimal Estimator x̂(k|k)

In order to calculate the covariance matrices of the es-
timator errors and thus compute the optimal estimator, we
first define the following matrices associated with the second
moment of the above variables. For 0 ≤ s ≤ k1, we define

Zd(s)
�
= E[zd(s)zTd (s)],

Zd(s, i)
�
= E[zd(s, i)zTd (s, i)],

Ẑd(s|s− 1)
�
= E[ẑd(s|s− 1)ẑTd (s|s− 1)],

Pd(s|s− 1)
�
= E[z̃d(s|s− 1)z̃Td (s|s− 1)],

and for t1 < s ≤ t, we denote

Z0(s)
�
= E[z0(s)zT0 (s)],

Z0(s, i)
�
= E[z0(s, i)zT0 (s, i)],

Ẑ0(s|s− 1)
�
= E[ẑ0(s|s− 1)ẑT0 (s|s− 1)],

P0(s|s− 1)
�
= E[z̃0(s|s− 1)z̃T0 (s|s− 1)].

Based on the preceding notations, we present the following
Lyapunov-equation results which are associated with zd(s)
and z0(s) respectively, and will be used latter in the deriva-
tion of the estimator.
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Lemma 3: For 0 ≤ s ≤ k1, the covariance matrix of
zd(s, i) satisfies the following difference equation

Zd(s+ 1, j) =
4∑

i=1

λ̄ijΦ(s)Zd(s, i)Φ
T (s) +

4∑
i=1

λ̄ij

× π̄i(s)Γ(s)QwΓ
T (s), j = 1, · · · , 4 (39)

with the initial value Zd(0, i) = π̄i(0)V, i = 1, · · · , 4.
For k1 < s ≤ k, the covariance matrix of z0(s, i) can be

calculated by the following recursive equation

Z0(s+ 1, j) =

2∑
i=1

λijΦ(s)Z0(s, i)Φ
T (s) +

2∑
i=1

λij

× πi(s)Γ(s)QwΓ
T (s), j = 1, 2 (40)

with the given initial value

Z0(k1 + 1, 1) = Zd(k1 + 1, 1) + Zd(k1 + 1, 2), (41)
Z0(k1 + 1, 2) = Zd(k1 + 1, 3) + Zd(k1 + 1, 4). (42)
Proof: See Appendix A.

In the following, we shall present the Riccati difference
equations for Pd(s|s− 1) and P0(s|s− 1), respectively.
Theorem 1: For a given time instant k, the covariance

matrices Pd(s|s − 1)(0 ≤ s ≤ k1) and P0(s|s − 1)(k1 <
s ≤ k) can be calculated as follows:
• For 0 ≤ s ≤ k1, the matrix Pd(s|s− 1) can be derived
by the following Riccati difference equation

Pd(s+ 1|s) = Ā(s)Pd(s|s− 1)ĀT (s)− Ā(s)Kd(s)

× H̄(s)Pd(s|s− 1)ĀT (s) + Zd(s)

+ diag{
4∑

i=1

λ̄ij π̄i(s)Γ(s)QwΓ
T (s)},

(43)

where the initial value Pd(0|− 1) = diag{π̄i(0)V }, and

Ā(s) = Λ̄T ⊗ Φ(s), (44)
Kd(s) = Pd(s|s− 1)H̄T (s)(H̄(s)Pd(s|s− 1)H̄T (s)

+ Q̄v̄(s))
−1, (45)

Zd(s) = diag{
4∑

i=1

λ̄ijΦ(s)Zd(s, i)Φ
T (s)} − Ā(s)

× diag{Zd(s, i)}Ā
T (s). (46)

• For k1 < s ≤ k, the matrix P0(s|s−1) can be calculated
by the difference equation as

P0(s+ 1|s) = A(s)P0(s|s− 1)AT (s)−A(s)K0(s)

× H(s)P0(s|s− 1)AT (s) + Z0(s)

+ diag{
2∑

i=1

λijπi(s)Γ(s)QwΓ
T (s)},

(47)

where the given initial value P0(k1 + 1, i, j|k1) =∑2i
l=2i−1

∑2j
m=2j−1 Pd(k1+1, l,m|k1)(i, j = 1, 2), and

A(s) = ΛT ⊗ Φ(s), (48)
K0(s) = P0(s|s− 1)HT (s)(H(s)P0(s|s− 1)HT (s)

+ Qv(s))
−1, (49)

Z0(s) = diag{
2∑

i=1

λijΦ(s)Z0(s, i)Φ
T (s)} − A(s)

× diag{Z0(s, i)}A
T (s). (50)

Proof: See Appendix B.
Now, we present the solution to the optimal filtering.
Theorem 2: Consider the system (1) and (2), the optimal

linear mean square error estimator x̂(k|k) is given by

x̂(k|k) =

2∑
i=1

ẑ0(k, i|k), (51)

where the estimator ẑ0(k, i|k) is the ith block element of
ẑ0(k | k) which can be computed as the following steps:
• For 0 ≤ s ≤ k1, ẑd(s|s) can be calculated by the
following difference equation with the initial value of
ẑd(0| − 1) = E(z(0)) = 0,

ẑd(s|s) = ẑd(s|s− 1) +Kd(s)(yd(s)− H̄(s)

×ẑd(s|s− 1)), (52)
ẑd(s|s− 1) = Ā(s− 1)ẑd(s− 1|s− 1), (53)

where Kd(s) can be obtained by (43) and (45).
• For k1 < s ≤ k, ẑ0(s|s) can be computed by the
following recursive equation

ẑ0(s|s) = ẑ0(s|s− 1) +K0(s)(y0(s)−H(s)

×ẑ0(s|s− 1)), (54)
ẑ0(s|s− 1) = A(s− 1)ẑ0(s− 1|s− 1), (55)

where the initial value ẑ0(k1 + 1|k1) = col{ẑd(k1 +
1, 1|k1) + ẑd(k1 + 1, 2|k1), ẑd(k1 + 1, 3|k1) + ẑd(k1 +
1, 4|k1)}, and K0(s) can be obtained by (47) and (49).
Proof: The proof of this theorem is omitted here.

IV. NUMERICAL EXAMPLES
In this section, we present a simple example to illustrate

the previous theoretical results. Consider the dynamic system
described by (1) and (2) with the following specifications:

Φ(k) =

[
0.7 + 0.1 cos(2πk/T ) 0

0.1 sin(2πk/T ) 0.95

]
,

Γ(k) =

[
1
0.5

]
, H(k) =

[
2 2

]
,

where T is the time horizon and set to 200 in this simulation.
d(k) is the random jump delay. To present the efficiency of
the proposed results, we shall consider different d(k)′s with
different transition probabilities. For simplicity, we consider
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three different cases in this simulation, see the following
table.

Case p00 pdd d(k) ∈ {0, d}
1 0.975 0.05 d = 4
2 0.85 0.3 d = 4
3 0.95 0.5 d = 8

The initial condition are as follows: x1,2(0) ∼ N(0, 1),
p0(0) = P (d(0) = 0) = 0.5, pd(0) = P (d(0) = d) = 0.5. In
the actual system we use x(0) = [1, 1]′ for the simulation to
generate z0(k) and zd(k). Furthermore, {w(k)} and {v(k)}
are mutually independent zero-mean white noise sequences
with covariance matrices Qw = 1 and Qv = 1, respectively.
Fig. 1 and Fig. 2 show the estimation error variances of x1(k)
and x2(k) under the three different cases. It can be seen
from the simulation results that the obtained linear estimator
for systems with Markov time delays are tracking well to
the real state value and the proposed method is efficient to
different delays and different transition probabilities, that is,
the estimation scheme proposed in this paper produces good
performance.
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Fig. 1. Estimation error variance of x1(k) under the three different cases
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Fig. 2. Estimation error variance of x2(k) under the three different cases

V. CONCLUSION
This paper has addressed the linear MMSE estimation

problem for discrete-time linear systems with random ob-
servation delays, while the delays are modeled as a finite-
state Markov Chain. A complete analytical solution has been
obtained by solving two Riccati difference equations. The
key to our development in the estimation for the systems
with random jump delay is the reorganization of the Markov
chains, which transforms the problem into one with two-
channel delay-free measurements. It is worth highlighting
that the results of the presented paper are applicable to the
optimal estimation for systems with multiple random jump
delays.

APPENDIX A PROOF OF LEMMA 3
For 0 ≤ s ≤ k1, in view of (1) and using the definition of

zd(s+ 1, j), we get that

Zd(s+ 1, j) = E[(Φ(s)x(s) + Γ(s)w(s))(Φ(s)x(s)

+ Γ(s)w(s))T 1{θ̄(s+1)=ēj}]

=

4∑
i=1

λ̄ijΦ(s)Zd(s, i)Φ
T (s) +

4∑
i=1

λ̄ij

× π̄i(s)Γ(s)QwΓ
T (s).

Recalling that E[x(0)xT (0)] = V , we get the initial covari-
ance matrix Zd(0, i) = πi(0)V, i = 1, 2, · · · , 4.
Similarly, from the definition of z0(s + 1, j)(j = 1, 2)

and system (1), we get the recursive difference equation (40)
with the initial value given by (41) and (42). The proof is
accomplished.

APPENDIX B PROOF OF THEOREM 1
The proof is divided into two stages. We start with

E[x(0)] = 0, namely, E[zd(0, i)] = 0(i = 1, · · · , 4), then
all random variables zd(s), z0(s), εd(s) and ε0(s) have zero
expectation.
Firstly, for 0 ≤ s ≤ k1, the optimal linear estimate ẑd(s|s)

can be written as a linear operation on the innovations

ẑd(s|s) =

s∑
l=0

F (s, l)εd(l), (56)

where F (s, l) is an 4n ×m matrix, such that ẑd(s|s) as in
(56) satisfies the orthogonal property [18]

(zd(s)− ẑd(s|s)) ⊥ {εd(τ)|0≤τ≤s}. (57)

Use of (57) with ẑd(s|s) as in (56) yields

F (s, l) = E[zd(s)εTd (l)]Q̄
−1
εd
(l), (58)

where Q̄εd(l) is the covariance matrix of εd(l). Then (56)
can be written as

ẑd(s|s) = ẑd(s|s− 1) + E[zd(s)εTd (s)]Q̄
−1
εd
(s)εd(s). (59)
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It follows from (34) that

E[zd(s)εTd (s)] = Pd(s|s− 1)H̄T (s) + E[zd(s)v̄Tθ̄(s)(s)]. (60)

From Assumption 4, we know that E[zd(s)v̄Tθ̄(s)(s)] = 0.
Thus,

E[zd(s)εTd (s)] = Pd(s|s− 1)H̄T (s). (61)

Meanwhile, it follows from (34) that

Q̄εd(s) = H̄(s)Pd(s|s− 1)H̄T (s) + Q̄v̄(s). (62)

Then using of (61) and (62), we obtain the recursive equation

ẑd(s|s) = ẑd(s|s− 1)

+Kd(s)[H̄(s)z̃d(s|s− 1) + v̄θ̄(s)(s)] (63)

where

Kd(s) = Pd(s|s− 1)H̄T (s)

×[H̄(s)Pd(s|s− 1)H̄T (s) + Q̄v̄(s)]
−1.

Similarly, the one-step ahead prediction ẑd(s+1|s) can be
expressed as

ẑd(s+ 1|s) = Ā(s)ẑd(s|s), (64)

where the initial value ẑd(0|−1) = 0, and Ā(s) = Λ̄T⊗Φ(s).
Then from (63), and after noticing that ẑd(s|s−1), z̃d(s|s−

1) and vθ̄(s)(s) are orthogonal among themselves, we get that

E[ẑd(s|s)ẑTd (s|s)]
= Ẑd(s|s− 1) +Kd(s)H̄(s)Pd(s|s− 1), (65)

and in view of (64), we get that

Ẑd(s+ 1|s) = Ā(s)Ẑd(s|s)Ā
T (s), Ẑd(0| − 1) = 0. (66)

Alternatively, with regard to Lemma 3, the equation (39) can
be reformulated as

Zd(s+ 1) = Ā(s)Zd(s)Ā
T (s) + Zd(s)

+diag{
4∑

i=1

λ̄ij π̄i(s)Γ(s)QwΓ
T (s)},(67)

where

Zd(s) = diag{
4∑

i=1

λ̄ijΦ(s)Zd(s, i)Φ
T (s)}

−Ā(s)Zd(s)Ā
T (s),

Zd(0) = diag{π̄i(0)V }, i = 1, · · · , 4.

Consider (65)-(67), and note that Pd(s|s − 1) = Zd(s) −
Ẑd(s|s− 1), we get (43) immediately.
Secondly, for k1 < s ≤ k, following the same step as

above, we can obtain the Riccati equation for P0(s|s − 1).
The desired result is obtained.
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