Characterisation of an oocyte

specific knockout model of Cdh1

Suzanne My-Trinh Tran PhD, BSc (Hons) Chemistry, BSc (Hons) Human Physiology

A thesis submitted in fulfilment of the requirements for the degree of Master of Philosophy April 2012

School of Biomedical Sciences and Pharmacy University of Newcastle Callaghan NSW 2308 Australia

Statement of Originality

This thesis contains no material which has been accepted for the award of any other degree or diploma in any university or other tertiary institution and, to the best of my knowledge and belief, contains no material previously published or written by another person, except where due reference has been made in the text. I give consent to this copy of my thesis, when deposited in the University Library^{**}, being made available for loan and photocopying subject to the provisions of the Copyright Act 1968. ****Unless an Embargo has been approved for a determined period.**

Statement of Collaboration

I hereby certify that the work embodied in this thesis has been done in collaboration with other researchers, or carried out in other institutions. I have included as part of the thesis a statement clearly outlining the extent of collaboration, with whom and under what auspices.

Acknowledgements

I would like to acknowledge the following people involved in this research:

- My supervisor, Prof Keith Jones.
- Dr Phoebe Jennings for performing the majority of the kinetochore counts for not only me, but also other members of our research group.
- Dr Janet Holt for her part in the Western blots of cyclin B1 and securin and the primers for chromosomes 15-19.
- Prof Eileen McLaughlin for the ZP3-Cre male mice and the Cre primers.
- Dr Sergio Moreno (Instituto de Biología Molecular y Celular del Cáncer, CSIC / Salamanca University, Campus Miguel de Unamuno, 37007 Salamanca, Spain) for the supplying the initial six male and six female mice used to set up the colony of loxFZR mice.

I would also like to thank The University of Newcastle, Australia for UNIPRS and UNRSC scholarships and the faculty for funding this project.

I would like to extend my thanks to the University of Newcastle's Security for escorting me home safely on countless late nights from the lab, and other staff and students of the university who have been kind to me throughout my time in Australia.

Last but not least, I would like to convey my gratitude for the love and support from my family and friends, both old and new.

Contents

TITLE PAGE	i
STATEMENT OF ORIGINALITY	ii
STATEMENT OF COLLABORATION	iii
ACKNOWLEDGEMENTS	iv
CONTENTS	v
LIST OF FIGURES	xii
LIST OF TABLES	xiv
ABBREVIATIONS	xv
ABSTRACT	xvii

CHAPTER 1 Introduction

Aims		1
The cell cy	cle – A highly co-ordinated and controlled sequence of events	3
1.2.1	Entry into the Mitotic Phase of the Cell Cycle is based on the activity	
	of cyclin B-CDK1	3
1.2.2	The ubiquitin ligases SCF and APC/C ensure unidirectional	
	progression through mitosis	5
1.2.3	Targets of APC/CCdh1	8
1.2.4	The temporal activities of activators of APC/C in Mitotic Cell cycle	8
1.2.5	The Early Mitotic Inhibitor 1 (Emi1) acts as a pseudo substrate,	
	inhibiting the activities of APC/CCdc20 and APC/CCdh1 in the Mitotic	2
	Cell cycle1	0
	The cell cy 1.2.1 1.2.2 1.2.3 1.2.4	 of cyclin B-CDK1 1.2.2 The ubiquitin ligases SCF and APC/C ensure unidirectional progression through mitosis 1.2.3 Targets of APC/CCdh1 1.2.4 The temporal activities of activators of APC/C in Mitotic Cell cycle

	1.2.6	The Activities of APC/C are inhibited by the Spindle Assembly
		Checkpoint until all kinetochores are biorientated11
1.3	The Cell B	iology of Oocytes12
	1.3.1	Overview of Meiosis12
	1.3.2	Oocyte is arrested at GV stage inside the ovary14
	1.3.3	Follicular and oocyte development in-vivo in mouse ovary16
	1.3.4	Maintenance of GV arrest –requires high levels of cAMP and the
		temporal inhibition of CDK118
	1.3.5	Maintenance of GV arrest is assisted by different sub-localization of
		CDK1 regulators (Wee1B, Myt1 and Cdc25B)18
	1.3.6	Maintenance of GV arrest requires regulation of cyclin B1, by
		continual degradation and GV exclusion20
	1.3.7	Maintenance of GV arrest requires the activity of APC/CCdh1 to keep
		levels of cyclin B1 low21
	1.3.8	Maintenance of prophase I arrest and meiotic maturation in porcine
		oocyte are similar to mouse23
1.4	Meiotic Re	egulation of APC/CCdh124
	1.4.1	Regulation of APC/CCdh1 during prophase I arrest by Emi1 or CDC14B
		can modulate the timing of GVB24
	1.4.2	Regulation of APC/CCdh1 during prophase I arrest by competitive
		inhibition of cyclin B1 by securin can modulate the timing of GVB25
	1.4.3	APC/CCdh1 gets help from one of the SAC components, BubR126
	1.4.4	SAC in female meiosis I27
	1.4.5	APC/C ^{Cdh1} prevents aneuploidy by targeting Cdc20 in prometaphase
1.5	Studies or	Cdh1 knockout mice
	1.5.1	Cdh1 degradation of cyclin B1 in the placenta prevents embryonic
		lethality
	1.5.2	APC/C Cdh1 is essential for genomic stability

	1.5.3	Generation of oocyte-specific knockouts of Cdh1 using Cre/lox P	
		technology	33
1.6	Aneuploid	y in eggs	36
	1.6.1	Introduction	36
	1.6.2	Mechanism of aneuploidy in MII eggs	37
	1.6.3	Karyotyping studies of human oocytes	.38
	1.6.4	Techniques use for the aneuploidy assessment of human oocytes	41
	1.6.5	Analysis of aneuploidy via kinetochore counts	43
1.7	Perspectiv	es	44

CHAPTER 2 Materials and Methods

2.1	Animal	Ethics	.46
2.2	Animals	and Husbandry	.46
2.3	Mice Str	rains	.46
	2.3.1	B6CBF1 hybrids	47
	2.3.2	C57BI/6 strain	47
	2.3.3	Transgenic strains	48
	2.3.4	LoxFZR mice	48
	2.3.5	93knwZp males	.50
	2.3.6	The experiment cohort is generated in the FZRZP3 colony	.50
	2.3.7	Transference of loxFZR mice onto a pure Black 6 background	.52
	2.3.8	Generation of the experimental cohort on a pure Black 6 background	
		and establishment of the FZRZP3B6 colony	.55
2.4	Genotyp	ping of the Experiment Cohort	.55
	2.4.1	Genomic DNA extraction	.55
	2.4.2	Genotyping of FZRZP3 progeny	.57
2.5	Prepara	tion of Media	.59
	2.5.1	Source of ultra-pure water	.60

	2.5.2	Preparation of M2 media from stocks	60
	2.5.3	Preparation of M2 media from constituents	61
	2.5.4	Preparation of Minimum Essential Medium	64
	2.5.5	Preparation of media containing hyaluronidase	65
	2.5.6	Preparation of media containing milrinone	65
2.6	Ovarian	Priming and Superovulation	66
	2.6.1	Preparation of PBS	66
	2.6.2	Preparation of Pregnant Mare Serum Gonadotrophin	66
	2.6.3	Human Chorionic Gonadotrophin	67
	2.6.4	Hormonal priming of ovaries	67
	2.6.5	Superovulation of female mice	67
2.7	Collectio	on of oocytes and <i>in-vitro</i> maturation	68
	2.7.1	Collection and denudation of CEOs	68
	2.7.2	Collection of <i>in-vivo</i> matured eggs	68
	2.7.3	In-vitro maturation (IVM)	69
2.8	Buffers a	and solutions for preparation of the egg for analysis	70
	2.8.1	Polyvinylpyrrolidone	70
	2.8.2	PHEM Buffer	70
	2.8.3	Preparation of 4% paraformaldehyde in PHEM buffer	71
	2.8.4	Preparation of fixing and permeabilisation solution	71
	2.8.5	Preparation of Antibody Buffer	
	2.8.5 2.8.6	Preparation of Antibody BufferPreparation of blocking solution	72
			72 72
2.9	2.8.6 2.8.7	Preparation of blocking solution	72 72 72
2.9	2.8.6 2.8.7	Preparation of blocking solution Preparation of SDS protein sample buffer for Western blotting	72 72 72 73
2.9 2.10	2.8.6 2.8.7 Treatme 2.9.1	Preparation of blocking solution Preparation of SDS protein sample buffer for Western blotting ent of GV oocytes collected from mice	72 72 72 72 73
	2.8.6 2.8.7 Treatme 2.9.1	Preparation of blocking solution Preparation of SDS protein sample buffer for Western blotting ent of GV oocytes collected from mice Protocol for the Western Blot of GV oocytes M treatment of oocytes	72 72 7 2 73 73 77
	2.8.6 2.8.7 Treatme 2.9.1 Post-IV	Preparation of blocking solution Preparation of SDS protein sample buffer for Western blotting ent of GV oocytes collected from mice Protocol for the Western Blot of GV oocytes Monastrol treatment of MII eggs	72 72 73 73 73 73
	2.8.6 2.8.7 Treatme 2.9.1 Post-IV 2.10.1	Preparation of blocking solution Preparation of SDS protein sample buffer for Western blotting ent of GV oocytes collected from mice Protocol for the Western Blot of GV oocytes M treatment of oocytes Monastrol treatment of MII eggs Fixation and permeabilisation of eggs for immuno-staining	72 72 72 73 73 77 77

	2.10.5	Chromosor	ne spread of MII eggs		79
2.11	Prepara	tion of Ovar	ies for histology		80
2.12	One-pot	PCR protoco	ol for primers against	chromosomes 15-19	81
2.13	Statistica	al Analysis			83

CHAPTER 3 Studies on Cdh1 using a ZP3-Cre driven oocyte specific knockout model

3.1	Introduo	ction84
3.2	Results	
	3.2.1	Establishment of oocyte-specific Cdh1 knockout mice85
	3.2.2	Confirmation of Cdh1 loss in oocytes of Δ/Δ mice90
	3.2.3	Ovaries of Δ/Δ mice appeared normal and healthy92
	3.2.4	Fewer CEOs were collected from Δ/Δ ovaries
	3.2.5	The number of secondary and antral follicles in $\Delta\!/\!\Delta$ ovaries assessed by
		counting on ovarian sections98
	3.2.6	Enhanced GVB following loss of Cdh199
	3.2.7	Increased susceptibility to meiotic resumption following loss of
		Cdh1104
	3.2.8	Cdh1 $\Delta\!/\!\Delta$ oocytes have five fold higher cyclin B levels than controls108
	3.2.9	Cdh1 Δ/Δ and control oocytes have similar levels of expression for securin
	and Co	dc25B108
3.3	Discussi	on112
	3.3.1	Generation of an oocyte specific knockout model of Cdh1112
	3.3.2	Increased precocious in-vivo meiotic resumption following loss of Cdh1
	3.3.3	Maintenance of an intact cumulus partially rescues precocious in-vitro
	meiot	ic resumption following loss of Cdh1116

3.3.4	Cyclin B increased 5 fold in Cdh1 $\Delta\!/\!\Delta$ oocytes1	17
3.3.5	Lower cyclin B1 levels in Cdh1 deficient MEFs1	18
3.3.6	Cdh1 in neurones is associated with memory and	
I	learning1	18
3.3.7	Cdc25B levels are unaffected by Cdh1 ablation in oocytes1	19
3.3.8	Securin levels are unaffected by Cdh1 ablation in oocytes12	20
3.3.9 I	Further work – Analysis of levels of other substrates of APC ^{Cdh1} in Δ	Δ / Δ
(pocytes12	21

CHAPTER 4 Loss of Cdh1 and delayed IVM lead to increased aneuploidy

4.1	Introduo	ction
4.2	Results	
	4.2.1	Towards establishment of a protocol for aneuploidy analysis124
	4.2.2	Towards a 'one pot' PCR using primers against certain genes in
	Chrom	nosome 15-19
	4.2.3	gDNA content in oocyte is 105 fold less than in liver template127
	4.2.4	Adoption of known protocols for chromosome counting129
	4.2.5	$\Delta\!/\Delta$ eggs matured in-vivo are protected from chromosomal
	anoma	alies
	4.2.6	An intact cumulus afforded little benefit for $\Delta\!/\Delta$ eggs but reduced the
	incide	nce of aneuploidy in fl/fl eggs under dIVM24 conditions137
	4.2.7	Numerical kinetochore anomalies were predominantly even138
4.3	Discussi	on138
	4.3.1	Towards establishment of a protocol for aneuploidy analysis138
	4.3.2	Assessment of aneuploidy analysis methods used141
	4.3.3	Advantages of a PCR based protocol for aneuploidy analysis141

4.4	Summa	ry and Conclusion14	7
	4.3.7	Comparison of aneuploidy results with studies on human eggs14	6
	4.3.6	Mechanism of aneuploidy is predominantly by non-disjunction14	4
		conditions14	13
	4.3.5	An intact cumulus has little benefit following loss of Cdh1 in in-vitro	
		aneuploidy in denuded oocytes rather than loss of Cdh114	2
	4.3.4	Detrimental in-vitro conditions (dIVM24) were responsible for high	

List of Figures

CHAPTER 1

Figure 1.1	The mitotic cell cycle	.4
Figure 1.2	Ubiquitin-Proteasome Pathway	.6
Figure 1.3	Overview of meiosis I	13
Figure 1.4	Stages of follicular development	15
Figure 1.5	Regulation of MPF (CDK1-cyclin B1)	19
Figure 1.6	Mechanism of Cdh1 knockout using Cre/loxP technology	.34
Figure 1.7	Reductional division of homologous chromosomes and abnorn	mal
	segregation	40

CHAPTER 2

Figure 2.1	Indentification of the transgenic mouse by ear marks49
Figure 2.2	Generation of the experiment cohort51
Figure 2.3	Alternative Breeding strategy yielded $\Delta\!/\Delta$ mice and fl/fl at a faster
	rate53
Figure 2.4	Percentage Black 6 inheritance for LoxFZR mice backcrossed with
	pure C57BI/654

CHAPTER 3

Figure 3.1	An example of a PCR gel showing genotypes of experimental mice91
Figure 3.2	Western blot for Cdh1 in fl/fl, Δ /wt and Δ / Δ oocytes93
Figure 3.3	Average ovary weights of unprimed control and Δ/Δ mice94
Figure 3.4	Ovarian sections from fl/fl and $\Delta\!/\Delta$ mice96
Figure 3.5	Box and Whisker plot of number of CEOs collected from primed
	control, Δ/wt and Δ/Δ mice97
Figure 3.6	Counts of secondary, antral and atretic follicles in control and
	Δ/Δ ovaries100

Figure 3.7	Percentage of oocytes within CEOs from control, Δ /wt and Δ / Δ mice
	that have undergone GVB101
Figure 3.8 Perce	entage of abnormal oocytes in ovaries of control and $~\Delta / \Delta$ mice
Figure 3.9	Percentage GVB after 12 h incubation in MEM with arresting agent,
	milrinone (1 μM or 10 μM)105
Figure 3.10	Time of GVB for control and $\Delta\!/\!\Delta$ oocytes when released from 10 μM
	milrinone arrest107
Figure 3.11	Percentage GVB in CEOs and denuded oocytes (DO) after 12 h
	incubation in milrinone containing media109
Figure 3.12 Leve	Is of cyclin B1 following loss of Cdh1 in oocytes110
Figure 3.13 Secu	rin levels do not change following loss of Cdh1 in oocytes111
Figure 3.14 Leve	Is of Cdc25B following loss of Cdh1 in oocytes113
	CHAPTER 4
Figure 4.1	Agarose gel displaying discrete PCR products of different sizes for
	each of the five chromosomes 15-19126
Figure 4.2	Optimisation gel displaying discrete PCR products of different sizes
	for each of the five chromosomes 15-19 in the same lane128
Figure 4.3	Gel of PCR product from 10 fold dilutions of liver gDNA sample
	against mGAPDH primers130
Figure 4.4 Two	examples of Chromosome spreads131
Figure 4.5 Tech	nique used to count kinetochores133
Figure 4.6	Schematic representation of <i>in-vivo</i> ; <i>in-vitro</i> ; 12 h and 24 h delayed
	in-vitro maturation (dIVM12 and dIVM24) conditions135
Figure 4.7 Incre	eased percentage aneuploidy following Cdh1 loss136
Figure 4.8	Breakdown of aneuploidy results based on even and odd kinetochore
	numbers139

List of Tables

Table 1.1	APC/C ^{Cdh1} substrates in mitosis	.9
Table 2.1	Primers used to genotype the experiment cohort5	58
Table 2.2	Composition of M2 Stocks	52
Table 2.3	Composition of M2 Media	53
Table 2.4	Antibodies used in the immunodetection step of Western Blot	75
Table 2.5	DNA sequence of primers against Chromosomes 15 to 198	32
Table 3.1	The frequency of fl/fl, fl/wt, \varDelta /wt and \varDelta / Δ genotypes in the first 180	
	female pups	37
Table 3.2	The number of female pups generated with fl/fl and ${\it \Delta} / {\it \Delta}$ genotypes	
	from a total of 470 female mice	39

Abbreviations

Approx.	approximately
BSA	bovine serum albumin
cAMP	cyclic adenosine 3'-5 monophosphate
CCD	charge coupled device
CEO	cumulus enclosed complex
Cntl	control
dbcAMP	dibutyrl cAMP
dNTPs	Deoxyribonucleotide triphosphate
EDTA	Disodium Salt Dihydrate or Ethylenediaminetetraacetic acid
EGTA	Ethylene glycol-bis(2-Amino ethyl ether)-N,N, N',N'-tetra acetic acid
EtBr	Ethidium bromide
F	female
FCS	foetal calf serum
fl	floxed
FSH	follicle stimulating hormone
GV	germinal vesicle
GVB	germinal vesicle breakdown
H&E	Hematoxylin & Eosin
h	hour
hCG	human chorionic gonadotrophin
HEPES	N-(2-Hydroxyethyl) piperazine-N'-(2-ethanesulfonic acid)
Het	heterozygote
IVM	in vitro maturation
КО	knockout
LH	luteinizing hormone
MEM	minimal essential medium

mg	milligrams
MgCl	magnesium chloride
MI	meiosis l
MII	meiosis II
Mil	milrinone
Milli-Q	Distilled water filtered through 0.22 um Millipak [®] Express Millipore
Min	minutes
PBE	polar body extrusion
PBS	Phosphate buffered saline
PCR	polymerase chain reaction
PDE	phosphodiesterase
PFA	paraformaldehyde
Pgcs	primordial germ cells
PIPES	piperazine-N,N'-bis(ethanesulfonic acid)
РКА	protein kinase A
PMSG	pregnant mare's serum gonadotrophin
PVP	polyvinylpyrrolidone
Rpm	revs per minute
Rt	room temperature
SDS	sodium dodecyl sulfate
sec	seconds
TAE	Tris-Acetate-EDTA
μm	micrometer
μΜ	micromolar
V	volts
Wt	wildtype
Zona	zona pellucida

Abstract

Cdh1, a co-activator of the Anaphase Promoting Complex (APC) has recently been shown to be important in germinal vesicle stage arrest and in the prevention of aneuploidy during the first meiotic division of mouse oocytes. However, this was through antisense knockdown approaches done *in-vitro*. Therefore, here I generated an oocyte-specific knockout of Cdh1 (Δ/Δ) to explore this further. In this way, Cdh1 protein was specifically deleted only in germinal vesicle (GV) stage oocytes from growing follicles. Fewer cumulus enclosed oocytes were observed from Δ/Δ mice, of which significant numbers had undergone GVB. Furthermore, significantly more meiotically advanced, fragmented or degenerate oocytes were observed in knockouts. Denuded Δ/Δ GV oocytes also displayed a propensity for spontaneous GV breakdown (GVB) which could be partially rescued by maintaining an intact cumulus mass. Δ/Δ oocytes also underwent accelerated GVB on release from arresting media. Western Blots revealed a 5 fold increase in cyclin B1 levels following loss of Cdh1, whereas other substrates of APC^{Cdh1}, securin and Cdc25B, remained unchanged.

In-vivo and *in-vitro* matured metaphase II (MII) oocytes were analysed for aneuploidy rates. *In-vivo* matured knockout oocytes had higher, but not statistically significant, rates of aneuploidy than controls. Denuded oocytes that underwent IVM also had a

higher incidence of aneuploidy in knockouts and in this group this was highly significant. In summary, data from the *in-vivo* knockout model supports those of the *in-vitro* antisense approach and provide further evidence for the role of Cdh1 in both GV arrest and the prevention of aneuploidy, at least in the situation where oocytes are cultured *in-vitro*.

Abstract

Contents