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Abstract

In the design of large interconnection networks several (and sometimes conflicting) factors
come into play. Two of the most common requirements are:

• an upper bound on the number of connections attached to each node (the degree of the
node in question), and

• an upper bound on the diameter of the network, which is the distance between the two
nodes that are farthest apart.

With these two constraints we can try to build a network that is as large as possible, in
terms of the number of nodes. In Graph Theory this classic problem is known as the Degree-
Diameter Problem, or DDP for short. Research on this problem began in the 60s, but there
are fundamental questions that still remain unanswered. There is a well known upper bound
(the Moore bound) on the maximum number of nodes that can be achieved, given a maximum
degree and a diameter. However, the number of networks reaching the Moore bound (or even
approaching it, in the undirected case) is very small. For most combinations of maximum
degree and diameter there is a gap (that can be very large for undirected networks) between
the largest constructed network and the theoretical upper limit.

Consequently, research in this area can be roughly classified into two main categories:

1. Lowering the theoretical upper bound, by proving the nonexistence of networks with a
given number of nodes, for a given combination of maximum degree and diameter.

2. Increasing the lower bounds, by constructing ever larger networks, for each combination
of maximum degree and diameter.

Our research in DDP falls entirely within the second category: we investigate and apply
methods to construct large networks. More precisely, we investigate two kinds of methods:

• Graph compounding, which produces large networks of diameter 6.

• Algebraic methods, based on Cayley graphs and its generalization, voltage assignment.
We have applied algebraic methods to obtain large bipartite networks.

Additionally, we introduce a generalization of the Degree-Diameter Problem, which we have
called the Degree-Diameter Subgraph Problem, or DDS for short, consisting in finding
the largest subnetwork of a given host network, again subject to constraints on the maximum
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degree and the diameter. It is noteworthy that DDS had not been investigated before, in
spite of the fact that it is a natural generalization of DDP, hence we regard this as the main
contribution of the thesis.

Our research in DDS falls within the two main research directions enumerated above, i.e.
lowering the upper bounds, and raising the lower bounds. We have focused on some host
networks of practical interest (mainly for parallel computing): the mesh, the hexagonal grid,
and the hypercube. For those host networks we have determined Moore-like upper bounds for
the largest subnetwork of a given maximum degree and diameter. Then we have applied some
ad hoc construction techniques that yield families of subnetworks, which in most cases come
quite close to, or even reach the theoretical upper limits.

Finally, we discuss DDS from the computational viewpoint. As a combinatorial optimization
problem it is NP−hard, hence finding an exact solution for large instances is hopeless with
the current state of the art. We propose a heuristic algorithm that approximates the solution
in polynomial time, and we investigate its performance, both theoretically and empirically.

Our work opens up many new interesting research directions, and we briefly discuss some of
them in the thesis.
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1
Introduction

1.1 The Degree-Diameter Problem

In the design of large communication networks several (and sometimes conflicting) factors
come into play. For instance, it is desirable that the number of connections attached to each
node, as well as the distance between any two nodes of the network, remain small. In graph
theory this situation is known as the Degree-Diameter Problem (or DDP for short), which asks
to construct a largest possible graph (i.e. one with the largest possible number of vertices)
having a fixed maximum degree and diameter. This problem was first stated by Elspas in
1964 [56], and has been investigated by numerous researchers ever since.
The range of applications of this problem is very large, and we do not intend to cover the
whole range in this introduction. The interested reader can find some of these applications in
[103]. In Section 1.2 we discuss a straighforward generalization of DDP, with an even wider
range of practical applications.
DDP comes in two flavours: directed and undirected. We will mainly be concerned here with
the undirected case, but our theoretical framework requires some coverage of the directed ver-
sion as well. Let D represent the diameter of the graph (digraph) G, and let ∆ stand for its
maximum degree (outdegree). Now let us denote by N∆,D the maximum number of vertices
that G may have, keeping ∆ and D fixed. It is well known that N∆,D has an upper bound,
called the Moore bound1, which is attained in only very few cases. For most combinations of
∆ and D, the actual size of a largest known graph is still very far from the Moore bound.
Moreover, DDP can be specialized for particular classes of graphs, like planar graphs, vertex-
transitive graphs, Cayley graphs, and bipartite graphs. For each one of these classes there is
a Moore-like bound, and a body of related research. For more information about the Moore
bound and related issues, we refer the reader to [119].
Therefore, one of the main research areas in extremal graph theory lies in the construction of
ever larger graphs satisfying the degree-diameter constraints, and getting closer to the Moore

1The Moore bound is different in the directed and undirected cases.
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bound. Several construction methods have been tried, ranging from ad hoc constructions to
computer-based methods.
The most successful technique so far is the one known as voltage assignment [77, 78]; it is cred-
ited with about 60% percent of the entries in the current table of the largest known graphs
[63]. Voltage assignment takes a digraph G = (V,A) (called base digraph) and a group Γ
(called voltage group), and builds a derived digraph (or lift) with |V ||Γ| vertices and |A||Γ|
arcs. In Section 2.5.1 we summarize the main concepts and results of that theory.
Our work in this area is a mixture of computational and algebraic methods. So far we have
mainly worked on ad hoc analytic constructions (graph compounding), and voltage assign-
ment, as well as some accessory techniques. The use of voltage assignment for constructing
large graphs is not an original idea; it has been used with success in the past by several
researchers. However, we have found that the current theory of voltage assignment, and its
application to DDP, is not sufficiently developed.
For instance, the use of voltage assignment has been so far limited to judicious choices of base
graphs and voltage groups, or to nearly brute-force computer search. Very little is known
about the conditions, either necessary or sufficient, that a base graph, a voltage group, and
a particular voltage assignment must satisfy, in order to obtain a graph with some desired
properties, like planarity.
As another example of this oblivion, only ordinary voltages have been used in connection with
the degree-diameter problem. We do not know of any work that exploits the potential of
permutation voltages, which produce graphs with less regularity, and may thus be used for
the design of real-life networks. In general, we dare to assert that the tremendous power of
the group-theoretic machinery is far from being exploited.
Taking into account that even under these circumstances the voltage assignment technique
has been so successful, we are totally convinced that its potential is still enormous. In our
research we have envisioned a more systematic methodology that does not rely on ad-hoc
constructions or nearly blind computer search.

1.2 A more general approach to the Degree-Diameter Problem

A broad class of network design problems consists of finding a subgraph with given properties
inside a given host graph. In the famous book by Garey and Johnson [68], this kind of
network design problem already occupies an important place, since it also turns out that
many of these problems are computationally hard. Since then, a lot of work has been carried
out on the subject; we will just mention [5, 7, 95, 131] as recent examples. Some of the typical
properties that we would like to control are:

1. Size (number of nodes). In many applications we need the largest, or the smallest
possible network, that satisfies other properties as well

2. Maximum degree. For practical reasons, it is impossible to have too many connections
attached to a single node

3. Diameter (the shortest distance between two nodes that are farthest apart). The diam-
eter is an upper bound on the distance that a message has to travel inside the network,
so it is important to keep it as small as possible. A related metric is average path length,
which is often a more reliable measure of network performance than the diameter [42].
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4. Connectivity (the smallest number of nodes - or links - that have to be removed in order
to disconnect the network).

5. Fault tolerance (a generalization of connectivity, has to do with the number of nodes or
links that have to be removed in order to make the network dysfunctional in some way).
Obviously, we would like our network to have a high fault tolerance

6. Symmetry is a desirable property for network designers because it allows the implemen-
tation of the same algorithm at each component of the network. Symmetry is also related
to fault tolerance [42, 41, 43]. Symmetry can be defined by several parameters, usually
(but not exclusively) linked to the group of automorphisms of the network’s graph (i.e.
the set of transformations that leaves the graph invariant).

What we are facing now is a particular problem of that type, namely finding the largest
connected subgraph with given maximum degree and diameter, contained inside a given host
graph. The Degree-Diameter Problem, as it has been known to-date, is merely a special case
of this broader problem, which we may call the Degree-Diameter Subgraph Problem (DDS), or
more precisely, the Maximal Degree-and-Diameter Bounded Subgraph Problem (MaxDDBS).
The practical implications of MaxDDBS are diverse: For example, communication time plays
a crucial role in parallel and distributed processing, hence it may be important to identify a
sub-network of bounded degree and diameter within the parallel architecture, in order to
perform the computation efficiently.

A similar situation occurs in botnets. A botnet is basically a network of bots (malicious
programs carrying out tasks for other programs or users), and controlled by members of
organized crime groups, or ‘botmasters’. Bots belonging to a botnet can be hosted on almost
any computer, and very few internet users are immune to becoming a host. Some of the
common malicious activities performed by botnets are Distributed Denial-of-Service Attacks
(DDoS), and the distribution of spam. In those activities, the botmaster may try to choose
a sub-network with the criteria enumerated above, in order to inflict the greatest possible
damage, and at the same time remain immune to detection and regulation, whereas our goal
is to predict the parameters of the attacking network, and take defensive steps against it.

Sohaee and Forst [139] apply bounded-diameter subgraphs to protein interaction networks
(such as the 453-vertex metabolic network of the Caenorhabditis elegans nematode [54]) in
order to identify the ‘core’ of the network. However, this may result in a subgraph dominated
by a single node of high degree. On the other hand, subgraphs bounded by both degree and
diameter may display a richer pattern of interaction, which may consequently be of greater
interest.

1.3 Goals

Our main goal in this project can be stated in a very general way as follows:

Develop original techniques and methodologies for constructing large subgraphs
of a given host graph, subject to upper bounds on the degree and the diameter .2

2Here the host graph could be a complete graph.
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In turn, this main goal can be decomposed into several sub-goals:

1. In general, we intend to make a contribution to the classical Degree-Diameter Prob-
lem. In particular, we aim at improving the lower bounds with the aid of construction
techniques, and a mixture of computational and algebraic techniques.

2. In the case of algebraic techniques, we wish to contribute to the theory of voltage graphs,
with the aid of the powerful tools provided by classical and computational group theory.
More specifically, we want to obtain conditions on the base digraph and the voltage
group, that enable us to predict properties of the derived graph, such as bipartiteness.
These conditions can lay the foundations for a methodology to construct large graphs
of some particular classes via voltage assignment.

3. In the case of the Degree-Diameter Subgraph Problem, we focus on establishing Moore-
like bounds for different kinds of host networks of practical importance.

4. Finally, we develop a practical algorithm for dealing with MaxDDBS and analyse its
performance.

In order to carry out these goals, we needed to address some secondary or accesory issues,
which may be interesting in themselves:

1. Expand the theory of rewriting systems, to enable its use in connection with voltage
assignment.

2. Develop computer tools to perform calculations with graphs and groups. For example,
we have designed and implemented functions for Knuth-Bendix completion of string-
rewriting systems, computing voltage assignment, computing the MaxDDBS in a given
host graph, and constructing graphs of certain classes, thereby expanding existing soft-
ware libraries.

3. Create, maintain, and improve the website http://combinatoricswiki.org/wiki, as a
collaborative repository of trustworthy and up-to-date information for practitioners of
combinatorics and graph theory.

1.4 Organization of the thesis

The thesis consists of three main parts:

1. Preliminaries, where we provide the basic concepts and notation, state our research
problems more formally, and discuss the relevant literature. Besides this introductory
chapter, we have a chapter on algebraic structures, graphs, and their relationship (Chap-
ter 2), and another chapter on network construction and algorithms (Chapter 3). Besides
laying down the basis for the rest of the thesis, these two chapters discuss some recent
relevant results and research directions. Given the variety of topics that we touch upon
in the thesis, we have chosen this heterodox approach, rather than having a separate
chapter devoted to literature review, in order to give more unity to the thesis.

http:// combinatoricswiki.org/wiki
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2. The Degree-Diameter Problem, where we improve the existing lower bounds with
the aid of construction, algebraic, and computational techniques. This part consists of
two chapters: First, in Chapter 4 we give a construction of large graphs of diameter 6.
Then, in Chapter 5 we develop some algebraic and computational techniques for use in
conjunction with voltage assignment, in order to obtain large graphs with given degree
and diameter.

3. The Degree-Diameter Subgraph Problem, where we investigate this generalization
of DDP in some host graphs of practical interest, and we address the problem compu-
tationally. This part is made up by three chapters: In Chapter 6 we focus on DDS in
the k-dimensional mesh, and we obtain Moore-like upper bounds for the general case,
and lower bounds for some specific cases. Then, in Chapter 7 we follow the same ap-
proach with other host networks of practical importance: the hexagonal grid, and the
hypercube. In Chapter 8 we discuss MaxDDBS from the computational viewpoint: We
design, implement, and test a practical algorithm to solve the problem. Finally, we have
a Conclusion chapter to summarize all the above information.

The stronger dependencies among the chapters are shown in Figure 1.1.

Chapter 1

Introduction

Chapter 2

Algebraic structures

and graphs

Chapter 3

Graphs, networks,

and algorithms

Chapter 5

Algebraic methods

Chapter 6

DDS in the mesh

Chapter 7

DDS in other networks

Chapter 8

Computational approach

Chapter 4

Large graphs by

compounding

Figure 1.1: Chapter dependencies

Our original results are marked with the symbol F, and the end of a proof is signalled with
the symbol �. If the symbol � appears right after an assertion, it means that the assertion
in question is relatively straightforward to verify.

Personally, I feel that this thesis raises more question than it answers (which is positive in
general, but can be frustrating at times). Consequently, I have set aside some space at the
end of each chapter to discuss, or simply to enumerate, some of these open problems that I
could not pursue to the end in the time frame that was allocated for the thesis.



2
Algebraic structures and graphs

This is the first of two chapters devoted to the basic concepts that will be used throughout
the thesis. It fixes the notation and introduces the basic notions and results of algebraic
structures (Section 2.1), graphs (Section 2.2), group presentations (Section 2.3), rewriting
systems (Section 2.4), and the theory of voltage assignment (Section 2.5). Most of the results
presented here are well known, and so they are stated without proof, with only the appropriate
references. In Section 2.5 we also review some recent research directions that are directly
connected with our work.

2.1 Basic algebraic structures

In this section we establish our set-theoretic notations, and review two fundamental algebraic
structures: monoids and groups. It is impossible to give a complete overview of all, but the
most basic group-theoretic concepts in such a short space. We will expand this foundation
later in Sections 2.2.4, 2.3, 5.2, and 5.4, where the group-theoretic definitions are introduced
in the context where they will be used. All this material can also be found in [132]. Personally,
I am also very fond of [97] because it was a standard text in my undergraduate years. Another
good text for group theory, that treats permutation groups in reasonable depth, is [99].

2.1.1 Sets, monoids, and groups

In what follows we will denote by N the set of natural numbers including 0, and by Z the set
of all integers. The latter is, in turn, partitioned into Z+ (the set of positive integers), {0}
and Z− (the set of negative integers). The sets of rational and real numbers are denoted by
Q and R, respectively. 2S will stand for the power set of a set S, and

(
S
k

)
will denote the set

of all k-subsets of S.
Let Γ be a non-empty set, and ◦ a binary operation on Γ. The pair (Γ, ◦) is a monoid if
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(i) the operation ◦ is associative,

(ii) there exists an element id ∈ Γ, called identity , such that, for all γ ∈ Γ, id◦γ = γ ◦ id = γ

If additionally we have that

(iii) for each γ ∈ Γ, there exists an element γ−1 ∈ Γ, called the inverse of γ, such that
γ−1 ◦ γ = γ ◦ γ−1 = id,

then the pair (Γ, ◦) is called a group.
If the operation ◦ is commutative, the monoid (resp. group) is called commutative, or abelian.
For abelian monoids and groups it is customary to use the symbol + (additive notation)
instead of ◦ (multiplicative notation). The multiplicative symbol ◦ is usually ommited if no
confusions arise. Also, if the multiplicative notation is used, the identity element is usually
denoted as 1Γ (or just 1), and it is denoted as 0Γ (or just 0) in the additive notation.
The order of a monoid (resp. group) Γ, denoted |Γ|, is the number of elements in Γ. In the
case of groups, the order of a particular element γ ∈ Γ is the smallest power n such that
γn = 1. An element of order 2 is called an involution of Γ. In the remainder of this section
we will be concerned mainly with groups, unless otherwise stated.
A subset S of Γ is a subgroup of Γ if S, together with the operation ◦, restricted to S, is itself
a group. Given X ⊆ Γ, the subgroup generated by X, denoted 〈X〉, is the smallest possible
subgroup S of Γ that contains X. 〈X〉 consists of all possible products x1x2 · · ·xn, where
either xi ∈ X, or x−1

i ∈ X, for 1 ≤ i ≤ n and n ∈ N. The set X is called a generating set of
〈X〉.
Given two groups (Γ, ◦) and (Λ, �), a group homomorphism is a mapping h : Γ→ Λ such that
h(γ1 ◦ γ2) = h(γ1) � h(γ2) for all γ1, γ2 ∈ Γ. If the homomorphism is onto, it is called an
epimorphism, and if it is injective, then it is called a monomorphism. A homomorphism that
is at the same time injective and surjective is an isomorphism, and if such a homomorphism
exists between (Γ, ◦) and (Λ, �), then they are isomorphic groups. If h is an isomorphism from
(Γ, ◦) and (Λ, �), then h−1 is also an isomorphism, this time from (Λ, �) to (Γ, ◦).
Let h be a homomorphism between (Γ, ◦) and (Λ, �). The following statements are immediate
consequences of the group and homomorphism definitions:

• h(1Γ) = 1Λ

• h(γ−1) = h(γ)−1, for all γ ∈ Γ

• if S is a subgroup of (Γ, ◦), then h(S) is a subgroup of (Λ, �)

• if S′ is a subgroup of (Λ, �), then h−1(S′) is a subgroup of (Γ, ◦)

The set h−1(1Λ) is called the kernel of h, denoted Ker(h).
An isomorphism from (Γ, ◦) onto itself is an automorphism of (Γ, ◦). The set of all automor-
phisms of (Γ, ◦) is itself a group, together with the operation of composition of mappings,
where the identity mapping is the group identity, and the inverse of a mapping is the inverse
mapping. The automorphism group of Γ is denoted Aut(Γ). Let x ∈ Γ; the automorphism
φx defined as φx(γ) = x−1γx, for all γ ∈ Γ, is the inner automorphism induced by x. The set
Inn(Γ) of inner automorphisms is a subgroup of Aut(Γ).
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A subgroup S of (Γ, ◦) that remains invariant under every inner automorphism is called nor-
mal , and we denote it by S E Γ. If h is a homomorphism between (Γ, ◦) and (Λ, �), then
Ker(h) is a normal subgroup of (Γ, ◦). The homomorphism theorem asserts that the converse
is also true, i.e. every normal subgroup N of (Γ, ◦) is the kernel of some homomorphism
h : (Γ, ◦)→ (Λ, �). In this situation, the homomorphic image (Λ, �) is also called the quotient
group of Γ by N , and is denoted Γ/N .

2.1.2 Permutation groups

The set of all bijections of an n-set X, denoted as SX , or simply as Sn, is called the symmetric
group onX. It is easy to show that ifX1 andX2 are two n-sets, their corresponding symmetric
groups are isomorphic, hence we can talk of the symmetric group on n elements, or the
symmetric group of degree n (and order n!). A permutation group on X is a subgroup of SX .
Let Γ be a permutation group on X, and γ ∈ Γ. Then γ can be represented as a set of
disjoint permutation cycles. A permutation cycle is a sequence

(
x, γ(x), γ2(x), . . . , γp(x)

)
,

where x ∈ X and γp+1(x) = x. For instance, the permutation ω = {2, 5, 4, 3, 1, 6} can be
represented as (1, 2, 5)(3, 4)(6). The length of a cycle is the number of its elements.
A permutation representation of a group Γ is a homomorphism from Γ onto SX , for some set
X. A permutation representation is also called an action of Γ on the set X, and Γ is said to
act on X.
Let Γ be a group acting on a set X, then there is a homomorphism h : Γ → SX . Let us set,
for any γ ∈ Γ, h(γ) = πγ . The orbit of an element x ∈ X, designated OrbΓ(x), is the set
of all elements of X that are the image of x under some permutation πγ ∈ SX . Formally,
OrbΓ(x) = {πγ(x)|πγ ∈ SX}. The orbit of x is a subset of X. All the orbits of Γ partition X,
and the associated equivalence relation is defined by x ∼ y if, and only if, there exists γ ∈ Γ
such that πγ(x) = y.
Let Γ be a permutation group acting on a set X. The group Γ is transitive on X if, for all
x, y ∈ X, there exists γ ∈ Γ such that γ(x) = y. That is, Γ is transitive on X if for all x ∈ X,
OrbΓ(x) = X. If moreover, the above permutation γ ∈ Γ, such that γ(x) = y, is unique, the
group Γ is said to be regular . In a regular group Γ, no permutation γ 6= id leaves any element
of X fixed. Also, the order of a regular group on X is |X|.
The stabilizer of an element x ∈ X, denoted StabΓ(x), is the set of all permutations γ ∈ Γ
mapping x to itself. Formally, StabΓ(x) = {γ ∈ Γ|γ(x) = x}. StabΓ(x) is a subgroup of Γ.
The following theorem relates orbits and stabilizers (Theorem 1.4A of [52]):

Theorem 2.1 (Orbit-Stabilizer) Let Γ be a permutation group acting on a set X and let
x be an element of X. Then for any x ∈ X,

|OrbΓ(x)||StabΓ(x)| = |Γ|

2.2 Graphs

This section contains the background material for graph theory. The terminology and no-
tation introduced here are quite standard, though the approach we have used is somewhat
unorthodox. We start by defining the basic concepts for directed graphs, and then we see
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how they translate to the undirected case, which will be our main concern throughout this
thesis. Unfortunately, no approach is perfect, and this one has its shortcomings too, but its
merits outweigh any possible disadvantages, and ultimately, it is a matter of personal taste.
The interested reader can find more information about directed graphs in [8], for instance,
and some standard sources for undirected graphs are [21, 23, 30, 50, 78].

2.2.1 Directed graphs

Let V and A be two sets, such that V ∩ A = ∅. A directed graph (or digraph, for short) is a
pair G = (V,A), where A ⊆ V × V . The elements of V and A are called vertices and arcs of
the digraph G, respectively. The vertex set V of a digraph G will be denoted by V (G), and its
arc set by A(G). The number of vertices of G is called the order of G, and is denoted by |G|,
as usual. A digraph of finite order is called finite. Here we will consider only finite digraphs.
A digraph of order 0 is an empty digraph and is denoted by ∅. A trivial digraph is either an
empty digraph or a digraph of order 1.
If a = (u, v) is an arc, we say that u and v are its endvertices. More precisely, u is the tail and
v is the head of a. We sometimes use the notation u → v for a. For X,Y ⊆ V (G), A(X,Y )
is the set of all arcs going from a vertex in X to a vertex in Y . We say that X dominates u,
denoted X → u, if either u ∈ X or there is an arc (x, u), with x ∈ X.
A digraph represents a binary relation on V . By the definition above, it is possible to have
an arc a = (v, v). In that case, we say that a is a loop. Even though not strictly allowed by
the definition, sometimes it is also useful to consider multiple or parallel arcs, that are equal
as ordered pairs. A digraph without multiple arcs or loops is called simple.
Let u be a vertex of G. The out-degree of u (denoted deg+(u)) is the number of arcs in G
with tail u. The in-degree (denoted deg−(u)) is the number of arcs in G with head u. The set
N+

Λ (x)= {v|(u, v) ∈ A(G)} is the out-neighborhood of u, whereas the set N−Λ (x)= {v|(v, u) ∈
A(G)} is the in-neighborhood of u. If every vertex in a digraph G has the same in-degree
(out-degree) then G is said to be in-regular (out-regular). If a digraph is in-regular of in-degree
∆ and out-regular of out-degree ∆ then it is called diregular of degree ∆.
Let G and G′ be two digraphs. If V (G′) ⊆ V (G) and A(G′) ⊆ A(G) then G′ is said to be
a subdigraph of G, denoted G′ ⊆ G. If G′ ⊆ G and G′ 6= G, we say that G′ is a proper
subdigraph of G, denoted by G′ ⊂ G. If G′ ⊆ G and G′ contains all the arcs (u, v) ∈ A(G)
with u, v ∈ V ′ = V (G′) then G′ is an induced subdigraph of G, denoted by G[V ′]. Given
G′ ⊆ G, G′ is a spanning subdigraph of G if V (G′) = V (G).
Let G = (V,A) be a digraph, where we allow multiple arcs and loops. A walk on G is an
alternating sequence of vertices and arcs, v1, a1, v2, a2, . . . , vk, ak, vk+1, where v1 is the starting
vertex, vk+1 is the end vertex, and the arc ai joins the vertices vi and vi+1, for i = 1, 2, . . . , k.
This walk is a v1 − vk+1 walk, since it goes from vertex v1 to vertex vk+1. Let X and Y be
two sets of vertices; an X − Y walk is a walk v1, a1, v2, a2, . . . , vk, ak, vk+1, where x1 ∈ X,
xk+1 ∈ Y and xi /∈ X,Y , for i = 2, . . . , k.
In most situations we can specify a walk by its arc sequence only, since the vertices can be
inferred. Note also that we say nothing about whether ai = (vi, vi+1) or ai = (vi+1, vi); that is,
in a walk an arc can be traversed in reverse direction. Also, vertices and arcs can be traversed
more than once. The length of the walk is k, the number of arcs. A walk of length k is called
a k−walk . If v1 = vk+1 we say that the walk is closed , otherwise it is open.
A natural walk is a walk where arcs are traversed in the natural direction indicated by the
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arrows, i.e. from tail to head. A natural walk can still repeat vertices and arcs. A path is
a natural walk where all vertices are distinct, with the possible exception of v1 and vk+1. A
closed path is called a cycle.
Let u, v be two vertices in a digraph G. The length of a shortest u − v path in G is called
the distance in G from u to v, denoted by dG(u, v). Note that in general d(u, v) 6= d(v, u). If
there is no u− v path in G, then dG(u, v) is taken to be ∞.

A digraph G is strongly connected if for any two vertices u and v, there exists at least one
u − v path. G is said to be (simply) connected if for any two vertices u and v, there exists
either an u− v path, or a v − u path.

2.2.2 Undirected graphs

An undirected graph (or simply graph) is a pair G = (V,E) of sets satisfying E ⊆
(
V
2

)
,

where V ∩ E = ∅. The elements of V and E are called vertices and edges of the graph G,
respectively. It is customary to write the edges as pairs (u, v), even if they are unordered,
although some authors prefer u, v or uv. We will mostly use the first and the third notation.
It is possible to view an undirected graph as a special case of digraph, i.e. one where the
relation A is symmetric. Therefore, most definitions that we have seen for digraphs in 2.2.1
carry over naturally for undirected graphs. For instance, the order of a graph is defined as in
the directed case, as well as the concept of trivial graph. However, there are also new features
that arise from the symmetry property, and we will review them shortly.
As in the case of digraphs, we will sometimes allow loops and multiple edges. A graph without
multiple edges or loops is called simple. The vertex set V of a graph G will be denoted by
V (G), and its edge set by E(G). If e = (u, v) is an edge, then u and v are called the endvertices
of a, and we also say that u and v are adjacent or neighbours, and also that they are incident
with e, while e is said to be incident with u and v. Two edges e 6= f are adjacent if they share
an endvertex. If two vertices u and v are not adjacent then we write u � v.
For X,Y ⊆ V (G), E(X,Y ) is the set of all edges going from a vertex in X to a vertex in
Y . The set of neighbours of a vertex v in G is denoted by N(v). The set of all edges in
E(G) incident with a vertex v is denoted by EG(x). In the case of undirected graphs, the
in-degree and out-degree of a vertex v are the same, and they are referred to as the degree of
v, denoted deg(v). The number ∆G = max{deg(v)|v ∈ V } is the maximum degree of G, while
δG min{deg(v)|v ∈ V } is the minimum degree. We say that X ⊆ V (G) dominates v (denoted
v ∼ X), if v either belongs to X or is adjacent to a vertex of X. Otherwise, we use the symbol
�.
A set of elements is called independent or stable if it contains no adjacent elements. A set of
independent edges is called a matching . A perfect matching M of G is a matching such that,
for any vertex v ∈ G, there is an edge in M incident with v.
The concepts subgraph, proper subgraph, induced subgraph, and spanning subgraph, are similar
to their directed counterparts. In an undirected graph, all walks are natural walks, and the
concepts path and cycle are defined in the same manner as in the directed case. The minimum
length of a cycle in a graph G is the girth of G, and is denoted by g(Γ). A graph G without
cycles is called acyclic, and in this case, g(G) is taken to be ∞.
The distance from u to v is also defined in the same manner, with the remark that in this
case, d(u, v) is always equal to d(v, u). The eccentricity of a vertex v, denoted eG(v), is
defined as the maximum distance between v and any other vertex. The diameter of a graph
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G, denoted D(G), is equal to the maximum eccentricity over all vertices of the graph, that is,
the greatest distance between any two vertices in G. Formally, eG(v) = maxx∈V (G) dG(v, x)
and therefore, D(G) = maxv∈V (G) maxx∈V (G) dG(v, x). The radius of a graph G, denoted
rad(Γ), is equal to the minimum eccentricity over all vertices of the graph. That is, rad(G) =
minx∈V (G) maxy∈V (G) dG(x, y).
The distinction between strongly connected and simply connected does not make sense in
undirected graphs, therefore we talk only about connected graphs.

2.2.3 Some special graphs

Let k ≥ 0. A path graph P =Pk is a graph such that

V (P ) = {x0, x1, . . . , xk} and E(P ) = {x0x1, x1x2, . . . , xk−1xk}.

The vertices x0 and xk are the endvertices or ends of P , and the vertices x1, . . . , xk−1 are its
inner vertices. Two paths are called independent if they do not share an inner vertex. The
subpath P [xi, xj ] denotes the induced subgraph P [xi, . . . , xj ].
A path (cycle) in a graph G is hamiltonian if it contains all the vertices of G.

A complete graph of order n, denoted Kn, is a graph where every vertex is adjacent to every
other one.
Let r ≥ 2 be an integer. A graph G is called r-partite if it is possible to partition V (G) into
r independent sets (called partite sets). A 2-partite graph is called bipartite, and it is written
G = (V1 ∪ V2, E), where V1 and V2 are the partite sets. A graph is bipartite if, and only if,
it contains no odd cycle. Given a bipartite graph G = (V1 ∪ V2, E), if every vertex of V1 is
joined to every vertex of V2, then G is a complete bipartite graph, and we denote it by Km,n,
where m = |V1| and n = |V2|.
If all the vertices of graph G have the same degree ∆ then G is called ∆-regular, or just
regular . A 3−regular graph is called cubic.

Regarding directed graphs, there are two types of digraphs that are commonly used in the
literature in connection with voltage assignment (see Section 2.5): The bouquet consists of
a single vertex and several loops.1 The dipole or dumbbell consists of two vertices joined by
multiple arcs, and possibly with loops at each vertex. A dipole with three arcs and no loops
is commonly referred to as a theta-graph.

2.2.4 Graph isomorphism

Let G and G′ be two digraphs. G = (V,A) and G′ = (V ′, A′) are said to be isomorphic
(denoted G ∼= G′) if there are two bijections, fV : V → V ′, and fA : A→ A′, so that for every
arc a = (x, y) ∈ A we have fA(a) = (fV (x), fV (y)). The pair of functions fV , fA is called an
isomorphism of G onto G′.
If G and G′ are simple digraphs, then we can rephrase this definition in terms of fV only: G ∼=
G′ if there is a bijection fV : V → V ′ such that (x, y) ∈ A if, and only if, (fV (x), fV (y)) ∈ A′.

1Some authors also include semiedges.
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Obviously, ∼= is an equivalence relation in the set of all digraphs. These definitions carry over
to undirected graphs.

An isomorphism of G onto itself is called an automorphism. The set of automorphisms of a
graph G forms a group with the operation of composition of functions. This group is called
the automorphism group of G, and is denoted Aut(Γ). The group Aut(G) is a permutation
group on V (G).
We say that G is vertex-transitive if Aut(G) acts transitively on V (G), that is, for any two
vertices, u and v, there is an automorphism ω ∈ Aut(G) such that ω(u) = v. Analogously, we
say that G is edge-transitive if for any two edges e and f in E(G), there is an automorphism
ω ∈ Aut(G) such that ω(e) = f , where ω(x, y) = (ω(x), ω(y)).
Finally, we say that a connected graph G is distance-transitive if, for all vertices u, v, x and
y of G such that d(u, v) = d(x, y), there is an automorphism ω ∈ Aut(G) satisfying ω(u) = x
and ω(v) = y.
Let G be a bipartite graph with partite sets V1 and V2. A polarity of G is an involutory
element of Aut(G) that interchanges V1 and V2.

2.3 Presentations

A presentation is an abstract way of defining an algebraic structure by means of generators and
relations among them. A presentation is usually given as a set of equations on words. They
are closely related to Cayley graphs. In this section we give an overview of those concepts,
which can be found in more detail in [99, 38], and other sources.

2.3.1 Monoid and group presentations

Let Σ be a finite set of symbols; we shall denote by Σ∗ the free monoid generated by Σ, i.e.
the set of all words that can be constructed with letters of the alphabet Σ, together with the
operation of concatenation. The identity element (the empty word) will be denoted either
as 1 or λ. If we have a binary relation R on Σ∗, then ≡R will stand for the congruence
generated by R, i.e. the reflexive-symmetric-transitive closure of R, that is compatible with
the concatenation operation. For the sake of simplicity, we can omit the subscript R whenever
that does not lead to confusion. For a word α ∈ Σ∗, [α]R will be the equivalence class of α
modulo ≡R.
The concatenation operation naturally induces an operation “ ◦ ” in the quotient

M =
Σ∗

≡R
,

namely, [α]R ◦ [β]R = [αβ]R. This gives rise to the following definition:

Definition 2.1 (Monoid presentation) The pair 〈Σ : R〉 is called a presentation of the
monoid 〈M, ◦〉. The latter is, in turn, the monoid presented by 〈Σ : R〉, and is also denoted as
Mon(Σ, R). The elements of Σ are the generators of the monoid, and R is the set of defining
relations. The identity element of this monoid is [1]R.
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Example 2.1

〈a, b, c : a2 = b2 = c2 = 1, bab = aba, ca = ac, cbc = bcb, cbac = bcba 〉,

is a monoid presentation (the monoid presented is the symmetric group of degree 4).

In the previous example we have followed the tradition of writing the pairs of words that
make up a defining relation as equalities. Moreover, we will only be concerned with finite
presentations, i.e. presentations where R is finite, like the one of example 2.1.
A fundamental algorithmic problem that arises from this definition is the so-called word prob-
lem, that can be defined as follows:

Definition 2.2 (Word problem in monoids) Let 〈Σ : R〉 be a fixed monoid presentation.
Instance: Two words α, β ∈ Σ∗.
Question: α ≡R β ?

In the uniform version of the word problem, the presentation becomes part of the problem
instance:

Definition 2.3 (Uniform word problem)
Instance: A monoid presentation: 〈Σ : R〉, and two words, α, β ∈ Σ∗.
Question: α ≡R β ?

Both versions of the word problem are undecidable in general (Section 2.5 of [24]).
Let us now take Σ−1 as the set of inverse symbols of Σ, that is: Σ−1 = {x−1 : x ∈ Σ}, and let
I be a binary relation on (Σ ∪ Σ−1)∗ defined as

I = {(xx−1,1), (x−1x,1) : x ∈ Σ}.

Here too, a binary operation is induced in the quotient

F =
(Σ ∪ Σ−1)∗

≡I
,

which we will represent again by means of the symbol “ ◦ ”.

Definition 2.4 (Free group) The monoid 〈F, ◦〉 described above is the free group generated
by Σ.

Let us now consider a binary relation R on (Σ ∪ Σ−1)∗, and the set

G =
(Σ ∪ Σ−1)∗

≡(R∪I)
,

which, together with the operation “ ◦ ” induced on it, becomes a group:
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Definition 2.5 (Group presentation) The pair 〈Σ : R〉 is called (a) presentation of the
group 〈G, ◦〉. The latter is, in turn, the group presented by 〈Σ : R〉, and is denoted as
Grp(Σ, R).

Clearly, every group presentation can be transformed into a monoid presentation. This can be
done, for example, by taking Σ := Σ ∪Σ−1, and R := R ∪ I; but in general, it suffices to add
a single extra generator [146]. Moreover, if G is a torsion group,2 then any group presentation
for G can be transformed to a monoid presentation for G without having to add any extra
generators. In particular, that holds for all finite groups; the presentation of example 2.1 is a
monoid presentation for the group S4.
For group presentations we can also define the word problem in its two versions, and new
decision problems arise, like the generalized word problem:

Definition 2.6 (The generalized word problem) Let 〈Σ : R〉 be a fixed monoid presen-
tation for a group G.
Instance: A set of words w1, w2, . . . , wk ∈ Σ∗, that define a subgroup H of G, and another
word α ∈ Σ∗.
Question: Does the element represented by α belong to H?

Needless to say, the generalized word problem is undecidable, too.

2.3.2 Cayley graphs

Let Γ be a group, and S ⊂ Γ, where 1 /∈ S.3 The Cayley color digraph on Γ with connection
set S is a digraph with vertex set V = Γ, and there is an arc going from g to h, labeled s
(where s ∈ S), if sg = h. The labels are the ‘colors’; if we drop them, we get the Cayley
digraph on Γ with connection set S.
Now, if we take S := S ∪ S−1, and we collapse two opposing arcs that have inverse labels,
then we get the Cayley color graph, and the Cayley graph, respectively, with connection set
S. The symbol Cay(Γ, S) will denote the Cayley graph on Γ with connection set S. A nice
introduction to Cayley graphs is given in [3, 4].
Cayley graphs are vertex-transitive, however the converse is not true in general. The following
result gives a complete characterization of Cayley graphs:

Theorem 2.2 ([133]) A graph G is a Cayley graph if, and only if, Aut(G) contains a regular
subgroup.

Notable Cayley graphs include the complete graph Kn, the complete multipartite graph, and
the d−dimensional cube Qd. A Cayley graph on the cyclic group Zn is called a circulant graph.
Due to their symmetry properties, among others, Cayley graphs (including circulant graphs)
have been widely studied as models of communication networks since the late 80’s and early
90’s (see [31, 114, 2, 37, 135, 101, 83, 154, 67], for instance).

2A torsion group is a group where every element has finite order.
3Some authors require that S be a generating set of Γ.
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However, the main emphasis so far has been on Cayley graphs of permutation groups, most
likely due to the fact that there exist efficient algorithms to deal with them. Our approach is
rather different: we discuss tools and methods to deal with Cayley graphs of finitely presented
groups.

2.4 String rewriting systems

We have said that it is customary to write the defining relations of a presentation as equations
involving two words. This approach underlines the non-oriented or bidirectional nature of
such relations (let us recall that we take the symmetric closure of R). Nevertheless, in order
to tackle the algorithmic problems associated to presentations, we could consider giving an
orientation to the defining relations, and always use them in one direction to transform words.
That way, defining relations would become string rewriting rules. The advantages of using this
oriented approach will become evident in this section, when we present the useful properties
of string rewriting systems. The definitions and results given here have been taken mainly
from the monograph by Book and Otto [24], and from the survey article by Cohen [32].

Definition 2.7 (String rewriting system) Let Σ be a finite alphabet, and R a binary re-
lation on Σ∗. The pair 〈Σ : R〉 is a string rewriting system on Σ. Every element (l, r) is a
rewriting rule; l is called left-hand side, or head of the rule, whereas r is the right-hand side,
or tail.

It is customary to refer to the relation R as the rewriting system, since the alphabet can
generally be deduced from R. We also say that R is a string rewriting system on Σ. Here too,
unless otherwise stated, we will assume that R is finite.

Definition 2.8 (Reduction) Let R be a string rewriting system on Σ. The one-step re-
duction relation induced by R, and denoted as →R, is defined as follows: for any two words
u, v ∈ Σ∗, u→R v if, and only if, there exists (l, r) ∈ R, and x, y ∈ Σ∗ such that u = xly and
v = xry. In this case we say that u is reduced to v (in one reduction step), and the word u
is said to be reducible. If u is such that there does not exist v, with u →R v, then u is said
to be irreducible. The reflexive and transitive closure of →R is called the reduction relation
induced by R, and is denoted ∗→.

An immediate consequence of the above definition is that l →R r for every (l, r) ∈ R, which
enables us to specify rewriting rules with the notation l →R r. Here we can also omit the
subscript R, whenever that omission poses no threats for the understanding of the text.
Besides the relation ∗→, rewriting theorists make abundant use of the relations ↔ (the sym-
metric closure of →), and ∗↔ (its reflexive, symmetric, transitive closure); the latter coincides
with our ≡, defined in Section 2.3. In the same way that we have done before, [α]R will be
the equivalence class of α modulo ≡R.

Definition 2.9 (Properties of string rewriting systems) We will say that two words,
u, v are joinable (which is denoted as u ↓ v) if there exists a word w such that u ∗→ w

and v ∗→ w. The rewriting system R is called confluent if u ∗→ v and u ∗→ w imply v ↓ w, and
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it is called locally confluent if u→ v and u→ w imply v ↓ w. R is said to be terminating, well
founded or noetherian if there does not exist an infinite sequence u1 → u2 → . . .→ un → . . ..

The relationship among the properties just defined are given by the following, classical result.

Lemma 2.1 (Newman) If R is terminating, then local confluence amounts to confluence.

Definition 2.10 (Complete rewriting system) It is said that R has the Church-Rosser
property if u ≡R v implies u ↓ v. If R is, at the same time, terminating and Church-Rosser,
we say that it is complete, canonical, or convergent.

In the definition of a complete system, the condition of having the Church-Rosser property
can be replaced by confluence, since both properties turn out to be equivalent. Completeness
is a very important property from the algorithmic viewpoint, for it guarantees the existence
of a unique irreducible word in each equivalence class modulo ≡R.
Thus, if we use a complete string rewriting system to specify a monoid, then the number
of irreducible words corresponds exactly to the order of the monoid. For an arbitrary string
rewriting system, the number of irreducible words is an upper bound of the order of the monoid
[69].
A presentation of a monoid M with the form of a complete string rewriting system is called
a complete presentation of M . Such a presentation provides a natural algorithm for solving
the word problem in M . Namely, let us denote by NF (w) the only irreducible word in the
equivalence class of w, which can be computed by virtue of the termination property. Let now
α and β be two words in the generators of M : α ≡R β if, and only if, NF (α) = NF (β).
From now on, Irr(R) will denote the set of irreducible words modulo R.

Definition 2.11 (Normalized systems) The system R is said to be normalized if for every
rule α→ β of R, β ∈ Irr(R), and α ∈ Irr(R \ {α→ β}).

Definition 2.12 (Equivalence of systems) Two string rewriting systems, R and S, on the
same alphabet Σ are said to be equivalent if they generate the same congruence ≡; that is, if
≡R coincides with ≡S.

The underlying idea in normalized systems is that they do not have redundant rules. Given
an arbitrary rewriting system R, we can always find a normalized system R′, equivalent to R.
Now, given an arbitrary rewriting system R, is it always possible to find a complete system
R, equivalent to R? Unfortunately, the answer to this question is negative. Moreover, given
a system R, in general it is undecidable to determine whether R is terminating or confluent.
In order to prove termination, we can use a partial ordering on Σ∗ with certain properties.

Definition 2.13 (Term ordering) Let < be a strict well-founded partial ordering on Σ∗,
and R a string rewriting system on Σ. We say that < is admissible if u < v implies xuy < xvy,
∀u, v, x, y ∈ Σ∗. Admissible well-founded orderings are called term orderings.
We say that < is compatible with R if β < α for all rewriting rules α→ β in R.
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Theorem 2.3 Let R be a rewriting system on Σ. R is noetherian if, and only if, there exists
a strict partial ordering < on Σ∗, which is admissible and compatible with R.

One of the term orderings most frequently used is the so-called “ShortLex" or “DegLex" or-
dering, where comparison between two words is based in the first place on their lengths: if
one of the words is longer than the other, then this longer word is taken to be the greater;
if both words have the same length, then they are compared lexicographically. Besides the
“ShortLex" ordering, we have used an ordering suggested by Mora [120], which is defined as
follows:
Let us suppose that a total ordering has been defined on Σ, and let Smax(w) be a maximal sym-
bol occurring in the word w ∈ Σ∗. Given w1 and w2 with w1 6= w2, if Smax(w1) < Smax(w2),
then w1 < w2. Otherwise, if Smax(w1) = Smax(w2) = x, then we can write:

w1 = u1xu2x . . . ur−1xur, y w2 = v1xv2x . . . vp−1xvp,

where the ui and vj do not contain any occurrence of x. In this case, if r < p we take
w1 < w2. Finally, if r = p then we make q = max{i/ui 6= vi}, and if uq < vq then we’ll also
have w1 < w2.
Mora’s ordering possesses interesting properties that we discuss in Chapter 5. We have used
this ordering systematically for the computation of our complete presentations.
Once we have proved R to be noetherian, confluence can be verified with the aid of the Knuth-
Bendix criterion [93], introduced in the sequel.
Let us denote by LRED(α) the irreducible word of [α]R that is obtained from α by performing
reduction steps to the leftmost possible subword of α that is amenable to reduction.
An overlap ambiguity is a triple of nonempty words, α, µ, β such that there exist rules αµ→ γ1

and µβ → γ2 in R. In this case, the pair of words γ1β and αγ2 is called a critical pair, since
αµβ could be reduced to them both.
The triple α, µ, β is called an inclusion ambiguity if there exist rules µ→ γ1 and αµβ → γ2 in
R, where γ1 6= γ2 if α and β are both empty. The pair of words (αγ1β, γ2) is the corresponding
critical pair in this case.
Finally, we have the following

Theorem 2.4 Let R be a terminating string rewriting system. R is locally confluent (and
hence, complete) if, and only if, for any critical pair (δ1, δ2) we have LRED(δ1) = LRED(δ2).

Clearly, in order to verify that LRED(δ1) = LRED(δ2) it suffices to check that δ1 ↓ δ2. When
this happens, we say that the critical pair resolves.
The above criterion suggests a computational procedure to ‘complete’a finite noetherian string
rewriting system R. That procedure (also known as the Knuth-Bendix procedure), when it
does terminate, produces a complete string rewriting system R, equivalent to R.
The procedure works by adding the critical pairs that do not resolve to the original system,
as new rewriting rules. During this process, the underlying ordering < is used in an essential
way: the new rules are oriented in such a way that < continues to be compatible with the
resulting system, which guarantees the termination of the latter.
In Algorithm 1 we give the basic Knuth-Bendix procedure for string rewriting systems, as
given in [24]. PAC(R) denotes the set of critical pairs of the system R. In [152, 137] some
modifications to the basic procedure are discussed, with the aim of improving its performance.
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The KBMAG package (which is distributed with GAP) [85] contains an efficient implemen-
tation of this procedure. Additionally, we have our own implementation, written in GAP 3,
which has less functionality than the KBMAG package, but is easier to use.

Algorithm 1: Knuth-Bendix procedure

Input : A rewriting system R on Σ and an admissible ordering <.
Output: A complete system R, equivalent to R.

/* Orient the system according to < */
1 R0 := {(l, r) : l > r and [(l, r) ∈ R or (r, l) ∈ R]};
2 i:=−1;
3 repeat
4 i := i+ 1;
5 CP:=PAC(Ri);
6 while CP 6= ∅ do
7 Choose (z1, z2) ∈ CP;
8 z1:= LRED(z1);
9 z2:= LRED(z2);

10 if z1 > z2 then
11 Ri+1:=Ri+1 ∪ {(z1, z2)};
12 end
13 if z2 > z1 then
14 Ri+1:=Ri+1 ∪ {(z2, z1)};
15 end
16 CP:= CP - {(z1, z2)};
17 end
18 if Ri+1 6= ∅ then
19 Ri+1:=Ri+1 ∪Ri
20 end
21 ;
22 until Ri+1 = ∅;
23 R:=

⋃
i≥0Ri;

2.4.1 Application: Computing the diameter of Cayley graphs

In Section 2.4 we have seen that if we have a monoid or group specified by a complete rewriting
system, then there is a one-to-one correspondence between the set of irreducible words and the
set of elements of the monoid or group in question. We can use this correspondence to perform
certain computations in the corresponding Cayley graph, e.g. to compute its diameter.

First let us remember that a Cayley graph is vertex-transitive. Therefore, in order to compute
its diameter it suffices to compute the longest path from a fixed vertex, e.g. the vertex labelled
with the identity element of the group. Suppose that S is a generating set of Γ and S is closed
under the operation of taking inverses (so that Cay(Γ, S) is connected and undirected). Then,
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the diameter of Cay(Γ, S) is max{lenS(γ)|γ ∈ Γ}, where lenS(γ) is the length of the shortest
word in the alphabet S which represents γ.

Computing the diameter of Cay(Γ, S) is, in general, a very difficult problem. Paraphrasing
[86], Section 4.8.3, this problem “represents a failure of Computational Group Theory, in that
no methods have been found that are significantly better than brute-force search”.

Now, let us assume that Γ is presented by a complete string-rewriting system on the generating
set S, with respect to the ShortLex ordering. Then, the most distant vertex corresponds to
the longest irreducible word, since an irreducible word is at the same time the shortest word
representing the element in question.

In order to find the longest irreducible word we can traverse the set of irreducible words in
depth-first fashion (DFS), keeping a record of the longest irreducible word found so far. That
is, for every new word generated, we have to check whether it is irreducible modulo the string
rewriting system, and if so, compare its length with the longest so far. DFS traversal can be
done very efficiently in terms of memory usage, since only one word has to be kept in memory
at a time.

In many cases we can also save time by noting that the longest word is located at the end
of the leftmost branch, i.e. it is the leaf of the DFS tree that appears right before the first
bactrack. However, even this does not guarantee a significant saving in computing time in the
worst case.

It is true that in order to apply this method we needed to compute a complete string-rewriting
system first, and that is a costly process in itself, but on the other hand, this complete rewriting
system could have been obtained by other means than the Knuth-Bendix procedure. For
example, in Section 5.1.1 we explain a method that can be used to obtain a new complete
string-rewriting system from a previous one, at a small computational cost.

If S does not contain the inverses of the elements, then Cay(Γ, S) is directed, and the above
discussion still applies.

Example 2.2 As a simple example, Figure 2.1 shows the DFS tree of irreducible words of the
quaternion group, given by the complete monoid presentation 〈a, b; b2 = a2, aba = b, ba2 =
a2b, bab = a, a4 = 1, a3b = ba〉. As the generating set {a, b} does not contain the inverses, the
corresponding Cayley graph is directed. The longest words in the tree are a3 and a2b, hence
the diameter of the Cayley graph is 4.

Example 2.3 For a more serious example, let F4 be the group of order 1152, with generating
set {a, b, c, d} and defining relations a2 = b2 = c2 = d2 = 1, bab = aba, ca = ac, cbcb =
bcbc, da = ad, db = bd, dcd = cdc. Note that each generator is its own inverse, hence the
corresponding Cayley graph is undirected. We compute a complete string-rewriting system
with respect to the ShortLex ordering:

a2 = b2 = c2 = d2 = 1,

ca = ac, da = ad, db = bd, bab = aba, dcd = cdc,

cbcb = bcbc, dcbd = cdcb, dcbad = cdcba, cbacba = bcbacb,
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a b

a2 ab

a3 a2b

ba

Figure 2.1: DFS tree of irreducible words of the quaternion group 〈a, b; a4 = 1, b2 = a2, ba =
a3b〉

dcbcdc = cdcbcd, dcbacdc = cdcbacd, dcbacbdcbc = cdcbacbdcb,

dcbacbdcbac = cdcbacbdcba, dcbacbcdcbcd = cdcbacbcdcbc,

dcbacbcdcbacd = cdcbacbcdcbac,

dcbacbcdcbacbd = cdcbacbcdcbacb,

dcbacbcdcbacbcdc = cdcbacbcdcbacbcd.

With respect to this system, the longest word has length 24.

2.5 Voltage assignment

We have seen the connection between graphs and groups in Section 2.2.4, with the automor-
phism group of a graph, and in Section 2.3.2, with the Cayley graph of a group. In this
section these two concepts meet again: we introduce voltage assignment, a technique that
was originally used in connection with some topological problems in Graph Theory, but has
recently found great application in other areas.

In its original form, voltage assignment takes a base digraph and a group to obtain a new,
larger digraph. By dropping arc directions one can also construct undirected graphs; that
is the way we will generally use it. Our theoretical framework is slightly different from the
one that is customary in the literature: first we define the construction for natural walks (i.e.
walks that follow arc directions), and then we extend the definition for arbitrary walks.

This section is divided into two subsections, the first one devoted to the definition and basic
properties of the construction, and the second one to a short review of its connection with the
Degree-Diameter Problem. For more detail we refer the reader to [77, 14, 28].
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2.5.1 Definition and main properties

Let G be a digraph, Γ a finite group, and α : A → Γ a labelling of the arcs with elements of
Γ. The labels are usually called voltages, and α is a voltage assignment . Given G, Γ, and α, a
new digraph Gα is constructed as follows: V (Gα) = V α = V × Γ, and A(Gα) = Aα = A× Γ.
If we have an arc (u, v) ∈ A in G, with voltage h ∈ Γ, then (u, g) is joined to (v, gh) in Gα, for
all g ∈ Γ. Quite often the vertex (v, g) ∈ V α is written vg. The digraph Gα is a topological
covering of G, and it is commonly referred to as the the derived digraph or the lift of G by
Γ and α. The digraph G is called the base digraph. A straightforward consequence of this
definition is that both the number of vertices and the number of arcs of Gα are divisible by
|Γ|. Figure 2.2 shows an example of a voltage assignment of a dipole, with voltages in Z3, and
the resulting derived digraph.

Figure 2.2: Voltage assignment of a dipole, with voltages in Z3, and the resulting derived
digraph.

The function π : Gα → G that erases the second coordinate of any vertex or arc of Gα, is
called the natural projection of Gα onto G. The natural projection is defined for individual
vertices or arcs of Gα, but it can be extended to subgraphs of Gα in two ways. The most
obvious extension is the set-theoretic extension, i.e. π(S) = ∪s∈Sπ(s). Let us denote this
extension by π1. However, in some cases it is very useful to consider another extension π2

of π, namely the one that allows repetition of elements.4 For example, if we have a walk W
in Gα, consisting of the arcs ag, bh, ai, then π2(W ) = a, b, a, while π1(W ) = {a, b}. That is,
π2(W ) is also a walk in G, while π1(W ) is just a set of arcs. If W is a natural walk in Gα,
then π2(W ) is also a natural walk (in G).
A lift of the walk W = a1, a2, . . . , ak, in G, is a walk W ′ = a′1, a

′
2, . . . , a

′
k in Gα, such that

π2(W ′) = W . We say that W lifts to W ′. On the other hand, we say that a walk W in G
expands to a subgraph W ′ of Gα if π1(W ′) = W , and W ′ is maximal with respect to that
property. W ′ is the expansion5 of W . In some sense, the lifting operation is the ‘inverse’ of
π2, and the expansion is the ‘inverse’ of π1.
Given a walk W = a1, a2, . . . , ak, on G, whose arcs have voltages g1, g2, . . . , gk, the net voltage
(or simply the voltage) of W , denoted α(W ), is defined as the product ge11 g

e2
2 , . . . , g

ek
k , where

ei = 1 if the corresponding arc ai is traversed in the natural direction, and ei = −1 if it is
4Most authors do not make any distinction between π1 and π2, but we believe that this omission may be a

source of confusion.
5This should not be confused with other existing definitions of expansion graphs.
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traversed in reverse direction. If W is a natural walk, then all the exponents are 1. With the
aid of projection π2 we can also define the net voltage of a walk W ′ on Gα, just as the net
voltage of π2(W ′), which is a walk on G.
If x is a vertex (resp. an arc) of G, then π−1

1 (x) = {(x; g) : g ∈ Γ} is called the vertex (resp.
arc) fibre over x. There are several known facts concerning fibres:

1. If a = (u, v) is an arc in G, then the fibre over a is a perfect matching between the fibre
over u and the fibre over v (see 2.1.2 in [77], p 60).

2. The fibre over a loop is a set of cycles (Idem).

3. If the walk W starts at vertex u ∈ G, then for each vertex ug in the fibre over u, there
is a unique lift of W that starts at ug (hence it can be denoted Wg). Moreover, if W
ends at vertex v, and has net voltage h, then Wg terminates at vgh (Theorems 2.1.1 and
2.1.2 of [77], p 62).

Now, given the set of voltages X = {x1, x2, . . . , xk} on the arcs leaving a vertex v of G, and
given an arbitrary g ∈ Γ, define gα to be the voltage assignment identical to α, such that
the set U is modified as follows: X = {gx1, gx2, . . . , gxk}. The resulting derived graph Ggα

is isomorphic to Gα. This implies that any voltage assignment α is equivalent to a voltage
assignment gα with the identity element of G assigned to the arcs of any spanning tree of G.
A voltage assignment a is said to be in standard form if a spanning tree of G is assigned the
identity element of G. From the above results we conclude that for each voltage assignment
α′ we can find α in standard form. The relation defined by ‘having the same standard form’
is an equivalence relation on voltage assignments. It is possible, however, that two voltage
assignments from two different equivalence classes will give rise to isomorphic lifts.

2.5.2 Cycle structure of derived digraphs

We now formalize the emergence of cycles in the derived digraph. The results presented in this
subsection are usually taken for granted by the practitioners of topological graph theory, but
are in no way trivial. In our opinion they have not been properly formalized in the literature.

The following lemma explains what happens to the cycles of G under voltage assignment.

Lemma 2.2 Let C be a cycle of length k in G, with vertex sequence u0, u1, u2, . . . , uk−1, uk =
u0, and arc sequence a1 = (u0, u1), a2 = (u1, u2), . . . , ak = (uk−1, uk). Let g = α(C) be the
net voltage of C, and let n be the order of g in G. Then C expands to |Γ|n cycles of Gα, each
of length kn. This result does not depend on the chosen initial vertex u0.

Proof See Theorem 2.1.3, and 2.1.5 of [77], p 63. �

This result can be slightly generalized to natural walks.

Lemma 2.3 Let W be a natural closed walk of length k in G, with net voltage g, and let n be
the order of g in Γ. Then C expands to |Γ|n natural closed walks of Gα, each of length kn.
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Proof The same reasoning as in the previous lemma. �

Now that we know that cycles of G are transformed into sets of cycles, and natural walks
are transformed into sets of natural walks, a natural question arises: Does every cycle of Gα

come from a cycle in G?. The answer to that question is given by the following

Lemma 2.4 If C ′ is a cycle in Gα, then π2(C ′) = W for some natural closed walk W in G.
That is, every cycle in Gα is the lift of some natural closed walk in G. �

Corollary 2.1 If C ′ is a cycle in Gα, then π1(C ′) = W for some natural closed walk W in
G. That is, every cycle in Gα is also the expansion of some natural closed walk in G. �

Lemma 2.5 If W ′ is a natural closed walk in Gα , then π1(W ′) and π2(W ′) are natural closed
walks in G. That is, every natural closed walk in Gα is the expansion of some natural closed
walk in G, and also the lift of some natural closed walk in G.

Proof The same reasoning as in Lemma 2.4 and Corollary 2.1. �

Lemma 2.6 If C is a cycle in Gα then its net voltage is the identity element of G.

Proof Let C ′ have length m, i.e, C ′ consists of the vertex sequence (u0, g0), (u1, g1), (u2, g2),
. . ., (um−1, gm−1), (um, gm) = (u0, g0). By the definition of lift, the arc sequence of C ′ must
have the form (a1, g0), (a2, g1), (a3, g2), . . ., (am, gm−1), where a1 = (u0, u1), a2 = (u1, u2),
a3 = (u2, u3), . . ., am = (um−1, um), are arcs in G, and

g1 = g0 · α(a1) = g0 · x1,

g2 = g1 · α(a2) = g0 · x1 · x2,

...
gm−1 = gm−2 · α(am−1) = g0 · x1 · x2 · · ·xm−1, and

gm = g0 = gm−1 · α(am) = g0 · x1 · x2 · · ·xm.

Hence, a1, a2, a3, . . . , am, form a (natural) closed walk in G, and the net voltage x1 · x2 · · ·xm
of C ′ is the identity element of Γ. �

The converse is also true, as stated in the next lemma:

Lemma 2.7 If W is a natural closed walk in G, with net voltage equal to the identity element
of Γ, then W lifts to a natural closed walk W ′ in Gα.

Proof It follows directly from Fact 3. �

A natural closed walk with net voltage equal to the identity element of Γ, is said to be minimal
if it does not contain any proper closed sub-walk with net voltage equal to the identity. We
have the following:
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Theorem 2.5 Every cycle C ′ of Gα is the lift of some minimal natural closed walk W in G,
such that α(W ) = identity of Γ.

Proof By Lemma 2.4, C ′ is the lift of some natural closed walk W in G, and by Lemma 2.6,
the net voltage ofW is the identity element. Now let us suppose thatW is not minimal. Then
W contains some proper closed sub-walk with net voltage equal to the identity. By Lemma
2.7, this sub-walk must also lift to some natural closed walk, which is a proper sub-walk of
C ′, a contradiction since C ′ is a cycle. Hence W must be minimal. �

In order to study certain properties of Gα, such as bipartiteness or planarity, the orienta-
tion of arcs is not important: we are interested to view Gα as a graph, not as a digraph.
Hence, in those cases we must not restrict ourselves to cycles, or natural walks, but consider
more general walks, where arcs can be traversed in the reverse direction. That is when the
group structure of voltages comes into play.
With the aid of a simple trick we can easily extend all the previous results to general walks:
Before we are about to traverse an arc, we check whether the direction of the intended path
coincides with the orientation of the arc to be traversed; if not, then we can reverse the ori-
entation of the arc, and replace its voltage by its inverse. By convention, we cannot reverse
the orientation of an arc when we are already traversing it, or when we are at one of its
end-vertices; the orientation has to be changed before arriving at the arc. This means that we
cannot backtrack on the same arc that we have just traversed. With this convention, all the
walks are natural walks, and all the previous results hold without modifications. Therefore,
from now on we do not have to establish any distinction between general and natural walks.
Note also that a cycle is now an undirected cycle.
As a consequence of Theorem 2.5, in order to enumerate all cycles of Gα we must enumerate
all minimal closed walks in G, with net voltage equal to the identity element. However, from
a computational viewpoint this is not trivial. We would like to relate cycles of Gα with cycles
of G, that can be enumerated more easily.
Now let us see what happens when the voltage group is an (external) direct product of the
form Γ×Λ. For the sake of simplicity, we shall denote the operation in both factors with the
same symbol “·”. Their identity elements will be denoted 1Γ and 1Λ, respectively, but we can
use the same symbol 1 whenever it creates no confusion. If we have an arc (u; v) ∈ A in G,
with voltage 〈h, i〉 ∈ Γ×Λ, then (u; 〈g, l〉) is joined to (v; 〈gh, li〉) in Gα, for all 〈g, l〉 ∈ Γ×Λ.
Obviously, all the properties studied so far for an arbitrary voltage group also hold for Γ×Λ.
Now let α : A → Γ × Λ be a voltage assignment. The function πΓ(α) = αΓ, defined as
αΓ(a) = 〈g, 1〉, if α(a) = 〈g, l〉, will be called the restriction or projection of α to Γ. The
restriction πΛ(α) = αΛ is defined in a similar fashion.
We have the following

F Proposition 2.1 Let W be a minimal natural closed walk in G. Suppose that W expands
under αΓ to a cycle C1 of length L1, and expands under αΛ to a cycle C2 of length L2. Then,
W expands under α to a cycle C of length L = lcm(L1, L2).

Proof Let 〈g, l〉 be the net voltage of W . By Theorem 2.5 we have gL1 = 1Γ, and lL2 = 1Λ.
Hence, L is the least number such that 〈g, l〉L = 〈gL, lL〉 = 〈1, 1〉, which is lcm(L1, L2). �

Lemma 2.1 can of course be generalized to arbitrary direct products:
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F Proposition 2.2 Let Γ = Γ1×Γ2× · · ·×Γm, and let W be a minimal natural closed walk
in G. Suppose that W expands under αΓi to a cycle Ci of length Li, for i = 1, . . . ,m. Then,
W expands under α to a cycle C of length L = lcm(L1, . . . , Lm). �

From the preceding discussion we have seen that if we want to control the length of cycles in
the derived graph Gα, we should be able to predict the order of elements in Γ, that are the
net voltages of cycles in G. This is in general a difficult group-theoretical question. In Section
5.2 we address the problem for the case when Γ is a metabelian group.

2.5.3 Constructing large graphs by voltage assignment

Voltage assignment has been the most successful technique so far for obtaining large graphs
of given degree and diameter: It is responsible of about 60% of the largest known graphs of
the table [63]. Therefore, this application of voltage assignment merits a separate subsection
here.

Voltage assignment has been used in a variety of ways, ranging from ad hoc constructions,
to general constructions, and in combination with computer search. For example, in a clas-
sic paper, McKay, Miller and Širáň describe a family of large vertex-transitive graphs with
∆ = (3q− 1)/2, where q is a prime power congruent with 1 (mod 4), though the construction
generalizes to all prime powers [112]. The base graphs used in [112] are complete bipartite
graphs with loops. Later, Šiagiová showed that the McKay-Miller-Širáň graphs can also be
obtained as lifts of dipoles [147].
Other authors played for some time with the possibility of using voltage assignment for ob-
taining large graphs (see [14], [28], [155]), until a breakthrough occurred in 2008, when Loz
and Širáň published a large number of new record graphs found with the aid of voltage as-
signment and computer search [107]. Their algorithm explores a search space consisting of
lifts of simple base graphs (bouquets, dipoles, etc.) by non-abelian groups. Their groups were
taken among the ones suggested by Dinneen and Hafner for constructing large Cayley graphs
[51], namely semidirect products of cyclic groups, such as Zm or Zn, (Zm × Zm) oψ Zn, and
(Zm or Zn) o (Zm or Zn). Those were precisely the groups that were used later in [106] to
enlarge the table of the largest known graphs up to degree 20 [63].
Some recent results show that in order to obtain good graphs by voltage assignment, the
underlying group should be as far as possible from abelian [104, 60, 62]. Actually, this had
already been noted by Dinneen and Hafner in [51], and even though the semidirect product
of cyclic groups are not very far from abelian, they have the advantage that they are easy to
generate and compute with, and they produced good results (probably because they were the
first non-abelian groups that were tried).
Indeed, the method of [107] can be seen as a generalization of [51] inasmuch as Cayley graphs
can be obtained as lifts of bouquets. The algorithm used by Loz and Širáň is a basic random
search, combined with a number of clever sieves, designed to prune the search space. The
algorithm starts with a base graph and a certain family of groups, and then iterates through
the groups, generating random voltage assignments, and computing the diameter of the cor-
responding lift in each case. The sieves control the prospective voltage groups, the number of
trials to be made with each group, and further computations with the derived graph.
The first sieve consists of sorting out the groups that do not meet certain criteria, like having
a small center, for instance. Then, the escalation sieve controls the number of random trials
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to be made with each voltage group. Initially, it assigns a predefined number of trials to each
group, and then, the number of trials is modified during the search process, according to the
prospects of finding a good derived graph with the given group. Finally, the girth sieve aban-
dons the computation of the diameter, if the girth is found to be smaller than a predefined
threshold.
Algorithm 2 describes the basic random search structure of this procedure, to which the sieves
can be plugged in. Some more details concerning the sieves and the implementation of the
algorithm are given in [103], but no detailed pseudo-code description of the algorithm has
been published so far.

Algorithm 2: Basic random search

Input : A base graph G, and a family of groups Ω.
Output: A set (possibly empty) of large graphs, that are lifts of G by Γ ∈ Ω.

1 Initialize the max. number of trials, md,k;
2 Choose a BFS spanning-tree T of G, and label the arcs of T with the generic identity
element;

3 foreach unexplored group Γ ∈ Ω do
4 for i:= 1 to md,k do
5 Generate a random voltage assignment α;
6 Compute the girth and diameter of G′;
7 if diameter ≤ k then
8 Return Γ and α;
9 Break ;

10 end
11 end
12 end

Recent progress in finding large graphs with given degree and diameter via voltage assignment
includes [148, 110, 109].

Finally, it is worth mentioning that the voltage assignment technique has also been used to
find other types of graphs, like cages [59, 103, 105]. In particular, the paper [59] explores
some interesting methods to find the appropriate voltage group and voltage assignment. That
paper contains the seeds of a theory that was developed later in [62]. For a comprehensive
account see [61].



3
Graphs, networks, and algorithms

In this chapter we expand on the basic notions of graph theory, focusing on the algorithmic
approach, and applications in network design. In particular, we introduce the Degree-Diameter
Problem and its generalization, MaxDDBS , which make up the main subject of the thesis.
In connection with these two problems we review the relevant literature. For completeness,
we also review some important concepts and trends in algorithm design, which will be used
later.

3.1 Graphs, revisited

This section contains some additional background material for graph theory, namely the no-
tions that are more directly related to network design and the Degree-Diameter Problem.

3.1.1 Operations on graphs

Graph operations are a way to obtain new graphs from existing ones. The simplest graph
operations are just generalizations of the set-theoretical operations (set union, intersection,
etc.). For the sake of convenience, we keep the same symbol in graph and set operations. For
instance, the union of G and G′, denoted G ∪G′, is the graph with vertex set V (G) ∪ V (G′)
and edge set E(G) ∪ E(G′). Graph complement , intersection, and difference, can be defined
in a similar way.
The join G + G′ is obtained from G ∪ G′ by adding all possible edges from vertices in G to
vertices in G′.
The cartesian product G×G′ has vertex set V (G)×V (G′), and (vi, wj) is adjacent to (vh, wk)
if either

• vi is adjacent to vh in G, and wj = wk, or
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• vi = vh, and wj is adjacent to wk in G′

In the next section we see some examples of cartesian product of graphs.
The line graph of G, denoted L(G), is the graph with vertex set E, in which e, f ∈ E are
adjacent as vertices of L(G) if, and only if, they are adjacent as edges in G.

Another useful operation is graph compounding : Given a graph G, we replace every vertex v ∈
G with a graph Hv, and all the edges incident with v are then joined to chosen vertices of Hv.
Note that there may exist different ways of joining v to the vertices of Hv, hence the result of
this operation is essentially ambiguous; different authors have adopted different compounding
methods in order to meet their specific purposes. Here we have tried to encompass most of
the graph compounding techniques that are used in practice.
Let S = {H1, H2, . . . ,Hk} be a set of graphs. Each element of S is called a source graph.
Now let G be another graph (called the base graph), and let Ĝ be a subgraph of G such
that E(Ĝ) = ∅, and V (Ĝ) is formed by all those vertices of G to be replaced during the
compounding process. We call Ĝ the replaced graph. Finally, let f be a mapping from V (Ĝ)
to S.
The compounding of S into G, denoted as G(S), or G(H1, H2, . . . ,Hk), is defined by means
of the following two steps:

Step 1: Every vertex x ∈ V (Ĝ) is replaced by the graph f(x) ∈ S. The set of added vertices
is denoted by V̂ (S); that is, V̂ (S) =

⋃
x∈V (Ĝ)

V (f(x)).

Step 2: The edges that were incident with x ∈ V (Ĝ) are now distributed among the vertices
of f(x). This is the ambiguous step, for it can be done in several ways.

It is easy to see that
|G(S)| = |G|+

∑
x∈V (Ĝ)

|f(x)| − |Ĝ|.

To exemplify this, see Figure 3.1, where S = {C3, C4,K4} and the base graph is K4. The
replaced graph has vertex set V (Ĝ) = {a, b, d} and edge set E(Ĝ) = ∅, and the mapping is
f(a) = C3, f(b) = C4, and f(d) = K4.

3.2 Basic network topologies

In this section we review some special families of graphs that appear frequently as network
topologies in parallel and distributed computing. Besides their practical application, they
have some interesting properties, and they will be the basis of subsequent chapters of this
thesis. We start with the hypercube and its variants.

The d−dimensional cube or hypercube Qd is the graph whose vertex set is the set of all binary
d−tuples, and two tuples are joined by an edge iff they differ in exactly one position. Obviously,
Qd has order 2d and is d−regular. It can be defined recursively as

Q2 = K2

Qd = Qd−1 ×K2 for d > 2.
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Base graph

Compound graph

Figure 3.1: Compound graph.

Two different drawings of Q4 can be seen in Figure 3.2.

Figure 3.2: Two different representations of the 4-cube

Qd has 2d−1d edges and diameter k. It is bipartite and vertex-transitive for all d ≥ 1, and
hamiltonian for d ≥ 2. Actually, Qd is the Cayley graph of the abelian group Zd2. While the
hypercube has played an important historical role in the development of supercomputers (see
[80], for example), it has a significant drawback: the degree of each node is too high (d), and
it becomes impractical for large d. Therefore it has been superseded by some variants that
are more scalable.

One of these variants of the hypercube is the Cube-Connected Cycles, or CCC, for short [129].
In particular, the cube-connected cycles of dimension d, denoted here CCCd, are constructed
by replacing each vertex v of the d-dimensional hypercube Qd by a cycle of length d, consisting
of new vertices v1, . . . , vd, and then joining each vi to one of the edges that was incident to the
former vertex v. In other words, the graph CCCd is constructed by compounding the cycle
Cd into Qd. Figure 3.3 depicts CCC3.

The main advantage of CCCd over Qd is that CCCd is always regular of degree 3, regardless
of the dimension d, which makes it highly scalable. This comes at the price of increasing the
diameter from d to 2d, but it is still logarithmic as a function of the number of vertices.

A d-dimensional butterfly has (d+ 1)2d nodes corresponding to pairs (w, i) where w is a d-bit
binary number and 0 ≤ i ≤ d is the level. Two nodes (w; i), (w′; i′) are linked iff i′ = i+1 and
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Figure 3.3: Cube-Connected Cycles of dimension 3

w = w′ or w and w′ differ only in the i′-th bit. This makes 2d+1d edges. Figure 3.4 depicts
a butterfly of dimension 3. The butterfly is suitable for certain computations, like the Fast
Fourier Transform (FFT).

Figure 3.4: A butterfly of dimension 3

If we take two butterflies of dimension d and identify the vertex (w, d) of the first butterfly
with the vertex (w, d) of the second butterfly, for w ranging among all possible d-bit binary
numbers, we get the Beneš network . Figure 3.5 depicts a Beneš network of dimension 3.

Another important architecture (at least historically) is the mesh. An infinite d−dimensional
mesh or grid is the graph Md whose vertex set is the set of all d−tuples with integer co-
ordinates, and two tuples are joined by an edge iff they are at distance one. The infinite
d−dimensional mesh is the Cayley graph of the free abelian group Zd.
If we restrict the i-th coordinate to take values in the interval [ai, bi], then we get a finite grid.
By keeping all coordinates fixed, except the i-th coordinate, which is allowed to move freely in
[ai, bi], we get a row of the finite grid, with endvertices at xi = ai and xi = bi. If we join the
two endvertices of every row, we get a toroidal grid . An n by m toroidal grid is the Cayley
graph of the group Zn × Zm. Figure 3.6 depicts a 5× 5 square toroidal grid.

Chapter 6 is devoted to the study of the grid, and in Section 7.1 we will see another type of
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Figure 3.5: Beneš network of dimension 3

Figure 3.6: Square toroidal grid
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grid: the hexagonal, or honeycomb grid.

3.3 Random graphs

In many practical situations we face graphs that are random in nature. The study of random
graphs was started by Erdös and Rényi in the late 50’s and early 60’s, and they developed the
first model of random graphs, that today bears their name. The Erdös-Rényi random graph
G(n, p) is a graph with n vertices, where each edge is chosen at random, independently from
the others, with a probability p.

Other random graph models were developed later to describe real-life networks more accu-
rately. For example, in the Watts-Strogatz small world model we start with a regular graph,
and then rewire each edge, by re-connecting one end to another vertex chosen at random, with
probability p. As p approaches 1, this construction behaves approximately like G(n, p), but
for intermediate values of p it has new interesting properties. The name ‘small world’ comes
from the fact that the resulting graphs have low diameter.

Another popular model is the Barabási-Albert preferential attachment model , where new ver-
tices are added, one by one, and connected at random to the existing vertices, with a proba-
bility that is proportional to the degree of each existing vertex. This process yields a graph
where the degrees have a power-law distribution, whence the alternative name scale-free graph,
for its properties remain invariant with changes of scale. The Barabási-Albert preferential at-
tachment model and its variants describe many real-life networks quite accurately, such as the
World-Wide Web, the scientific collaboration network, and others.

A good source of information about these basic random graph models and their variants is
[55].

3.4 Moore graphs and the Degree-Diameter Problem

At this point it is natural to start asking questions about the interplay among different graph
parameters. One such question is the Degree-Diameter Problem (or DDP, for short), which
can be stated as:

Problem 3.1 (Degree-diameter problem for undirected graphs) Given positive inte-
gers ∆ and D, find the largest possible number of vertices N∆,D of a graph of maximum degree
∆ and diameter D.

It is easy to show that an upper bound for N∆,D is

M∆,D = 1 + ∆ + ∆(∆− 1) + · · ·+ ∆(∆− 1)D−1 =

{
1 + ∆ (∆−1)D−1

∆−2 if ∆ > 2

2D + 1 if ∆ = 2
(3.1)

The number M∆,D is called the Moore bound, and a graph of order M∆,D is called a Moore
graph [119]. Note that such a graph is necessarily regular of degree ∆.



3. Graphs, networks, and algorithms 34

Moore graphs exist only for a few combinations of ∆ and D. For D = 1 and ∆ ≥ 1, they are
the complete graphs on ∆ + 1 vertices. For D ≥ 2 and ∆ = 2, they are the cycles on 2D + 1
vertices. For D = 2, Moore graphs exist for ∆ = 2, 3, 7, and possibly 57 [84]. There are no
other Moore graphs.
The same problem can be stated for digraphs:

Problem 3.2 (Degree-diameter problem for directed graphs) Given positive integers
∆ and D, find the largest possible number of vertices N∗∆,D of a digraph of maximum out-degree
∆ and diameter D.

In this case, the Moore bound is given by

M∗∆,D = 1 + ∆ + ∆2 + · · ·+ ∆D =
∆D+1 − 1

∆− 1
(3.2)

Moore digraphs exist only for the trivial cases: For ∆ = 1 they are the directed cycles with
D + 1 vertices, and for D = 1 they are the complete digraphs on ∆ + 1 vertices.
For more information about the Degree-Diameter Problem, both in the directed and the
undirected case, see [119].

3.5 Lower bounds

In this section we give a brief systematic account of methods for constructing large graphs with
given degree and diameter. More detail can be found in [119, 126]. However, there is some
material on lower bounds that is not systematically covered anywere, such as computer-based
methods for constructing large graphs.

All research related to the Degree-Diameter Problem can be roughly classified in one of the
following categories:

• Upper bounds: Given that the Moore bound can only be attained for a few combina-
tions of degree and diameter, it is interesting to know what is the actual largest number
of vertices that a graph can have, for other combinations of ∆ and D. In other words,
this line of research seeks to obtain tighter theoretical upper bounds for all combinations
of ∆ and D.

• Lower bounds: This second line of research, of more practical importance perhaps, is
related with the construction of ever larger graphs, with order as close as possible to the
theoretical upper bound.

The ideal situation is that the lower and upper bounds coincide, but that situation is again
very rare for the moment. Only for a few combinations of degree and diameter, the order of
the largest known graph matches the theoretical upper bound, while in the vast majority of
cases, there is a gap between the lower and the upper bound, which varies according to ∆ and
D.
This situation is especially evident in the case of undirected graphs, where the gap is consid-
erably large for most combinations of ∆ and D. In the case of directed graphs the situation
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is more favourable, since there exist constructions that yield graphs with order close to the
theoretical upper bound for all combinations of ∆ and D.
Upper bounds are treated in great detail in [126], and also surveyed in [119]. In this thesis
we will mainly be concerned with lower bounds. The current knowledge about lower bounds
is summarized in [63], that contains tables for the largest known general graphs, the largest
known Cayley graphs, and the largest known bipartite graphs, for degrees 3 to 16, and di-
ameters 2 to 10. The table of general graphs has been recently extended to degree 16 in
[106]. The website http://combinatoricswiki.org/wiki/The_Degree/Diameter_Problem
maintains tables of the best known upper bounds, and the percentage of the largest known
graph orders in relation to those upper bounds. Dr. Eyal Loz has been the driving force
behind this compilation, that continues the tradition started by Comellas [34], and is part of a
wider project, which will also include tables of the largest known vertex-transitive and planar
graphs, as well as information about other combinatorial problems.
Back to lower bounds, all the efforts to construct large graphs can in turn be roughly classified
into two main categories:

• Analytic constructions: Graph operations, like compounding and voltage assignment,
provide the means for building large graphs from smaller base graphs or blocks. A
judicious choice of the building blocks and operations on them can yield large graphs
for certain combinations of ∆ and D. This is the principle that has been followed in
[71, 127] (with graph compounding), and [112] (with voltage assignment), for instance.

• Computer-based techniques: This second approach relies on the power of electronic
computers in order to find larger graphs, either using the standard combinatorial opti-
mization techniques (as in [153]), or graph operations, like voltage assignment, coupled
with computer search (as in [107]).

In terms of the number of graphs produced, the most successful techniques are graph com-
pounding, polarity graphs of generalized polygons, and voltage assignment, the latter in con-
junction with computer search. Of the 126 entries in the current table of largest known graphs,
67 have been found by voltage assignment (53%), while 19 have been found with the aid of
graph compounding (15%), and 15 are somehow related to polarity graphs of generalized poly-
gons (12%). Finally, 11 entries have been found by other computer-based search techniques
(9%). Together, all these techniques account for 89% of the table.

3.6 Analytic constructions

In [126], constructions have been classified as

• general constructions (the ones that yield a large, usually infinite, class of graphs),
and

• ad hoc constructions, where at least one of the parameters ∆ and D is restricted to
a few values.

General analytic constructions provide lower bounds for the order of the largest graphs, for
many combinations of ∆ and D. We review de Bruijn and Kautz graphs, as two relevant

http:// combinatoricswiki.org/ wiki/ The_Degree/Diameter_Problem
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examples of general constructions, and the bounds that they provide. Then we focus on graph
compounding, which in principle is a general technique, but is usually applied as an ad hoc
method. Finally, we review other ad hoc constructions.

3.6.1 Some general constructions

The de Bruijn graph of type (t, k) [40] is a graph G = (V,E), such that V is formed by all words
of length k over a finite alphabet A with cardinality t, and two vertices a = (a1, a2, . . . , ak)
and b = (b1, b2, . . . , bk) are joined by an edge if either ai = bi+1 or ai+1 = bi, for 1 ≤ i ≤ k− 1.
In other words,

(a1, a2, . . . , ak) ∼
{

(a0, a1, . . . , ak−1) for any a0 ∈ A
(a2, a3, . . . , ak+1) for any ak+1 ∈ A

For t ≥ 3 and k ≥ 3, the de Bruijn graph of type (t, k) has order tk, diameter D = k and
maximum degree ∆ = 2t. That gives us a lower bound for the size of the largest graph with
maximum even degree ∆, and diameter D:

N∆,D ≥
(∆

2

)D
(3.3)

Given a de Bruijn graph of type (t, k), a Kautz graph of type (t, k) is obtained by deleting
words with two consecutive identical letters [91]. The Kautz graph is therefore an induced
subgraph of the de Bruijn graph, and if t ≥ 3 and k ≥ 3, it has order t(t− 1)k−1, diameter k
and maximum degree 2t− 2. Again, if ∆ is even we get the bound:

N∆,D ≥
(∆

2

)D
+
(∆

2

)D−1

which is an improvement over (3.3).
A further improvement of the previous bounds was obtained by Canale and Gómez [29]. They
proved that there are two constants D0 and α < 1.59 such that, for each D ≥ D0 and infinitely
many values of ∆, it is possible to construct a (∆, D)−graph of order (∆

α )D.

3.6.2 Compounding

As mentioned in Section 3.5, graph compounding is one of the most successful techniques for
the construction of large graphs of given maximum degree and diameter. Let us recall that
the technique consists of replacing one or more vertices of a graph with elements of a set of
graphs S, and then the edges of the resulting graph are rearranged appropriately. The idea
is straightforward, the only drawback being the calculation of the diameter, which depends
on the choice of the edges connecting the elements of S. The technique was introduced by
Bermond, Delorme and Quisquater [18], and later it has been systematically used by other
authors, either alone or in combination with other methods (see, for example, [16, 17, 29, 36,
45, 46, 47, 65, 70, 71, 73, 74, 75, 76, 130]).
In particular, compounding of complete graphs into bipartite Moore graphs has been used
recently with good results. It was first suggested in [130], where a single vertex from a bipartite
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Moore graph is replaced with a suitable complete graph. In a bipartite Moore graph it is even
possible to replace several vertices with copies of suitable complete graphs without increasing
the diameter of the bipartite Moore graph. This idea was first used in [74]. Subsequently,
using bipartite Moore graphs of diameter 6, some improvements of this approach have been
achieved in [36, 76], and more recently in [71, 127]. The results of [127] are the subject of
Chapter 4.

3.6.3 Other ad hoc constructions

Many of the largest known graphs for small values of D have been obtained as graphs of
incidence structures, or modifications thereof. Incidence geometries, and their applications to
the construction of large graphs, have also been extensively reviewed in [126], therefore we
will reproduce here only the main concepts and the most outstanding results.
An incidence structure is a triple Ω = (P,L, I), where P 6= ∅ is a set of points, L 6= ∅ is a set
of lines, P ∩ L 6= ∅, and I ⊆ P × L is a relation, called the incidence relation. Given a point
p and a line l, if (p, l) ∈ I then we say that p and l are incident . If P and L are finite sets,
Ω = (P,L, I) is said to be finite.
Two points are collinear, if they are incident with at least one common line. Two lines are
concurrent , if they share at least one point. Given an incidence structure Ω, if each line is
incident with s+ 1 points, and each point is incident with t+ 1 lines, we say that Ω has order
(s, t). If s = t then Ω is said to have order s.
A number of different graphs can be derived from an incidence structure. For instance, let
Ω = (P,L, I) be an incidence structure. The incidence graph G of Ω is the graph with vertex
set V (G) = P ∪ L, and (x, y) ∈ E(G) if, and only if, xIy or yIx, for x, y ∈ V (G).
A generalized D-gon is an incidence structure whose incidence graph is a bipartite graph
of diameter D and girth 2D. It is common to use the standard geometric names for small
polygons, i.e. generalized triangle instead of generalized 3-gon.
Now let Ω = (P,L, I) be an incidence structure with a polarity ω. We can now define the
polarity graph of Ω with respect to ω, denoted Gω, as the graph with vertex set V (G) = P,
and the following adjacency relation: pp1 ∈ E(Gω) if p 6= p1 and (p, ω(p1)) ∈ I.
For small values of the diameter D, some of the largest known graphs turn out to be precisely
the polarity graphs, or modified polarity graphs, of the generalized D-gons. For instance, in
the current table of largest known graphs [63], the entries (8,2), (10,2), (12,2), and (14,2),
correspond to polarity graphs of generalized triangles. The graph in (9,2) is a modification of
that in (8,2), while (15,2) is a modification of (14,2).
In diameter 3, the graph in (9,3) is a polarity graph of the generalized quadrangle of order
8, and (10,3), (11,3), (12,3), (14,3), (15,3), and (16,3), are modified polarity graphs. Finally,
(4,5) and (16,5) are also derived from polarity graphs.
One of the most common operations applied to polarity graphs to obtain other large graphs is
vertex duplication. Given a graph G = (V,E) with maximum degree ∆, and diameter D, and
given a vertex x ∈ V , the operation of duplicating x consists of adding a new vertex x′, and
joining it to x and all the neighbours of x. Obviously, the resulting graph will have maximum
degree ∆ + 1 and diameter D. The most recent graphs constructed that way correspond to
the entries (12,3), (13,3), and (14,3) (see [72]).
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3.7 The Degree-Diameter Subgraph Problem

Given the time that the Degree-Diameter Problem has been investigated, it is quite surprising
that the following straightforward generalization has not been considered before:

Problem 3.3 (Degree-Diameter Subgraph Problem) Given a connected undirected host
graph G, an upper bound ∆ for the maximum degree, and an upper bound D for the diameter,
find the largest connected subgraph S with maximum degree ≤ ∆ and diameter ≤ D.

In the context of computational complexity we will also refer to this problem as the Largest,
or the Maximum Degree & Diameter Bounded Subgraph problem, in analogy with other well-
known related algorithmic problems, such as the Bounded Diameter Spanning Tree, or the
Degree-Bounded Connected Subgraph. For the sake of brevity we will use the acronyms DDS
and MaxDDBS.

This problem is known to be NP−hard, since it contains other well-known NP−hard prob-
lems as subproblems. Actually, restricting the search to only one constraint (either on the
degree or the diameter), is enough to ensure NP−hardness. The Largest Degree-Bounded
Subgraph Problem is NP−hard as long as we insist that the subgraph be connected, but can
be solved in polynomial time otherwise (see [89] and Problem ND1 of [68]). On the other
hand, the Maximum Diameter-Bounded Subgraph becomes the Maximum Clique for D = 1,
which was one of Karp’s original 21 NP−hard problems (see [90] and Problem GT19 of [68]).

Obviously, if we take G as the complete graph on M∆,D vertices in Problem 3.3, we get the
Degree-Diameter Problem. Note that this does not imply that DDP isNP−hard; actually, the
complexity of DDP is not known to-date. The relationship between MaxDDBS and DDP can
be exploited to get benchmarks for MaxDDBS. The Moore bound is also a theoretical upper
bound for MaxDDBS, and the existing lower bounds constitute a benchmark to measure the
performance of any algorithm attempting to solve MaxDDBS. A table of the largest known
graphs for all 3 ≤ ∆ ≤ 20, and all 2 ≤ D ≤ 10 can be found in [63].

Now, in practical applications we often have weights or costs attached to the edges. We can
generalize the definitions of distance and diameter to the case of weighted undirected graphs
in a very straightforward manner:

Definition 3.1 Let G = (V,E) be a weighted connected undirected graph, with positive integral
weights on the edges, and let ω(e) be the weight of the edge e ∈ E. The length of a path
e1e2 . . . ek is defined as

∑k
i=1 ω(ei). The distance between two vertices u, v ∈ V is the length

of a shortest path between u and v, and the diameter of G is the distance between two vertices
u and v that are farthest apart.

This leads us to a more realistic formulation of Problem 3.3:

Problem 3.4 (MaxWDDBS) Let G be a weighted connected undirected host graph, with
positive integral weights on the edges, and suppose we are given an upper bound ∆ for the
maximum degree, and an upper bound D for the diameter. Find the largest connected subgraph
S of G, with maximum degree ≤ ∆ and diameter ≤ D.
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In the botnet and distributed computing scenarios described in Section 1.2, the weights could
represent the time units that a message takes to get from one node to an adjacent one. Having
integral weights does not imply any loss of generality here, since we can always use a time
unit that is small enough, so that all weights are multiples of it, or the remainder is negligible.
Moreover, we can also assume without loss of generality that ∆ does not exceed the maximum
degree of G.

The following relationship between MaxDDBS and MaxWDDBS is also straightforward:

Proposition 3.1 Let G be a connected undirected graph, with positive integral weights on the
edges, and let G′ be the same graph with all the weights replaced by 1. Now, let ∆ and D be
given, and let S, with n vertices, be the solution of MaxWDDBS on G, and let S′, with n′

vertices, be the solution of MaxDDBS on G′. Then, n ≤ n′ ≤ N∆,D ≤M∆,D. �

Needless to say, MaxWDDBS is also NP−hard, and therefore amenable to heuristic ap-
proaches. In Section 8.1 we investigate a heuristic algorithm to solve it, and Section 3.8 gives
an overview of different heuristic techniques.

3.8 Algorithmic techniques

In this section we deal with some computer-based techniques for solving intractable combina-
torial problems, such as DDP. Computer approaches range from systematic search techniques
to heuristic methods, such as genetic algorithms and simulated annealing, which are now com-
monplace in Combinatorial Optimization. A combinatorial optimization problem consists of
an objective function to be minimized or maximized, f : D1 × · · · × Dk → R+, and a set of
constraints among the variables xi ∈ Di. A feasible solution is a k−tuple (x1, . . . , xk), such
that xi ∈ Di and all constraints are satisfied. The set S of all feasible solutions is often called
the search space, and it is usually endowed with a neighborhood structure, which is a function
N : S → 2S that assigns a set of neighbours to every feasible solution s ∈ S.
Combinatorial optimization problems include the famous Travelling Salesman Problem (TSP –
Problem ND22 of [68]), the 0−1 Knapsack Problem (Problem MP9 of [68]), various scheduling
problems, and so on. In particular, MaxDDBS is a maximization problem, where the objec-
tive function is the number of vertices of the resulting subgraph. Many of these problems are
NP−hard, and hence, exhaustive exploration of the search space is not feasible. Approximate
or heuristic methods sacrifice the guarantee of finding an optimal solution for the sake of lower
computation overhead. The greatest danger for these methods is to be trapped in a locally
optimal solution, which is an ŝ ∈ S such that f(ŝ) ≤ s (if we have a minimization problem),
or f(ŝ) ≥ s (if we have a maximization problem), for all s ∈ N (ŝ). Different methods are
classified according to the strategy they use for coping with this problem.
In recent years, a set of strategies have been devised, which are very general in nature, and
where particular problem-specific heuristics can be plugged in, in order to solve different com-
binatorial optimization problems. Due to their general nature, these methods are collectively
called metaheuristics. They include greedy algorithms, basic local search, simulated anneal-
ing, tabu search, evolutionary algorithms (comprising genetic algorithms), and ant colony
optimization, among others.
In the sequel we review some of these techniques, especially those that have been successfully
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employed in DDP and related problems. W.l.o.g. we will assume that we have to minimize the
objective function f . For more information about metaheuristics, including their taxonomy,
and a framework for their analysis and design, we refer the reader to [20].

3.8.1 Greedy algorithms

The greedy technique is perhaps the most straightforward and most popular heuristic for deal-
ing with combinatorial optimization problems. It constructs the solution s(k) = (x1, . . . , xk)
in stages, adding each new component xi one by one, and leaving the previous components
fixed. The i-th component is chosen as the xi ∈ Di that optimizes the partial solution
s(i) = (x1, . . . , xi). Algorithm 3 describes the technique more formally.

Algorithm 3: The greedy method

Input : The objective function f and the set of constraints.
Output: A feasible solution ŝ.

1 for i := 1 to k do
2 Choose xi ∈ Di such that s(i) = (x1, . . . , xi) is feasible,
3 and f(s(i)) is minimal;
4 end
5 Return ŝ = s(k);

It is easy to see that the running time of Algorithm 3 is bounded above by
∑k

i=1 |Di|, and
hence polynomial in k, provided that the |Di| are polynomial in k. So simple as it looks,
the greedy technique is the basis of many effient and popular algorithms, such as Dijkstra’s
algorithm, for computing single-source shortest paths in graphs, and Kruskal’s algorithm, for
constructing a minimum-weight spanning tree. Although in general the solution provided by
a greedy algorithm is not optimal, it can be optimal if our problem has an underlying matroid
or greedoid structure [96], such as in the two examples mentioned above. In Chapter 8 we
employ the greedy technique to deal with MaxDDBS .

3.8.2 Basic local search and its derivatives

Local search starts with some initial feasible solution s, and iteratively tries to replace s by
a better solution s′ in the neighborhood of s, until a local minimum is reached. This process
is also called iterative improvement for obvious reasons. The replacement of s by s′ can be
done in a number of ways. For instance, we can choose the best feasible solution in N (s), or
we can take s′ as the first element of N (s) that we come across, that is better than s, or any
intermediate option.
The quality of the solutions obtained by basic local search is usually very poor, therefore a
number of different strategies have been developed to reduce the risk of getting trapped in
a local minimum. Simulated annealing is one of the first strategies in that sense. The main
idea behind simulated annealing is to allow occasional moves resulting in a worse solution s′

(uphill moves). This emulates a cooling process of metals, where the atoms strive to adopt a
configuration of minimal potential energy (a crystal), but occasional rearrangements occur in
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the opposite direction.
The process is depicted in Algorithm 4. The control parameter T (the temperature) regulates
the speed of convergence and the probability of accepting worse solutions at any given mo-
ment. That probability is usually computed by the formula p(T, s′, s) = exp(f(s′)−f(s)

T ). The
temperature is decreased during the search process, thus the probability of accepting uphill
moves is higher at the beginning of the process, and gradually decreases, so that the process
converges to basic local search. There is a trade-off associated with temperature regulation,
namely computation time versus quality of solutions. If we decrease the temperature slowly,
the chances of converging to a globally optimal solution are better, whereas computation time
obviously increases. On the other hand, a quick temperature decrease leads to a smaller com-
putation time, but the algorithm is more likely to get trapped in a local minimum. Therefore,
the choice of the cooling schedule is critical for the performance of the algorithm.
Note that the probability of accepting an uphill move also depends on the absolute value of
that move. Small uphill moves are more likely to be accepted than large ones. A variant of
simulated annealing, called threshold accepting avoids the computation of probabilities in Step
8 of Algorithm 4, and simply compares the difference f(s′)− f(s) with a given threshold, to
decide whether to accept it or not.

Algorithm 4: Simulated annealing

Input : The objective function f , the set of constraints, and the neighborhood
function N .

Output: A feasible solution ŝ (that is in general a local minimum of f).

1 s:=Generate initial solution;
2 T := T0;
3 while termination conditions not met do
4 s′:=PickAtRandom(N (s));
5 if f(s′) < f(s) then
6 s:=s′;
7 else
8 Accept s′ with probability p(T, s′, s);
9 end

10 Update T ;
11 end

Another metaheuristic that improves basic local search is tabu search. Simple tabu search
keeps a list of the most recently visited solutions (tabu list), in order to avoid re-visiting
them. In other words, it relies on memory to escape local minima and avoid cycles. The
trade-off here involves the benefits provided by the tabu list, and the cost of maintaining and
searching it.

3.8.3 Evolutionary algorithms

Evolutionary algorithms are inspired by natural evolution principles. The driving force of natu-
ral evolution is natural selection, survival of the fittest individuals among a diverse population.
The main factors that contribute to population diversity are recombination and mutation. An
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evolutionary algorithm emulates this process: it starts with an initial population of feasible
solutions, and then iterates the three operators (recombination, mutation, and selection) in
order to obtain increasingly better populations, where “better" here means having a lower
value of the objective function f . Algorithm 5 describes a general evolutionary algorithm.

Algorithm 5: General evolutionary algorithm

Input : The objective function f , and the set of constraints.
Output: A good feasible solution ŝ.

1 P :=Generate initial population;
2 Evaluate P ;
3 while termination conditions not met do
4 P ′:=Recombine(P );
5 P ′′:=Mutate(P ′);
6 Evaluate(P ′′);
7 P :=Select(P ∪ P ′′);
8 end
9 Return the ‘best’ individual of P ;

In a variant of evolutionary algorithms called memetic algorithms, a local search is applied
to every individual of the population [121, 122, 115]. Memetic algorithms have been used
recently to address various network design problems, but not DDP specifically. For example,
in [102] memetic algorithms are used to address two network design problems, namely Ver-
tex Biconnectivity Augmentation (V2AUG), and the Prize-Collecting Steiner Tree problem
(PCST). Also, the Distributed Algorithms Group at the University of Kaiserslautern has been
consistently using memetic algorithms for the design of peer-to-peer and wireless networks
(see for instance [66]).

3.8.4 Approximation algorithms

An approximation algorithm is any heuristic algorithm for which we can get a performance
guarantee, i.e. we can prove that the solution given by the algorithm will always lie within
a certain neighborhood of the optimal solution. Let us assume that we have a maximization
problem, and let OPT be the value of the objective function f in the optimal solution of some
problem instance, and ALG the value of f produced by the algorithm. The performance of
the algorithm is measured by the ratio OPT/ALG, called the approximation ratio. Usually,
the goal is to find a polynomial-time heuristic algorithm with the smallest approximation ratio
OPT/ALG.

Combinatorial optimization problems can be classified according to the difficulty with which
they can be approximated, i.e. the approximation ratio that can be reached in polynomial
time, in the worst or average case. Our maximization problem is said to have a Polynomial-
Time Approximation Scheme (PTAS) if for every ε > 0 there exists a polynomial-time al-
gorithm that computes a solution with worst-case approximation ratio 1 − ε (or 1 + ε for
minimization problems).

In turn, the class of problems having a PTAS is included in the class Apx, that consists of
all NP−hard optimization problems for which there is a polynomial-time algorithm with a
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constant approximation ratio OPT/ALG, for all problem instances. Loosely speaking, these
are the problems that can be approximated in a reasonable time. Unfortunately, MaxDDBS
does not belong to that class, as we will see in Section 8.1.

There are a number of books that treat the design of approximation algorithms in depth, e.g.
[144] and [151]. In addition to that, [39] gives a list of optimization problems, and specifies
which of them have a PTAS. [142] focuses on inapproximability results, and [116] investigates
the conditions when the greedy technique yield good approximations.

3.9 Computer-based techniques in DDP

Since the number of graphs of a given maximum degree and diameter is very large, it is a
natural idea to recourse to computers for help in the task of locating the largest instances.
In Section 2.5.3 we have already seen how computer-guided search, combined with voltage
assignment, has produced many instances of large graphs. However, as ∆ and D grow, the
search space becomes too large, even for computers, so that brute-force search is not feasible,
and some heuristics are needed to guide the search, or prune the search space. In this section
we briefly review some heuristic algorithms that have been used for that purpose.

The first serious attempt in that direction was made by Allwright, who used 2-opting, a local
search technique developed for the Travelling Salesman Problem, to find large graphs with
given degree and diameter [1].

In another landmark paper, Dinneen and Hafner used computer search and clever techniques
to reduce the search space [51]. Their large graphs were Cayley graphs of non-abelian groups,
like semidirect products of cyclic groups, for instance.

Around the same time, Mitjana and Comellas obtained the graph of order 253 at the entry
(8,3) of the table, using a threshold accepting algorithm (see Section 3.8.2). It is also a Cayley
graph of the semidirect product of two cyclic groups. The idea had been around since 1990,
at least [35].

Later, Wohlmuth found another large Cayley graph with the aid of a genetic algorithm (see
Section 3.8.3), that today still stands as the largest Cayley graph of degree 6 and diameter 3
[153]. Let us explain this algorithm briefly. The population consists of a set of Cayley graphs,
that are subgroups of the symmetric group Sn, each one being represented by a generating
set of n−permutations. Mutation of an individual Cayley graph is achieved by replacing one
generator by the product of two different generators in the same generating set. Therefore, a
subgroup of the former Cayley graph is obtained. The crossover operator exchanges generators
from different generating sets. Finally, the fitness function to be minimized is defined by

f(x1, x2, x3, x4) =


10x2 + 10x1 + 10 if D ≤ 2
10x2 + x3 if D = 3
10x2 − x4 if D ≥ 3

where xi represents the number of vertices with distance i from any fixed vertex x (the choice
of x is irrelevant, since we are working with a Cayley graph, which is vertex-transitive). That
function was chosen so as to minimize the number of cycles of length ≤ 6, which correspond
to large values of x1, x2, x3, and to minimize the number of vertices at distance 4.
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Sampels also used a genetic algorithm for constructing large Cayley graphs [134]. Some of the
groups he used were specified by a finite presentation, but the large majority of them were
semidirect products of cyclic groups, generated by a set of permutations.
Exoo argued that Cayley graphs are relatively rare, and therefore it makes sense to relax the
symmetry conditions, and look for improvements in a larger search space. The graphs he
considered have order that is a small integral multiple of the size of their respective automor-
phism group. Thus, he managed to obtain several large graphs in the low-order entries of
the table, with the aid of an algorithm that is a synthesis of simulated annealing and tabu
search (see Section 3.8.2), which had been previously used to construct Ramsey colourings.
The algorithm is described in [57], and the graphs are given in [58].
Finally, [118] describes a hybrid heuristic algorithm (HSAGA) to solve a relaxed variant of
the Degree-Diameter Problem. HSAGA stands for ‘Hybrid Simulated Annealing Genetic Al-
gorithm’.



Part II

The Degree-Diameter Problem



4
Large graphs by compounding

Our first original result in the Degree-Diameter Problem provides new constructions of large
graphs of diameter 6 with the aid of the compounding operation described in 3.1.1. More
specifically, by compounding complete graphs of order h (Kh), h ≤ ∆ − 1, into a bipartite
Moore graph of degree ∆ and diameter 6 (H∆−1), a family of large graphs H∆−1(Kh) of
maximum degree ∆ and diameter 6 is obtained. This family includes some of the largest
known graphs of diameter 6 [34]. These results have been published in [127].

4.1 Compound Graphs H∆−1(Kh)

Construction of the compound graphs H∆−1(Kh) is achieved in two stages. The first stage is
the compounding operation itself, and the second consists of the addition of new edges.
In the compounding operation, if we use S = {Kh} as the set of source graphs and G as the
base graph, it is easy to see that the order of any compound graph G(S) will be

|G(S)| = |G|+ |Ŵ |(h− 1) (4.1)

where Ŵ is the vertex set of the replaced graph Ĝ = (Ŵ , Ê = ∅).

Stage 1: The compounding operation

Source Graphs: Kh, the complete graph of order h, for h ≤ ∆− 1, and ∆ ∈ Z+.

Base Graph: A bipartite Moore graph H∆−1 with partite sets V and W , edge set E, degree
∆ and diameter 6. Recall that ∆− 1 is a power of a prime.

Replaced Graph: Let R be the subgraph of H∆−1 depicted in Figure 4.1. Let x be a vertex
of V , and let N(x) = {x0, x1, . . . , x∆−1}. Now define the sets
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(i) W 0 = N(x)− {x∆−1}.
(ii) V 0 = N(W 0)− {x} −

⋃
i∈{0,...,∆−2}

{xi∆−2}.

(iii) W ′ = N(V 0)−W 0 −
⋃

i∈{0,...,∆−2}
j∈{0,...,∆−3}

{xij∆−2}.

The set W ′ ⊂W is called the set of replaceable vertices, and is depicted in Figure 4.1.

Given a subset Ŵ of W ′, the replaced graph will then be Ĝ =(Ŵ , Ê = ∅).
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Figure 4.1: Subgraph R of H∆−1 to be modified.

Step 1: Each vertex xijk of Ŵ is replaced by a copy of the complete graph Kh, denoted
K

(ijk)
h , with vertex set V (K

(ijk)
h ) =

{
y

(ijk)
0 , . . . , y

(ijk)
h−1

}
.

The set of added vertices will be denoted by Ŵ (Kh). Therefore, Ŵ (Kh) =
⋃

xijk∈Ŵ

V (K
(ijk)
h ).

Step 2: At this step, the edges incident with each vertex xijk ∈ Ŵ will be joined to the
vertices of K(ijk)

h so that each vertex of K(ijk)
h will be incident with at least one of these

edges.

Given a vertex xijk ∈ Ŵ and the complete graph K(ijk)
h , we denote by y(ijk)

0 ∈ K(ijk)
h

the vertex that has xij as a neighbour. Then y
(ijk)
0 will be connected to at least one

other neighbour of xijk.

The resulting graph will be denoted H0
∆−1(Kh).

Stage 2: Introducing new edges
If we want to ensure that the graphs H∆−1(Kh) will have diameter 6, we must introduce new
edges. The set of edges that will be added at this stage will be denoted by Ê(Kh). Therefore,
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we will define the graph Ĝ(Kh) = (Ŵ (Kh), Ê(Kh)).
The edge set of the graph Ĝ = (Ŵ , Ê) is defined as follows: For xijk, xrst ∈ Ŵ , {xijk, xrst} ∈
Ê ↔ ∃ α, β ∈ {0, . . . , h − 1} such that {y(ijk)

α , y
(rst)
β } ∈ E(V (K

(ijk)
h ), V (K

(rst)
h )), that is,

{y(ijk)
α , y

(rst)
β } ∈ Ê(Kh). Figure 4.2 depicts a graph Ĝ(K3) and its corresponding graph Ĝ.

(a)

(b)

Figure 4.2: (a): Graph Ĝ(K3) and (b): graph Ĝ obtained from Ĝ(K3).

A block is a set of copies of K(ijk)
h . In practice we will mainly use blocks made of copies of

K
(ijk)
h with i fixed. Let Nb denote the total number of blocks, and define the margin M as

the number of edges that can be added to the vertices of each Kh−copy so that the maximum
degree of H∆−1(Kh) remains at most ∆. It is not hard to see that M = (∆ − h)(h − 1).
Finally, M ′ = M − δ will denote the number of edges that can be added to each Kh−copy
after the application of Condition 1.
Now, the new edges to be added to H0

∆−1(Kh) should meet the following conditions:

Condition 1: There should be at least one edge between each pair of copiesK(ijk)
h andK(ijt)

h ,
for k 6= t. The maximum number of edges joining a copy K(ijk)

h to any other copy K(ijt)
h

is denoted by δ, for k 6= t.

Condition 2: The distance between any two copies of K(ijk)
h inside a block should be at

most 3. In particular, the distance between any two copies K(ijk)
h and K(ist)

h should be
at most 3.

Condition 3: The distance between any two copies K(ijk)
h and K(rst)

h should be at most 4,
for i 6= r. Equivalently, the distance between any two copies of K(ijk)

h from different
blocks should be at most 4.
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Condition 3a: The distance between any vertex y(ijk)
α and any copy of type K(rst)

h , i 6= r,
should be at most 5.

Condition 4: All these adjacencies are added in such a way that the maximum degree of
H∆−1(Kh) remains at most ∆.

The graph so obtained after the addition of the edges is H∆−1(Kh).

Note that in order to show that the distance between any vertex y
(ijk)
α ∈ K

(ijk)
h and any

vertex y(rst)
β ∈ K(rst)

h , i 6= r, is at most 6, we can use either Condition 3 or 3a. Note also that
the cardinality of each block need not be the same.

Figure 4.3 illustrates two blocks with their intra and interconnections, satisfying Conditions
1, 2 and 3.
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Figure 4.3: Two blocks, namely, {K(000)
3 ,K

(001)
3 ,K

(010)
3 ,K

(011)
3 ,K

(020)
3 ,K

(021)
3 ,K

(300)
3 } and

{K(100)
3 ,K

(101)
3 ,K

(110)
3 ,K

(111)
3 ,K

(120)
3 ,K

(121)
3 ,K

(310)
3 }, and their interconnections. The edges

that ensure Condition 1 are colored in gray, and the edges that ensure Conditions 2 and 3 are
highlighted by dashed and heavier lines, respectively.

F Lemma 4.1 In H∆−1(Kh), the graph Γ̂(Kh) = (Ŵ (Kh), Ê(Kh)) has diameter 6.

Proof. Due to Condition 2, in the graph Γ̂(Kh), the distance between any two copies of
K

(ijk)
h inside a given block is 3. Hence, the distance between any two vertices y(ijk)

α and y(rst)
β
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belonging to the same block is at most 5. Moreover, the distance between any two vertices
y

(ijk)
α and y(rst)

β belonging to different blocks is at most 6, by virtue of Condition 3 or Condition
3a. If we take into account that Γ̂(Kh) is the union of the Nb blocks, the result follows. �

F Theorem 4.1 Any graph H∆−1(Kh) constructed according to the Conditions 1-4 above
has maximum degree ∆ and diameter 6.

Proof. Let H∆−1(Kh) be a graph satisfying Conditions 1-4. In such a graph, any path that
does not contain vertices of Ŵ remains unaffected.

In a shortest path of any H∆−1(Kh) at most two vertices can be replaced − see the selected
subgraph R of H∆−1 (Figure 4.1), and recall that the girth of H∆−1 is 12. Accordingly, the
distance between any two vertices will increase by 2, at most.

Following Lemma 4.1, the distance between any two vertices y(ijk)
α and y(rst)

β is at most 6.

Let us consider two unreplaced vertices z and t lying at distance 5 from one another in H∆−1

such that a shortest path P joining them has two replaced vertices, say P = zxijkxijxijlrt.
According to Condition 1, there should be an edge between each pair of copies K(ijk)

h and
K

(ijl)
h , say {y(ijk)

α , y
(ijl)
β } ∈ E(V (K

(ijk)
h ), V (K

(ijl)
h )). Then zy(ijk)

θ y
(ijk)
α y

(ijl)
β y

(ijl)
γ rt is a path of

length at most 6 between z and t. Figure 4.4 shows an example of this situation.

z

xijk

xij

xijl r t

H∆−1

xij
y

(ijk)
α

y
(ijl)
β

y
(ijl)
γ r t

z

H∆−1(K4)

⇒

y
(ijk)
θ

Figure 4.4: A path of length 6 between z and t in H∆−1(K4)

Consider now two vertices z and xijk at distance 5 from one another in H∆−1, such that z ∈ V
and xijk ∈ Ŵ . Let P = zximnximxixijxijk be a shortest path joining z and xijk. According
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to Condition 2, there should be a path of length at most 3 between each pair of copies K(imn)
h

and K(ijk)
h . Then there is a path of length ≤ 5 between any pair of vertices y(imn)

α and y(ijk)
β .

Thus the distance between vertex z and the vertices y(ijk)
α ∈ K(ijk)

h is at most 6.

Suppose that we have two unreplaced vertices z and t at distance 6 in H∆−1. Then, as there
are ∆ disjoint paths between them, there exists a 6-path between z and t, which is not affected
by the replacements.

Finally, consider two vertices z and xijk at distance 6 from each other in H∆−1, such that
z /∈ Ŵ and xijk ∈ Ŵ . Then there exist ∆ disjoint paths between them. We need to check
that the distance between the vertex z and vertices y(ijk)

α ∈ K(ijk)
h is at most 6.

Due to the structure of the selected subgraph R of H∆−1 and the fact that g(H∆−1) = 12, a
shortest path linking xijk to another replaced vertex passes through xij . Therefore, there is a
unique shortest path P6 in H∆−1 that joins xijk and z, which has one further replaced vertex;
the remaining ∆ − 1 paths, namely, P 1

6 , . . . , P
∆−1
6 , have no replaced vertex other than xijk.

Thus, there exists a unique vertex y(ijk)
α of K(ijk)

h contained in P ′6 = zP6xijy
(ijk)
α ∈ H∆−1(Kh).

We define the 6-paths P ′i6 = zP i6y
(ijk)
θ ∈ H∆−1(Kh) for i = 1, . . . ,∆−1 and any y(ijk)

θ ∈ K(ijk)
h .

Then the remaining h − 1 vertices y(ijk)
β 6= y

(ijk)
α of K(ijk)

h are connected to z through one of

the 6-paths P ′i6 for i = 1, . . . ,∆− 1. Let us now consider the vertex y(ijk)
α ∈ K(ijk)

h contained
in P ′6. Then y

(ijk)
α is adjacent to xij , and therefore the vertex y(ijk)

α is the same as the vertex
y

(ijk)
0 . Hence, due to the compounding operation, the vertex y(ijk)

0 is connected to xij and
to at least another neighbour of xijk. Consequently, one of the 6-paths P ′i6 ∈ H∆−1(Kh),
i = 1, . . . ,∆− 1, connects y(ijk)

0 to z. Figure 4.5 exemplifies this case. �
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y
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γy
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β

z

H∆−1(K3)

y
(ijk)
α = y
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0

. . .

. . .
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..
. .....
. ...
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P 1
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P 1
6 P∆−1

6

P 2
6
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P 2
6 P∆−2

6. . .

P ′α6

P ′β6 P ′γ6
. . .

. . .

P ′α6

. . .

. . .

P ′β6
P ′γ6

P ′6

⇒

Figure 4.5: Paths of length 6 between z and vertices y(ijk)
0 in H∆−1(K3)

Thus, in order to construct large H∆−1(Kh) graphs, we need to link the copies of Kh according
to the structure of a certain graph, and following Conditions 1-4. Some authors have joined
copies of Kh according to a special graph of diameter 2 [76], while still others have used a
bipartite graph of diameter 3 [71]. In the next two sections we describe two additional variants
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for joining the Kh−copies. This completes the construction of H∆−1(Kh), and results in some
record graphs of diameter 6.

4.2 Multipartite replaced graphs

In this variant, copies of Kh are joined by following the structure of a modified Nb-partite
graph, that is, Ĝ is a modified Nb-partite graph. To be more precise, Ĝ is constructed in the
following way. We take Nb sets of vertices {A1, . . . , ANb}, join Ai to Aj , i 6= j, by means of
a perfect matching, and finally, the vertices within each Ai are connected according to the
structure of a diameter 3 graph.

The graph H4(K3)

The graph H4(K3) is constructed by setting up the blocks
{
K

(0jk)
3 ,K

(300)
3

}
,
{
K

(1jk)
3 ,K

(310)
3

}
and

{
K

(2jk)
3 ,K

(320)
3

}
for j ∈ {0, 1, 2} and k ∈ {0, 1}.

Subsequently, we connect any two blocks as shown in Figure 4.6. Note that Γ̂ is made up by
three sets of seven vertices, and vertices belonging to the same set are connected by a 7-cycle.
Γ̂ is partially represented in Figure 4.2 (b).
The resulting graph H4(K3) has degree 5 and diameter 6. After applying the compounding
operation to these 21 vertices, we get M = (5 − 3)(3 − 1) = 4; hence we can add 4 edges to
each K3. Additionally, after applying Condition 1, we have δ = 1, so M ′ = 4− 1 = 3.
For verifying Condition 2, note that any two copies K(ijk)

3 belonging to the same block are
joined by a 7-cycle. Moreover, there is a 3-path between any two copies K(3jk)

3 . These con-
nections are indicated by a dashed line in Figure 4.6.
Thereafter, it only remains to verify that the distance between any two copies K(ijk)

3 and
K

(opm)
3 , i 6= o, is at most 4, or in other words, that the distance between any two copies of

K
(ijk)
3 from different blocks is at most 4.

Figure 4.6 shows that the previous assertion is true for any copy K(0jk)
3 , K(1mn)

3 , K(300)
3 and

K
(310)
3 . We can verify this fact by following the connections between such graphs. These con-

nections are highlighted by a heavier line (Figure 4.6 only shows a part of these connections).

The vertices y(ijk)
1 and y(opm)

1 link any two blocks in H4(K3). Note that each of these vertices
has two connections for this purpose, and we only need one of these connections to set up
a path of length ≤ 4 between any two copies K(ijk)

3 and K
(opm)
3 belonging to two different

blocks.
With the aid of Equation (4.1) we can compute the order of the new graph H4(K3) as |H4|+
21× 2 = 2772. This is an improvement over the previous value of the entry (5, 6) in the table
of the largest known graphs, which was 2766.

The graph H5(K4)

In order to construct the graph H5(K4), we organize the blocks as follows:
{
K

(0jk)
4 ,K

(030)
4

}
,{

K
(1jk)
4 ,K

(130)
4

}
,
{
K

(2jk)
4 ,K

(230)
4

}
,
{
K

(3jk)
4 ,K

(330)
4

}
and

{
K

(4jk)
4 ,K

(430)
4

}
, for j ∈ {0, 1, 2}
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Figure 4.6: Basic configuration of a H4(K3) graph of order 2772.
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and k ∈ {0, 1}.
As before, two blocks are connected as in Figure 4.7. Note that, in this case, Γ̂ is made up by
five sets of seven vertices, and vertices of the same set are connected by a 7-cycle.
The graph H5(K4) so constructed has degree 6 and diameter 6. After applying the compound-
ing operation to its 35 vertices we have M = (6− 4)(4− 1) = 6, and we can add six edges to
each K4. Additionally, after applying Condition 1 we get δ = 1, so M ′ = 6− 1 = 5.
Inter-block connections are indicated by a heavier line in Figure 4.7. Furthermore, note that
for each copy K(ijk)

4 of a block, we have exactly two vertices (shown in white in Figure 4.7)
with two connections, and we only need one of these to connect any two copies K(ijk)

4 and
K

(opm)
4 belonging to two different blocks, by a path of length ≤ 4.

With the aid of Equation (4.1), we get the order of the new graphH5(K4): |H5|+35×3 = 7917.
This is an improvement over the previous (6, 6) entry, which was 7908.
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Figure 4.7: Basic configuration of a H5(K4) graph of order 7917.

4.3 G(Bω) as replaced graphs

In this second approach, copies of Kh are joined according to the structure of a compound
graph of diameter 3, denoted G(Bω), that is, Γ̂ is isomorphic to G(Bω). The graphs G(Bω)
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are defined next.

4.3.1 Description of the graphs G(Bω)

The graphs G(Bω) are constructed as follows: Let G be a graph, and Bω = (V1 ∪ V2, E) be
a bipartite graph. Assume that Bω has a polarity ω, so that we do not have to make any
distinction between its partite sets, i.e. V1 = V2 = V . Let us now perform the compounding
of Bω into G by replacing each vertex u in G with Su = V . If u and v are adjacent in G,
then Su and Sv are connected according to the structure of Bω. A vertex t of G(Bω) such
that t ∈ Su will be denoted by the pair (t, Su). Note that we can match the vertex (t, Su) in
G(Bω) with the vertex t of V in Bω. We may assume that t ∈ V1 or t ∈ V2, as needed. Figure
4.8 shows examples of graphs G(Bω).

Let us now recall some known properties of bipartite graphs:

(i) If B = (V1 ∪ V2, E) is any bipartite graph of even diameter D(B) then the distance
between x ∈ V1 and any y ∈ V2 is at most D(B) − 1. If the diameter D(B) of B =
(V1∪V2, E) is odd, then the distance between x ∈ V1 and any y ∈ V1 is at most D(B)−1.
Consequently, from any vertex of Vi, i = 1, 2, we reach all vertices from either V1 or V2

by means of paths of lengths at most D(B)− 1.

(ii) Moreover, if we have two vertices u0 and ul joined by a path P of length l = D(B)−1−2r
for r ≥ 0, say P = u0u1 . . . ul, we can find a walk Z of length D(B)− 1 between u0 and
ul. In fact, Z = Z ′∪P , where Z ′ is any closed walk of length 2r starting at u0. Note that
we can always obtain such a walk Z ′, for instance, we can take Z ′ = u0u1u0u1 . . . u1u0︸ ︷︷ ︸

2r steps

.

Now, some properties of the graphs G(Bω) are given in the next theorem. As usual, D(G)
denotes the diameter of the graph G.

F Theorem 4.2 The graphs G(Bω) have maximum degree ∆(G)×∆(Bω), order |G||Bω |2 and
diameter max{D(G), D(Bω)}.

Proof. We concentrate on proving the assertion regarding the diameter, since the maximum
degree and the order follow from the construction.

Let z0 and zk be vertices of G at distance k, and let P = z0z1 . . . zk be a shortest path joining
them. Additionally, let u and v be vertices of G(Bω) such that u ∈ Sz0 and v ∈ Szk ; see Figure
4.9.

We intend to prove that for any two vertices u and v in G(Bω), dG(Bω)(u, v) = max{k,D(Bω)}.
More precisely, we will take a path P of length k between two vertices z0 and zk in G, say
P = z0z1 . . . zk, and then we will show that dG(Bω)((u, Sz0), (v, Szk)) = max{k,D(Bω)}.
As Bω = (V1 ∪ V2, E) has a polarity, (u, Sz0) corresponds to a vertex u in V1.

When k = 0, 1, u and v are located in Bω, so dG(Bω)(u, v) = dBω(u, v). Let us assume that
k > 1; we distinguish two cases:

Case 1. k ≥ D(Bω).
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Figure 4.8: Example of a G(Bω) graph, where G = P2 and Bω =Heawood graph.
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Figure 4.9: Path of length k in G and the corresponding structure in G(Bω).
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Let ul be any vertex different from u in V1 (V2), provided that D(Bω) is odd (even). Let Q be
a shortest path in Bω between u and ul, say Q = uu1 . . . ul. Because of (i), we may assume
that the length of Q has the form l = D(Bω)− 1− 2r for r ≥ 0.

By (ii), we can construct a walk Z of length D(Bω)− 1 from u to ul in Bω. For example, we
can take the path Z = uu1u . . . u︸ ︷︷ ︸

2r steps

u1u2 . . . ul.

Consider now the vertex (ul, SD(Bω)−1).

As Bω has a polarity, and using (i), we can reach (ul, SzD(Bω)−1
) from (u, Sz0) through the

(D(Bω)− 1)-path (u, Sz0)(u1, Sz1)(u, Sz2) . . . (u, Sz2r)(u1, Sz2r+1) . . . (ul, SzD(Bω)−1
).

Thus, there exist (k− (D(Bω)− 1))-paths from (v, Szk) to certain vertices in SzD(Bω)−1
, hence

there is a path from (u, Sz0) to (v, Szk) of length k; see Figure 4.10.

. . .u u1 ul

. . .

Sz0 Sz1
Szk

Path Q = u . . . ul in Bω,

u

Z . . .

. . .

provided D(Bω) is odd

u u1 u u1 u2

Sz2 Sz2r−1 Sz2r Sz2r+1 Sz2r+2
SzD(Bπ)−1

{
2r steps

u1 u u1 u u1 u2 ul v

u u1

ul ul−1

. . .

Figure 4.10: Path of length k between (u, Sz0) and (v, Szk) in G(Bω).

Case 2. k < D(Bω).

This case is in turn split into two subcases:

Case 2 A k + L1 = D(Bω)− 1, where L1 is even.

Again, we can associate (v, Szk) with a vertex v 6= u, where v ∈ V1 if D(Bω) is odd, and v ∈ V2

if D(Bω) is even. Hence we can take Q as a path of length k = D(Bω)− 1−L1 in Bω joining
u with v, say Q = uu1u2 . . . uk−1v, for L1 ≥ 0.

Now the vertices (u, Sz0) and (v, Szk) are joined by the path (u, Sz0)(u1, Sz1)(u2, Sz2) . . .
. . . (uk−1, Szk−1

)(v, Szk) of length k.

Case 2 B k + L1 = D(Bω)− 1, where L1 is odd.

As k > 1, this subcase can be reduced to the previous subcase. As a matter of fact, k−1+L2 =
D(Bω)− 1, where L2 = L1 + 1. Hence, we will be able to reach any vertex in Szk−1

in at most
D(Bω)− 1 steps. Consequently, since we have edges going from (v, Szk) to certain vertices in
Szk−1

, we will have a path from (u, Sz0) to (v, Szk) of length at most D(Bω).

In summary, dG(Bω)((u, Sz0), (v, Szk)) ≤ D(Bω) in Case 2. �

4.3.2 Construction of H8(K6), H11(K8), and H13(K10)

Now that we have defined graphs G(Bω) and deduced some of their properties, we are prepared
to present other record graphs H∆−1(Kh).
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General Construction: Let G be a graph, and Bω be a bipartite graph with a polarity ω.
Assume that both G and Bω have diameter three.

Step 1: Label the vertices of G in such a way that two vertices have the same label only
if they are at distance 2 in G. A vertex in G can have several labels; for example,
if d(x, y) = d(y, z) = 2 and d(x, z) = 4 then the labels of vertices x, y and z could
be l1, {l1, l2} and l2, respectively.

Step 2: Perform the compounding G(Bω). Each vertex (u, Szi) ∈ G(Bω) takes only one
of the labels from the vertex zi ∈ G, so we now denote the vertex (u, Szi) of G(Bω)
by the triple (u, Szi , l), where l is one of the labels of zi ∈ G. The distribution of
these labels in each Szi is done according to the specific G(Bω). The graph Γ̂ is
isomorphic to G(Bω) and retains the same labeling as the latter.

Step 3: In Ĝ(Kh), keep the same label as xijk = (u, Szi , l) in Ĝ for the copy K(ijk)
h .

Step 4: In Ĝ(Kh), a block is formed by copies of K(ijk)
h , for a fixed i, all of them having

the same label. The total number of labels must equal the total number of blocks,
Nb.

Step 5: Apply condition 1 of Theorem 4.1.

F Theorem 4.3 Let H∆−1(Kh) be a graph constructed according to Steps 1-4 above, and
suppose that H∆−1(Kh) satisfies the requirements

(i) The cardinality of any block is at most (∆− 2)2. For a fixed i, (∆− 2)2 is the number
of vertices u in W ′ such that d(xi, u) = 2 (see Figure 4.1), and

(ii) M ′ = M − δ ≥ ∆(G(Bω)) = ∆(G)×∆(Bω), and

(iii) h ≤ ∆(Bω)+1

then H∆−1(Kh) has maximum degree ∆ and diameter 6.

Proof. The second condition of the theorem ensures that the maximum degree of H∆−1(Kh)
will be at most ∆, hence, we only need to prove that Conditions 2 and 3 of Theorem 4.1 hold,
or the diameter is 6 (in those cases where they do not hold).

By virtue of Step 4, and considering that blocks are formed by copies of Kh with the same
label, these copies must be at distance three, i.e. Condition 2 of Theorem 4.1 holds.

Now let (xijk, Szα) and (xrst, Szβ ) be vertices of Γ̂ such that dΓ̂(xijk, xrst) = 3. Then, in
Γ̂(Kh), copies K(ijk)

h and K(rst)
h belong to different blocks.

Vertices from the same partite set of Bω are at distance ≤ 2 from one another, since the
diameter of (Bω) is three.

Let us show that the distance between a vertex of K(ijk)
h and a vertex of K(rst)

h is at most 6.
We distinguish two cases:

Case 1. h ≤ ∆(Bω).
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Let P = (xijk, Szα)(u, Szδ)(v, Szθ)(xrst, Szβ ) be a 3-path between xijk and xrst in G(Bω).
Then, since vertices from the same partite set of Bω are at distance at most 2, there are
∆(Bω) paths of length three between xijk and xrst, each one passing through a different
neighbor of xijk in Szδ (see Figure 4.11 (a)).

Therefore, connections in Γ̂(Kh) can be arranged in such a way that every vertex y(ijk)
γ ∈ K(ijk)

h

is joined to a copy K(opq)
h lying at distance 3 from K

(rst)
h (see Figure 4.11 (b)). This verifies

Condition 3a of Theorem 4.1.

Szα Szδ Szβ

G(Bω) = Γ̂

Szθ

xijk xrst

vu

..
.∆ − 1

Szα Szδ Szθ Szβ

K
(ijk)
3

y
(ijk)
γ

K
(rst)
3

Γ̂(K3)

K
(opq)
3

(a)

(b)

Figure 4.11: A path of length at most 6 between y(ijk)
γ ∈ K(ijk)

3 and any vertex in K(rst)
3 . Note

that d(K
(opq)
3 ,K

(rst)
3 ) = 3.

Case 2. h = ∆(Bω) + 1.

In this case we can arrange the connections in Γ̂(Kh) so as to have exactly one vertex in each
copy K(ijk)

h not connected to any copy K(opq)
h at distance 3 from K

(rst)
h . For each copy K(ijk)

h ,
let y(ijk)

0 be such a vertex, hence there is a path P of length 6 between y(ijk)
0 and y(rst)

0 that
traverses the subgraph R of H∆−1 (see Figure 4.1), P = y

(ijk)
0 xijxixxrxrsy

(rst)
0 .

Finally, note that Condition 3a holds for all vertices in K(ijk)
h with the exception of y(ijk)

0 . �

Some of the graphs used to produce graphs G(Bω) are:

I∆−1: A bipartite Moore graph of diameter 3 and degree ∆. It is known that those graphs
have a polarity [19].

C5 ∗ F4: Maximal graph of degree 3, diameter 3 and order 20, found by Green [56].

BD: Bipartite graph of degree 7, diameter 3, and order 78, found by Bondy and Delorme
[22]. It also has a polarity.

H: The unique graph of degree 3, diameter 3, and order 18, constructed by Faradzhev [64]
(see also [128]).
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Table 4.1 summarizes the features of each H∆−1(Kh) obtained by this method. The orders
are computed with the aid of Equation (4.1).

∆ h M δ∗ M ′ G Bω H∆−1(Kh) Order of H∆−1(Kh)

9 6 15 3 12 C7 I5 H8(K6) 75893
12 8 28 7 21 C5 ∗ F4 BD H11(K8) 359772
14 10 36 9 27 H I8 H13(K10) 816294

*δ is the quotient between the maximum cardinality of a block in Ĝ(Kh) and ∆ − 2 (the
maximum number of copies K(ijk)

h having i and j fixed).

Table 4.1: Features of the graphs H∆−1(Kh) obtained by the second approach.

∆ Previous Largest Known Order New Largest Known Order Graph
5 2766 2772 H4(K3)

6 7908 7917 H5(K4)

9 75828 75893 H8(K6)

12 359646 359772 H11(K8)

14 816186 816294 H13(K10)

Table 4.2: Orders of the new largest known graphs H∆−1(Kh) for ∆ ≤ 14.

4.4 Conclusions

In this chapter we have presented a new family of compound graphs of diameter 6, denoted
by H∆−1(Kh). At least five members of this family—namely, H4(K3), H5(K4), H8(K6),
H11(K8) and H13(K10)—are the largest known graphs for their respective maximum degrees
and diameter 6 (see Table 4.2). In order to obtain some of these new largest known graphs,
we have defined a second new family of compound graphs, denoted by Γ(Bω), and we proved
that their maximum degree is ∆(Γ) × ∆(Bω), their order is |Γ||Bω |2 , and their diameter is
max{D(Γ), D(Bω)}.



5
Algebraic methods in the Degree-Diameter Problem

The main goal of this chapter is to expand on the existing algebraic methods and tools in
connection with the Degree-Diameter Problem. In particular, in Section 5.1 we develop the
theory of rewriting systems further, and we show how to use these tools in connection with
Cayley graphs, which in principle can be generalized to voltage graphs. Then, in Sections 5.2
and 5.3 we derive conditions that enable us to narrow the search space in Algorithm 2, in
order to obtain large graphs of different types (e.g. bipartite) by voltage assignment. Finally,
in Section 5.4 we discuss some open research problems that we have not been able to cover in
this thesis.

Most of the results of Section 5.1 have been published in [27], while the material of Sections
5.2 and 5.3 is the main subject of [49].

5.1 Elimination

In Section 2.4 we saw some of the nice properties of complete string rewriting systems, as
well as some of its drawbacks, like the problems associated with computing a complete string
rewriting system, which is not always possible. This section expands further on this topic. In
particular, we deal with the issue of computing a complete string rewriting system from an
existing one, which is a lot easier than computing it from scratch.
Our main tool for this purpose will be elimination theory, which describes the properties of
some substructure of a given algebraic structure, where an elimination ordering has been de-
fined. Elimination has been widely studied in commutative polynomial rings in connection
with Gröbner bases, since it enables to obtain the Gröbner basis of an elimination ideal with
little computational effort, provided that a Gröbner basis for a super-ideal is known. Given its
importance, the concept has been generalized to other settings, like free associative algebras
over a field [25]. In this section we formalize the notion of elimination in the context of string
rewriting systems, and we show how to use this property to solve the generalized word problem.
The results contained in this section have been published in our paper [27], and this section
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follows approximately the same structure: Subsection 5.1 discusses the properties of elimina-
tion orderings in connection with string rewriting systems, and how to use this connection to
solve the generalized word problem. Then, Subsection 5.1.2 briefly mentions some applications
of the preceding theory to solve other computational problems in groups, such as the Discrete
Logarithm Problem in finite groups, finding the inverse of an element in a group, and finding a
new set of generators for a group. The latter application is of interest for dealing with Cayley
graphs.

5.1.1 The elimination property

Let Σ = {x1, x2, . . . xn}, and let Σk stand for {x1, x2, . . . xk}, where 1 ≤ k ≤ n−1. Throughout
this chapter we will assume that x1 < x2 < . . . xn.

Definition 5.1 (Term ordering with the elimination property) Given the term order-
ing < on Σ∗, we say that it has the elimination property at position k (with k as above) if,
for every v, w ∈ Σ∗, v < w and w ∈ Σ∗k implies v ∈ Σ∗k. An ordering with the elimination
property is called an elimination ordering.

Mora’s ordering (see Section 2.4) is an example of a term ordering with the elimination prop-
erty; it possesses the property at position k, for all 1 ≤ k ≤ n−1. The elimination property is
very convenient when computing complete systems. Informally, if we have a complete rewrit-
ing system on Σ with respect to an elimination ordering, then it is easy to get a complete
system on Σk: we simply remove the rules containing letters not in Σk, i.e. xk+1, . . . xn. We
formalize this idea in the sequel.
Let us consider the restriction <k of < to Σ∗k, where < is a term ordering on Σ∗, and let
Rk = R ∩ (Σ∗k × Σ∗k).

F Lemma 5.1 As above, let < be a term ordering on Σ∗, with the elimination property at
position k. Then, <k is also a term ordering, and it is compatible with Rk.

Proof. <k is obviously an admissible, well-founded partial ordering. Let α → β be an
arbitrary rule of Rk ⊆ R. We have that β < α and α, β ∈ Σ∗k, hence β <k α. �

F Lemma 5.2 If u ∗→R v and u ∈ Σ∗k then u ∗→Rk v.

Proof. If u ∗→R v then u →R u′ →R u′′ →R · · · →R v. Since u > u′ > u′′ > · · · > v and
u ∈ Σ∗k, we have that u′, u′′, . . . , v ∈ Σ∗k, and hence u→Rk u

′ →Rk u
′′ →Rk · · · →Rk v. �

F Theorem 5.1 (Elimination theorem) Let 〈Σ : R〉 be a complete rewriting system that
is compatible with the term ordering <, which possesses the elimination property at position k.
Let J denote the congruence ≡R and Jk = J ∩ (Σ∗k ×Σ∗k). Then, 〈Σk : Rk〉 is also a complete
rewriting system, and Jk coincides with the congruence ≡Rk .
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Proof Lemma 5.1 implies that Rk is noetherian; now let us check for local confluence. Assume
that for u, v, w ∈ Σ∗k, u →Rk v and u →Rk w; this implies that u →R v and u →R w, and
since R is locally confluent, v ↓R w, i.e. v ∗→R z and w ∗→R z for some z ∈ Σk

k. By Lemma 5.2,
v
∗→Rk z and w ∗→Rk z, i.e. v ↓Rk w. Hence 〈Σk : Rk〉 is complete. The coincidence between

Jk and ≡Rk follows directly from the definition of Jk. �

In Theorem 5.1, we call Rk an elimination system of R, and Jk an elimination congruence of
J . This theorem is the basis for a computational procedure that solves some instances of the
generalized word problem (procedure IN-SUBGROUP).

Algorithm 6: Procedure IN-SUBGROUP

Input : A finite monoid presentation 〈Σ : R〉 for a group Γ,
a set of words W = {w1, w2, . . . , wk}, with wi ∈ Σ∗, defining H E Γ,
and another word α ∈ Σ∗.

Output: The procedure decides whether [α]R ∈ H, and if so, it gives the expression of
α in terms of the wi.

1 Introduce a set of new letters, Y = {y1, . . . , yk}, for tagging the elements of W ;
2 Choose a term ordering < on (Σ ∪ Y )∗, with the elimination property at position k, so
that Y < Σ, i.e. for every y ∈ Y and every x ∈ Σ, y < x ;

3 Add to the presentation of Γ all the rules yi → wi, and apply the Knuth-Bendix
procedure to the resulting system, with respect to < ;

4 Compute NF (α) modulo the complete system obtained ;
5 [α]R ∈ H if, and only if, NF (α) depends solely on the yi. The expression of α in terms
of the wi is obvious ;

A key step of our procedure is step 3: the procedure terminates if, and only if, Knuth-Bendix
completion does. This is the case, for example, when the group Γ is finite or abelian. In general,
it is impossible to predict beforehand whether the Knuth-Bendix completion procedure will
terminate on a given input.

5.1.2 Some applications

In this subsection we show how to apply the procedure IN-SUBGROUP for solving three al-
gorithmic problems related with finitely presented groups. They were first given in [26].

The Discrete Logarithm Problem for finitely presented groups (DLP for short) has been ex-
tensively studied, due to its applications in Cryptography, mainly in multiplicative groups of
finite fields and groups of points of elliptic curves over finite fields [94]. The setting in which
the problem is presented here is rather unusual. The DLP can be stated as follows:

Problem 5.1 (The Discrete Logarithm Problem in finitely presented groups) Let 〈Σ :
R〉 be a finite monoid presentation for a group Γ.
Instance: Two words b, c ∈ Σ∗ (b is called the base element).
Question: Does there exist a positive integer k such that bk = c? If the answer is positive,
find k.
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This problem has also been known in the literature as the power problem (see e.g. [111]).
It is not difficult to realize that k exists if, and only if, NF (c) is in the subgroup generated
by b, and this fact can be tested with the aid of the procedure IN-SUBGROUP.

Another problem that appears in finitely presented groups in connection with the generalized
word problem is the Inverse Problem (IP):

Problem 5.2 (The Inverse Problem) Let 〈Σ : R〉 be a finite monoid presentation of a
group G.
Instance: A word α ∈ Σ∗.
Question: Is it possible to find a word β ∈ Σ∗ such that [β]R = [α]−1

R ?

Procedure INVERSE leads to the solution of the problem:

Algorithm 7: Procedure INVERSE

1 Introduce a new symbol y that will act as a label for the inverse of α ;
2 Choose a term ordering < on (Σ ∪ {y})∗, with the elimination property at position n,
so that Σ < y ;

3 Perform a Knuth-Bendix completion on R ∪ {yα→ 1, αy → 1} ;
4 Then β is the right-hand side of the rule whose head is y ;

The proof that this procedure works can be found in [26]; it makes use of the theory of Gröbner
bases in non-commutative algebras.

Our last application deals with the problem of finding a different Generating Set for a given
finitely presented group.

Problem 5.3 (Generation Problem) Let a finite monoid presentation 〈Σ : R〉 of a group
G be given.
Instance: W = {w1, w2, . . . wk}, with wi ∈ Σ∗ for all 1 ≤ i ≤ k.
Question: Does W generate G?. If so, compute {z1, z2 . . . , zn} ⊂W ∗ such that [xi]R = [zi]R
for all 1 ≤ i ≤ n.

This problem amounts to deciding, for each generator xi of Γ, whether xi lies in the subgroup
of G generated by W . If W is to generate Γ, then, after the first three steps of the procedure
IN-SUBGROUP, we should have each xi as the left-hand side of some rule in the resulting
complete system. Moreover, all the rules containing a symbol of Σ must be of the form xi → qi,
where qi ∈ Y ∗.
Thus, as a bonus we get rules for transforming any word of Σ∗ to a word in the wi, and we
also get a complete presentation for the group in terms of the wi. In Cayley graphs, this is
useful for changing the generating set, e.g. to look for a generating set that yields a smaller
diameter.
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5.2 Finite metacyclic and metabelian groups

In [51], Dinneen and Hafner suggested the use of semidirect products of cyclic groups, like
Zn nr Zm, Zn nψ (Zm × Zm), and (Zn nr Zm) n (Zn nr Zm) to obtain large Cayley graphs.
Those are precisely the groups that were used in [107] and [106] to update the table of the
largest known graphs by voltage assignment. Even though those groups are not very far from
abelian, they have the advantage that they are easy to generate and use in computation.
In this section we investigate these groups. We are interested in the order of the elements,
which influences the length of the cycles resulting in the voltage assignment construction, and
in turn, determines other graph properties, like bipartiteness.
Given two groups, H and N , and a homomorphism ψ : H → Aut(N), the (external) semidirect
product H nψ N can be defined on the set H ×N as (h1, n1) ∗ (h2, n2) = (h1h2, n1ψh1(n2)).
So defined, N is a normal subgroup of Γ = HnψN , and H is a subgroup of Γ. Every element
of Γ = H nψ N can be represented uniquely as hn, where h ∈ H,n ∈ N ; this is the so-called
internal semidirect product. The internal and external definitions are equivalent, and we may
alternate between the two as needed.
If H and N are both cyclic, then the semidirect product Γ = HnψN is metacyclic. A group Γ
is metacyclic if it has a cyclic normal subgroup N , such that Γ/N is also cyclic. The complete
characterization of metacyclic groups was first given in [81]. We will first concentrate on
metacyclic groups, so as to pave the way to extend our results to other classes of groups later.

Let H = Zn, and N = Zm; then Aut(Zm) is isomorphic to the multiplicative group of units of
the ring (Zm,⊕,�), which has order φ(m), where φ(m) denotes Euler’s totient function, and
⊕, � denote the addition and multiplication modulo m, respectively. Every automorphism of
Zm has the form x→ xr, where r and m are relatively prime.
In additive notation, the operation ∗ in the group Γ = Zn nr Zm becomes

(α1, β1) ∗ (α2, β2) = (α1 + α2 (mod n), β1 + β2r
α1 (mod m)) (5.1)

and from there we can compute the k-th power of any element (α, β):

(α, β)k =

(
kα (mod n), β

rkα − 1

rα − 1
(mod m)

)
(5.2)

Note that, with the notation of Equation 5.1, (α, 0) ∗ (0, β) = (α, βrα), and (0, β) ∗ (α, 0) =
(α, β).

The multiplicative order of r modulo m, denoted ordm(r), is the smallest positive integer t
such that rt ≡ 1(mod m). In this case, since we are assuming that rn ≡ 1(mod m), t must be
a divisor of n.

We have the following

F Proposition 5.1 Let Γ = Zn nr Zm, where rn ≡ 1(mod m), t = ordm(r), and let o(γ)
denote the order of γ ∈ Γ. Then,

o(α, β) divides k = lcm

(
n

gcd(n, α)
,

mt

gcd(m,β) gcd(t, α)

)



5. Algebraic methods in the Degree-Diameter Problem 66

Proof: From Equation 5.2 we see that (α, β)k is the identity of Zn nr Zm if, and only if, the
following system of equations are satisfied:

kα ≡ 0 (mod n), (5.3)

β
rkα − 1

rα − 1
≡ 0 (mod m) (5.4)

With the above definition of k, it is obvious that Equation 5.3 is satisfied, so we only have to
check that Equation 5.4 is satisfied as well. We are going to show that β r

kα−1
rα−1 ≡ 0(mod m).

Let m′ = m
gcd(m,β) . Note that α divides tα

gcd(t,α) , and
m′tα

gcd(t,α) divides kα, therefore

r
m′tα

gcd(t,α) − 1

r
tα

gcd(t,α) − 1
divides

rkα − 1

rα − 1

So, it suffices to show that m′ divides r
m′tα

gcd(t,α)−1

r
tα

gcd(t,α)−1
. Now,

r
m′tα

gcd(t,α) − 1

r
tα

gcd(t,α) − 1
=

m′−1∑
j=0

r
jtα

gcd(t,α)

Each exponent is divisible by t, hence each term in the sum is congruent with 1 (mod m),
and congruent with 1 (mod m′). There are m′ terms, hence the sum is divisible by m′, and
so is rkα−1

rα−1 . Consequently, β r
kα−1
rα−1 is divisible by m, as claimed.

�

Sometimes it is also useful to view the group in multiplicative notation. A complete monoid
presentation of Γ = Zn nr Zm is 〈a, b : an = bm = λ, ba = abr〉. Therefore, every element of
Zn nr Zm has a unique normal form aαbβ , with 0 ≤ α ≤ n − 1, and 0 ≤ β ≤ m − 1, modulo
this presentation.

With this notation, the product of aα ∈ Zn with bβ ∈ Zm reduces to concatenation. The k-th
power of aαbβ is

(aαbβ)k = akαbβ
rkα−1
rα−1 (5.5)

which agrees with Equation 5.2. From Equation 5.3 it is obvious that o(aα) divides o(aαbβ).

Proposition 5.1 gives an upper bound for the order of an element (α, β) ∈ ZnnrZm. A general
upper bound is given by the exponent of ZnnrZm, i.e. the largest order of any element, which
is lcm(n,m) (see [81], Lemma 2.1).

Metacyclic groups belong to the larger family of metabelian groups. A group Γ is metabelian if
it has an abelian normal subgroup N such that Γ/N is also abelian. In particular, semidirect
products of the form H nψ N , with H and N abelian, are metabelian. In turn, finitely
generated metabelian groups are polycyclic. A group is polycyclic if it admits a subnormal
series
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Γ = Γ1 . Γ2 . · · · . Γn . Γn+1 = {1} (5.6)

where each Γi+1 is a normal subgroup of Γi, and the quotient Γi/Γi+1 is cyclic, for all 1 ≤ i ≤ n.
The nice thing about polycyclic groups is that there exist efficient algorithms to handle them.

If every quotient Γi/Γi+1 in the series 5.6 is abelian, then the group is solvable, and the
length of the shortest such series (e.g. n in Equation 5.6) is the derived length. The derived
length of a solvable group Γ is a measure of its commutativity: the longer the series, the less
commutative Γ is.

Back to polycyclic groups, a polycyclic generating sequence is a sequence (γ1, γ2, . . . , γn) such
that Γi = 〈Γi+1, γi〉, for all 1 ≤ i ≤ n. Now let Γ be finite, and let ri be the index of Γi+1 in
Γi. Then, every element γ ∈ Γ can be represented uniquely in the normal form

γe11 γ
e2
2 · · · γenn , (5.7)

where 0 ≤ ei ≤ ri−1. A complete presentation corresponding to the generators (γ1, γ2, . . . , γn)
is

γrii = γ
a(i,i,i+1)
i+1 · · · γa(i,i,n)

n , for 0 ≤ i ≤ n (5.8)

γ−1
i γjγi = γ

a(i,j,i+1)
i+1 · · · γa(i,j,n)

n , for 0 ≤ i < j ≤ n, (5.9)

where 0 ≤ a(i, j, k) ≤ rk − 1, and the right-hand sides are words in normal form. The normal
form of any word w can be obtained by repeated application of the rules above, however some
shortcuts have been devised for that purpose; they are called collection algorithms (see [86],
p. 280).

Now let us go back to the special case of finite metabelian groups. Let H and N be finite
abelian groups, with generating sets A = {a1, . . . , an} and B = {b1, . . . , bm}, respectively, and
let us assume that a semidirect product H nψ N can be constructed. Assume also that we
have polycyclic presentations of H and N on the generating sets A and B.

Every automorphism of N has the form ψa : a−1ba→ ωb, where ωb = be11 b
e2
2 · · · bemm is a word in

normal form with respect to the presentation of N . The union of the polycyclic presentations
of H and N , with the relations bjai → aiωbj , for 1 ≤ i ≤ n, 1 ≤ j ≤ m, yields a polycyclic
presentation of H nψ N . With the aid of this presentation, every element of H nψ N can be
represented uniquely as aα1

1 aα2
2 · · · aαnn bβ1

1 b
β2
2 · · · bβmm , where the exponents are as in Equation

5.7.

The k-th power of an element has the form

(aα1
1 aα2

2 · · · aαnn bβ1
1 b

β2
2 · · · bβmm )k = akα1

1 akα2
2 · · · akαnn b

β′1
1 b

β′2
2 · · · bβ

′
m
m (5.10)

where β′i is a multiple of βi for all i. Therefore we have the following

F Proposition 5.2 Let H and N be finite abelian groups, and let us assume that a semidirect
product H nψ N can be constructed. Also let h ∈ H and n ∈ N . Then o(h) divides o(hn).
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�

Metabelian groups include the groups of the form Znn(Zm×Zm), which were successfully used
in [51], and later in [107], to obtain large graphs with given degree and diameter. Applying
Proposition 5.2 to the product of several elements, we get the following

F Corollary 5.1 Let H and N be abelian, and let us assume that a semidirect product HnψN
can be constructed. Also let (h, n) = (h1, n1) ∗ (h2, n2) ∗ · · · ∗ (hk, nk), with h, h1, . . . , hk ∈ H
and n, n1, . . . , nk ∈ N . Then o(h1h2 · · ·hk) divides o(hn).

�

In Section 5.3.2 we discuss how to apply this corollary to obtain large bipartite graphs by
voltage assignment.

5.3 Bipartite lifts

For practical applications, bipartite graphs form an important subclass of the class of all
graphs. There are several papers dealing with properties and generation of large bipartite
graphs with given degree and diameter, e.g. [145].

A graph is bipartite iff all its cycles are even. From the discussions in Section 2.5 it follows
that Gα will be bipartite iff every minimal closed walk in G, with net voltage equal to the
identity, has even length, or iff every odd closed walk in G has a net voltage with even order.
However, these conditions are not very useful from the algorithmic point of view, so we will
look into necessary and/or sufficient conditions for Gα to be bipartite.
If Gα is bipartite then, for every cycle C of G, of length k, net voltage g, and n being the
order of g in Γ, the product kn is even. Yet, this condition is not sufficient. If G is a bouquet,
this amounts to every voltage having even order in Γ, which again, is not sufficient, as shown
by the following example.

Example 5.1 Let G be a bouquet with two loops, with voltages 1 and 2 in Z4, as shown in
Figure 5.1. Both elements, 1 and 2, have even order in Z4 (4 and 2, respectively). However,
we have a closed walk with net voltage equal to the identity of Z4 and odd length, namely:
2+1+1. That results in an odd cycle in Gα.

1 2

Figure 5.1: Voltage graph producing odd cycles

One sufficient condition for Gα to be bipartite is that G is bipartite. By imposing more
restrictions on G and Γ we can get additional conditions, as in the next subsection.
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5.3.1 Bipartite circulant graphs

Now let us concentrate on the case of bouquets as base digraphs. We already know that all
the voltages must have even order in Γ, but that condition is not sufficient, except maybe for
the trivial case, when we have only one loop. Let us start with the simplest non-trivial case,
i.e. two loops, and voltages in the cyclic group Zn. Let the voltages on the loops be a and
b. Since the voltage group is abelian, a closed walk is a sequence of p cycles of type a and q
cycles of type b. We must find all such combinations that yield the identity element of Zn, i.e.
we must solve the set of linear diophantine equations

pa+ qb ≡ 0 (mod n), or (5.11)
pa+ qb = jn, with p, q, j ∈ Z (5.12)

Let d = gcd(a, b). Equation (5.12) has a solution iff d | jn, and in that case it has infinitely
many solutions of the form

p = p+
b

d
t, (5.13)

q = q − a

d
t, (5.14)

where (p; q) is any particular solution and t runs through all the integers. For the expansion
to be bipartite, p+ q must always be even. Adding Equations (5.13) and (5.14) we get

p+ q = p+
b

d
t+ q − a

d
t = p+ q +

b− a
d

t (5.15)

Since t can be any integer, p+ q and b−a
d must be both even. A particular solution (p; q) can

be found by simply letting q = 0, and taking p as the order of a (or viceversa). This implies
that the order of both a and b must be even.

Example 5.2 (Example 5.1 revisited) In Example 5.1 we had a cyclic group of even or-
der, and both voltages had even order, but d = gcd(1, 2) = 1, and hence 2−1

1 = 1 is not
even.

In the more general case, when we have k > 2 loops, with voltages a1, a2, . . . , ak, we get the
set of linear diophantine equations

a1x1 + a2x2 + · · ·+ akxk ≡ 0 (mod n), or (5.16)
a1x1 + a2x2 + · · ·+ akxk = jn, with j ∈ Z (5.17)

As in the two-variable case, the general linear diophantine equation in k variables

a1x1 + a2x2 + · · ·+ akxk = ck, (5.18)
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has a solution iff gcd(a1, . . . , ak) divides c.
Nevertheless, a simpler way to approach this problem is by noting that the lift of a bouquet
by Zn is a circulant graph, and bipartiteness of circulant graphs was completely characterized
in [82].

Definition 5.2 Let n, k, a1, a2, . . . , ak be positive integers, and let’s assume that ai 6≡ ±aj (mod n)
for i 6= j. A graph with vertex set V = {0, 1, . . . , n− 1} and edge set E = {(i; i+ aj mod n) :
i = 0, . . . , n− 1, j = 1, . . . , k} is called a circulant graph, and is denoted Cn(a1, . . . , ak). A
circulant graph is a Cayley graph of the cyclic group Zn.

A circulant graph G = Cn(a1, . . . , ak) is connected iff gcd(n, a1, . . . , ak) = 1. In general,
each connected component of G is circulant, and isomorphic to Cn

d
(a1
d , . . . ,

ak
d ), where d =

gcd(n, a1, . . . , ak). Hence, in the sequel we can assume w.l.o.g. that G is connected.

Theorem 5.2 ([82]) Let G = Cn(a1, . . . , ak) be a connected circulant graph. Then G is
bipartite if, and only if,

a1, . . . , ak are odd, and n is even. (5.19)

In order to apply Theorem 5.2 to our problem, just note that the integers a1, . . . , ak are pre-
cisely the voltages in our voltage graph. First we have to identify the connected components,
and then apply Condition 5.19 in a straightforward manner to each connected component.

Example 5.3 (Example 5.1 revisited) Going back to Example 5.1, we see that the derived
graph is connected, hence we can apply Theorem 5.2 directly. The voltage group has even order,
but there is one even voltage (2), hence the derived graph is not bipartite.

A discussion about how to identify the connected components of the derived graph is given in
[77], pp. 86-93.

5.3.2 Bipartite lifts by metabelian groups

In the case of a finite metabelian groups of the form H nψ N , with H and N finite abelian,
Corollary 5.1 gives us a sufficient condition that we can use to determine a priori whether
the resulting derived graph will be bipartite. Let W be a closed walk in G of length k (odd),
with net voltage (h, n) = (h1, n1) ∗ (h2, n2) ∗ · · · ∗ (hk, nk), where h, h1, . . . , hk ∈ H and
n, n1, . . . , nk ∈ N . If h1h2 · · ·hk has even order in H (and consequently in Γ), then the order
of (h, n) is also even.

Such conditions have been integrated into sieves, which can be plugged in as additional if-
statements in Step 7 of Algorithm 2 (Section 2.5.3). The sieves prune the search space, and
thus make the search tractable. Some more details concerning the sieves and the implemen-
tation of the algorithm are given in [103], but these particular sieves to get bipartite lifts are
not discussed.

In principle, this technique can be adapted to obtain graphs of a particular type (e.g. bipartite,
planar, vertex-transitive, etc.). We just have to add a function that tests whether the resulting
lift belongs to the desired class. The key observation is that in many cases this check can
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performed before actually constructing the lift. In the case of bipartite graphs, the results
of Sections 5.2 and 5.3 provide sieving conditions that make the search more efficient, by
discarding a large number of lifts before actually constructing them.

With the aid of this modified procedure, new record bipartite graphs have been found. The
updated table of bipartite graphs is shown in Table 5.1. The table shows the orders of the
largest known bipartite graphs. The entries in bold are the ones that have been obtained with
the aid of our methods. For more details see [103] and [63]; there are adjacency lists, the
actual voltage assignments used to obtain the graphs, references, etc. Note that the values
at (14,8) and (15,8) are the same, but the latter can be pushed a little bit further by vertex
duplication [48].

The table appears in [103] and [63], while the results about metabelian groups, and their
application to get sieves for constructing large bipartite graphs, are contained in the paper
[49].

∆/D 3 4 5 6 7 8 9 10
3 14 30 56 126 168 256 506 800
4 26 80 160 728 840 2 184 4 970 11 748
5 42 170 336 2 730 3 110 9 234 27 936 90 068
6 62 312 684 7812 8310 29 790 117 360 452 032
7 80 346 1134 8992 23436 80 940 400 160 1 987 380
8 114 800 1710 39216 40586 201 480 1 091 232 6 927 210
9 146 1170 2496 74898 117648 449 480 2 961 536 20 017 260
10 182 1 640 4 000 132 860 224 694 1 176 480 7 057 400 50 331 156
11 186 1 734 5 850 142 464 398 580 2 246 940 15 200 448 130 592 354
12 266 2 928 8 200 354 312 664 300 4 650 100 30 001 152 300 383 050
13 270 3 064 11 480 374 452 1 062 936 5 314 680 50 990 610 617 330 936
14 366 4 760 14 760 804 468 1 771 560 14 172 480 95 087 738 1 213 477 190
15 370 4 946 20 496 842 048 2 480 184 14 172 480 168 016 334 2 300 326 510
16 394 5 134 27 300 884 062 4 022 340 36 201 060 288 939 118 4 119 507 330

Table 5.1: Orders of the largest known bipartite graphs

5.4 Some open problems

By now it is a widely documented fact that the farther a group is from abelian, the better
results we can get with it [51, 53, 104, 60, 62]. Since metabelian groups are not very far from
abelian (they are solvable with derived length 2), it is reasonable to expect that our results
can be improved by using other solvable groups with a greater derived length, or outright
unsolvable.
Exoo and Jajcay use perfect groups to construct cages [62]. A group is perfect if it has no
nontrivial abelian quotients. In particular, simple groups are perfect (a group is simple if it
has no nontrivial quotients of any kind). It would be interesting to see what results we can get
with perfect groups in the Degree-Diameter Problem. The next step could be simple groups,
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if we can find an efficient way to handle them.
In any case, it is important to determine the scope and limits of our methods: What fraction
of bipartite graphs can be obtained this way? This is a fundamental question that remains
unanswered.
Let G = (V,E) be a graph, and Aut(G) its automorphism group. A permutation group Γ
acting on V is called free, or semiregular , if no vertex of G remains fixed by any non-trivial
permutation of Γ. If Aut(G) contains a subgroup Γ that is semiregular, then G can be ob-
tained as a lift of a smaller graph.
The classification of graphs possessing a semiregular group of automorphisms is a significant
topic in its own right. To guarantee the existence of the desired group of automorphisms, one
common approach is to find a semiregular automorphism (a fixed-point-free automorphism)
in the lift. Research efforts in this direction have only targeted vertex-transitive graphs. It
has been conjectured that all vertex-transitive graphs possess a semiregular group of auto-
morphisms. This conjecture is often called the polycirculant conjecture, and in the form of a
research problem is now known as the semiregularity problem [100]. The conjecture is valid
for Cayley graphs, but still remains open for arbitrary vertex-transitive graphs.
The existence of a semiregular group of automorphisms for a class of graphs can also be used
to enumerate all the graphs of the class [113]. Settling this conjecture will heavily advance the
theory of vertex-transitive graphs. In particular, it will contribute significantly to answering
the question of whether every connected vertex-transitive graph has a hamiltonian path [100].
In this case, we need to investigate the validity of the polycirculant conjecture for bipartite
graphs, vertex-transitive or not.
If we wanted to extend our techniques to other kinds of graphs, similar questions arise: e.g.
how can we generate vertex-transitive (or planar) graphs?, can all planar graphs be obtained
by voltage assignment from a smaller graph?, etc.
In the realm of group theory, another fundamental problem is to determine the order of a
product of two elements, given the order of an element. As we mentioned before, if γ1 and γ2

commute, o(γ1γ2) divides lcm(o(γ1), o(γ2)). However, if γ1 and γ2 do not commute, anything
can happen: For any positive integers i, j, k > 1, there exists a (non-abelian) group Γ, and
elements γ1, γ2 ∈ Γ, such that o(γ1) = i, o(γ2) = j, and o(γ1γ2) = k (e.g. the triangle groups).
So, the best we can do is investigate this problem in classes of groups in an ad hoc manner.
In the case of a semidirect product of abelian groups we have obtained some bounds for the
order of a product, but can we get more precise? This would lead to better sieves for our
algorithm, and hence we could narrow our search space even further.
In analogy with graph theory, define the order sequence of a group as the ordered list of all
the element orders. If two groups are isomorphic, it is obvious that they have the same order
sequence, but the converse is not true in general. In the case of abelian groups, the order
sequence determines the group up to isomorphism [15]. However, we can find two metacyclic
groups that are non-isomorphic but have the same order sequence. Therefore, we would like
to know if there are other classes of groups that are completely determined by their order
sequence.
Kavitha [92] gives an algorithm for computing in linear time the order sequence of a group
given by its multiplication table, and he uses the order sequence to determine nilpotence of
a group, and isomorphism of two abelian groups in linear time. However, the multiplication
table is usually not given, therefore it would be interesting to extend these methods to other
representation methods, like finite presentations.
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6
The Degree-Diameter Subgraph Problem in the

mesh

In Chapter 3 we introduced the Degree-Diameter Subgraph Problem, discussed its compu-
tational complexity, and its relationship with the ‘classical’ Degree-Diameter Problem. In
this chapter we study the Degree-Diameter Subgraph Problem in an important class of host
graphs: the k-dimensional mesh or grid. The results of this chapter have been published in
[117].

6.1 DDS in the k-dimensional mesh

In this chapter we will assume that the host graph G is an infinite k-dimensional mesh, and we
are looking for a subgraph of maximum degree ∆ ≤ 2k, and diameter D. We can associate our
mesh with an L1 metric space in dimension k. Pick an arbitrary point in this k-dimensional
L1 metric space as the center of a coordinate system. Now, the vertices of the mesh are the
points with integer coordinates (lattice points), and two lattice points are joined iff they are
at distance 1. The largest subgraph of degree ∆ = 2k and diameter D corresponds to a closed
ball of radius D/2. The number of lattice points contained in a ball of radius D/2 is variable,
and depends on the location of the center of the ball. The maximum number of lattice points
is achieved when the center of the ball is a lattice point itself, for even D, and when the
center of the ball is the midpoint between two adjacent lattice points, for odd D. Such balls
will be called maximal , and will be denoted Bk(p), where p = bD2 c, depending on its parity,
and k ≥ 1. Figure 6.1 depicts two maximal balls in dimension two, with diameters 5 and 6,
respectively.

For more details about the shape and location of maximal balls, we refer to the comprehensive
study by Dougherty and Faber [53], where the same problem appears in a slightly different
context. In that paper, the infinite k-dimensional mesh is interpreted as the Cayley graph of
the free abelian group Zk, and the points with integer coordinates contained in the ball Bk(p)
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(a) (b)

Figure 6.1: Maximal balls in the two-dimensional L1 metric space

correspond to words of length at most D in the canonical generators of Zk. The aim of [53]
was to construct large Cayley graphs on abelian groups, with given degree and diameter.

In order to simplify notation, we will also use Bk(p) to denote the set of points with inte-
ger coordinates contained in the closed ball Bk(p). The order of the largest subgraph S of
degree ∆ ≤ 2k and diameter D = 2p or D = 2p + 1, that can be constructed on the k-
dimensional mesh, will be denoted Nk(∆, p). Alternatively we could use the notations Bk(D)
and Nk(∆, D), specifying whether D is even or odd. If k′ > k, the following inequalities are
straightforward:

|Bk(p)| ≤ Nk′(2k, p) ≤ |Bk′(p)| (6.1)

The first inequality tells us that if we go to a higher dimension, keeping ∆ and p constant,
we can construct larger subgraphs. The reason for that is that we can move along the extra
dimensions in order to avoid ‘collisions’. Figure 6.2 is an example of one such construction
in dimension k = 3, of a subgraph with degree ∆ = 4, diameter D = 4 (i.e. p = 2), and 18
vertices, whereas |B2(2)| = 13.

Figure 6.2: Construction for ∆ = 4 and D = 4 in the 3D mesh

From (6.1) follows the importance of determining the numbers |Bk(p)|. Counting the number
of lattice points contained in a circle is a problem that goes back to Gauss, and there is an
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extensive literature on the subject, including several approximate results for the number of
lattice points in balls and other sets, e.g. [6, 13, 11, 12, 138, 150]. Regarding the exact number
of lattice points contained in closed balls in the L1 metric in arbitrary dimension, the main
reference seems to be a paper by Vassilev-Missana and Atanassov [143]. The following result
was given in [44], and we reproduce it here with slight modifications.

F Theorem 6.1 The cardinality of Bk(p) is

|Bk(p)| =
{ ∑p
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(
k
i

)(
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)
=
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)(
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)
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(
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(
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p−i
)(
k+i
i

)
if D = 2p+ 1

(6.2)

Proof:

The ball Bk(p) can be constructed as the union of a smaller ball in the same dimension k,
plus two balls in dimension k − 1, as shown in Figure 6.3.

+

Figure 6.3: Decomposition of the ball of diameter 6

From this decomposition we get the recurrence relation

f(k, p) = f(k, p− 1) + f(k − 1, p) + f(k − 1, p− 1) (6.3)

where f(k, p) denotes the number of lattice points in Bk(p). The boundary conditions are:

f(k, 0) =

{
1 if D is even
2 if D is odd

f(1, p) =

{
2p+ 1 if D is even
2(p+ 1) if D is odd (6.4)

We want to find the generating function Ak(z) =
∑

p≥0 f(k, p)zp. Multiplying (6.3) by zp and
summing over p ≥ 1 we get

Ak(z)−Ak(0) = zAk(z) + (Ak−1(z)−Ak−1(0)) + zAk−1(z) (6.5)

whence

Ak(z) =
1 + z

1− zAk−1(z) (6.6)
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With the aid of the boundary conditions (6.4) we get

Ak(z) =


(1+z)k

(1−z)k+1 if D = 2p

2 (1+z)k−1

(1−z)k+1 if D = 2p+ 1
(6.7)

For even D, Ak(z) is the product of (1 + z)k =
∑

p

(
k
p

)
zp and 1/(1 − z)k+1 =

∑
p

(
k+p
p

)
zp.

Then, the series of Ak(z) can be obtained as the convolution of the respective factor series.
The series of Ak(z) for odd D can be obtained in the same manner. �

For even D, the numbers |Bk(p)| turn out to be the Delannoy numbers (sequence A008288 of
[123]), which appear in a variety of combinatorial and geometric problems [141]. This partic-
ular interpretation of Delannoy numbers was first given by Vassilev-Missana and Atanassov
[143], and later rediscovered by Schröder [136], and then by us. Our formulation and proof are
different from the ones in [143, 136]. For odd D, the numbers |Bk(p)| are known as a Riordan
array of coordination sequences (sequence A113413 of [123]). Tables 6.1 and 6.2 show the first
few values of |Bk(p)| for even and odd D. They can be constructed in a Pascal-like fashion,
with the convention that |B0(p)| = 1.

p
k 0 1 2 3 4 5 6 7 8
0 1 1 1 1 1 1 1 1 1
1 1 3 5 7 9 11 13 15 17
2 1 5 13 25 41 61 85 113 145
3 1 7 25 63 129 231 377 575 833
4 1 9 41 129 321 681 1289 2241 3649

Table 6.1: Some values of |Bk(p)| for even D

p
k 0 1 2 3 4 5 6 7 8
0 1 1 1 1 1 1 1 1 1
1 2 4 6 8 10 12 14 16 18
2 2 8 18 32 50 72 98 128 162
3 2 12 38 88 170 292 462 688 978
4 2 16 66 192 450 912 1666 2816 4482

Table 6.2: Some values of |Bk(p)| for odd D

It is known that Delannoy numbers have no closed form, meaning that they cannot be rep-
resented as a linear combination of a fixed number of hypergeometric terms (which can be
verified with the aid of the methods developed in [125]). However, we can extract asymptotic
information from the generating function Ak(z) in the proof of Theorem 6.1 above. Recall
that α is an algebraic singularity of the function f if f can be written near α as

f(z) = f0(z) +
g(z)

(1− z/α)ω
(6.8)
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where f0 and g are analytic near α, g is nonzero near α, and ω is a real number different from
0,−1,−2, . . .. We readily recognize that 1 is an algebraic singularity of Ak(z), since Ak(z) can
be written in the above form, with g(z) = (1 + z)k for D even, and g(z) = 2(1 + z)k−1 for D
odd, and all the other conditions are satisfied. Now we can readily apply Theorem 3 of [108]:

Theorem 6.2 Suppose that for some real r > 0, A(z) is analytic in the region |z| < r, and
has a finite number t > 0 of singularities on the circle |z| = r, all of which are algebraic. Let
αi, ωi, and gi be the values of α, ω, and g in (6.8), corresponding to the i-th such singularity.
Then A(z) is the generating function for a sequence 〈an〉 satisfying

an =
1

n

t∑
i=1

gi(αi)n
ωi

Γ(ωi)αni
+ o(r−nnΩ−1)

where Ω is the maximum of the ωi and Γ denotes the Gamma function.

We get

F Corollary 6.1

|Bk(p)| =
(2p)k

Γ(k + 1)
+ o(pk) =

(2p)k

k!
+ o(pk)

�

6.2 Subgraphs of degree 4 in the 3-dimensional mesh

An interesting special case is k = 3 and ∆ = 4. In this case, the inequalities (6.1) translate
to |B2(p)| ≤ N3(4, p) ≤ |B3(p)|, or

2p2 + 2p+ 1 ≤ N3(4, p) ≤ 4p3/3 + 2p2 + 8p/3 + 1 if D = 2p
2(p2 + 2p+ 1) ≤ N3(4, p) ≤ 4p3/3 + 4p2 + 14p/3 + 2 if D = 2p+ 1

The following theorem shows that the lower bounds are in fact a lot closer to the upper bounds:

F Theorem 6.3

4p3/3 + 2p2 − 4p/3 + 3 ≤ N3(4, p) ≤ 4p3/3 + 2p2 + 8p/3 + 1 if D = 2p
4p3/3 + 4p2 + 2p/3 ≤ N3(4, p) ≤ 4p3/3 + 4p2 + 14p/3 + 2 if D = 2p+ 1

(6.9)

Proof:

Let D = 2p, with p ≥ 2, and let us go back to our L1 metric space model in dimension two.
W.l.o.g. we can pick the center of our coordinate system as the center of all our balls and
constructions. Now let E2(p) be the graph obtained from B2(p) by removing all the edges
along the y-axis, and the two vertices that are left isolated (see Figure 6.4).
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(a)

(b) (c) (d)

Figure 6.4: Construction for ∆ = 4 and even diameter in the 3D mesh

Note that in E2(p) there are two classes of nodes: the ones along the y-axis, shown as black
squares, and all the other ones, shown as black circles. The interior circular nodes have degree
4, while the interior square nodes only have degree 2, and we will use them to move along the
third dimension z.

Our three-dimensional graphs H3(p) (with p ≥ 2) will consist of layers of E2(i) connected
via the square nodes. Figure 6.5 describes schematically the layout of these layers in three-
dimensional space.

Figure 6.5: Arrangement of layers in three-dimensional space

At z = 0 we have E2(p), and at z = ±i we have E2(p− i), for 1 ≤ i ≤ p. It is straightforward
to check that H3(p) has diameter D = 2p, so let us concentrate on the number of nodes.

The number of vertices on each layer E2(i) is |B2(i)| minus two ‘missing’ vertices. Therefore

|E2(p)| = 2p2 + 2p− 1

|H3(p)| = 2
∑p−1

i=1 (2i2 + 2i− 1) + (2p2 + 2p− 1)
= 4p3/3 + 2p2 − 4p/3 + 3

Now let D = 2p+1, with p ≥ 2. The construction here is also made with layers that are B2(p)
with the central ‘spine’ suppressed (i.e. the edges on the y-axis and the two tip vertices). Let
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us call these graphs O2(p). Figure 6.6 shows O2(1), O2(2), and O2(3). The three-dimensional
graph Q3(p) has a layer of type O2(p− i) at z = ±i, for 0 ≤ i ≤ p− 1.

(a)

(b)

(c)

Figure 6.6: Construction for ∆ = 4 and odd diameter in the 3D mesh

Again, it is easy to check that the diameter is correct. Regarding the number of nodes, in
every O2(i) there are only two nodes missing from B2(i). Hence

|Q3(p)| = 4
∑p−1

i=1 (i2 + 2i) + 2p2 + 4p
= (4p3 + 12p2 + 2p)/3

�

Note that the above constructions are asymptotically optimal, since they agree up to the
second term with the upper bounds. They are also optimal in another sense, as shown by the
following

F Corollary 6.2 The average degree δ̂ of the constructions in Theorem 6.3 tends to 4 as p
approaches infinity.

Proof:

δ̂ = 2A/V , where A is the number of edges and V is the number of vertices. The number of
edges is 8p3/3 + 4p/3 + 2 for D = 2p, and 8p3/3 + 4p2 − 2p/3 for D = 2p+ 1. �

It is also very likely that these constructions can be extended to higher dimensions.

6.3 Subgraphs of degree 3 in the 2-dimensional mesh

The smallest case of ∆ < 2k that makes sense is ∆ = 3 in dimension two. In this case we will
also show that the lower bounds are quite close to the upper bounds. We have the following



6. The Degree-Diameter Subgraph Problem in the mesh 81

F Theorem 6.4

2p2 − 2p+ 1 ≤ N2(3, p) ≤ 2p2 + 2p+ 1 if D = 2p
8r2 + 2r = 2p2 + p ≤ N2(3, p) ≤ 2p2 + 4p+ 2 if D = 4r + 1
8r2 + 10r + 6 = 2p2 + p+ 3 ≤ N2(3, p) ≤ 2p2 + 4p+ 2 if D = 4r + 3

(6.10)

Proof:

As in Section 6.2, we will give two constructions that achieve the new bounds. In this case,
a rigorous mathematical description of our constructions will be quite cumbersome; instead,
we will use some geometric analogies to describe them. What we do is that we take the balls
B2(p) and we try to fill them up in a convenient way with as many ‘building blocks’ as possible.
Our construction elements will be 2 × 2 square blocks, and 2 × 1 half-blocks, or rectangular
‘bricks’. We have to pack them up in such a way that no four edges meet at a single point.

Let us start with even D: We place as many square blocks as possible along the x and y axes,
and if there is some space left at the end, we fill it up with bricks, as shown in Figure 6.7 (a).
On each horizontal semi-axis we will have to use (p− 1)/2 square blocks, and on each vertical
semi-axis we will need (p− 3)/2 square blocks.1

(a) (b)

Figure 6.7: Constructions for ∆ = 3 in the two-dimensional mesh

Now we are left with four empty triangular regions that will have to be occupied. They
are isosceles triangles, with side p − 2. We will fill them with bricks, forming a pattern of
interwoven horizontal and vertical bricks, as shown in Figure 6.8. Starting from the innermost
corner there is only one way to do this, since every other vertex on the triangle sides already
has three edges attached to it. Moreover, all triangles constructed this way will be the same,
save rotations and reflections. We will make use of this fact again in the case of odd D. The
construction ensures that no vertex has degree 4.

Next we have to show that the diameter is D = 2p. First consider the blocks along the axes.
We shall call the vertices belonging to one of those blocks ‘block vertices’. It is clear that
starting from any block vertex we can reach any other block vertex in at most 2p steps. Hence
we only have to include the vertices in the triangular regions, and show that for any such

1A fraction here means that we have to complete with a brick at the end.
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Figure 6.8: Brick pattern in a triangular region

vertex, we can reach any other vertex in at most 2p steps. The procedure is quite simple:
First note that we can reach the innermost vertex of the triangle (which is also a block vertex)
in at most p−2 steps (the length of the triangle sides). Call this vertex a ‘corner’. From there
we can reach any block vertex in at most p+ 2 steps, and we can reach any other corner in at
most 4 steps, which means that we can reach any other vertex located in a triangular region
in at most 2p steps, as desired.

Now we are going to count the number of vertices: If p is even we have 2(p−3) square blocks,
plus four bricks, one at the end of each semi-axis. The square blocks contribute 10(p− 3) + 3
points, and we have to add 12 additional points corresponding to the four bricks. Each triangle
contributes 2b(p − 2)/2c2 − 2b(p − 2)/2c = [(p − 3)2 − 1]/2 points. Hence, the total number
of vertices is 2p2 − 2p + 1. If p is odd we have 2(p − 2) square blocks, and no bricks at the
end of the semi-axes. The square blocks contribute 10(p−2) + 3 points. Finally, each triangle
contributes 2b(p − 2)/2c2 = (p − 3)2/2 points. Hence, the total number of vertices is also
2p2 − 2p+ 1.

Now consider the construction for odd D. In this case we have a central ‘spine’ of length
D = 2p+1 (the y-axis), and two horizontal semi-axes of length p. We place d(p−2)/2e square
blocks on each horizontal semi-axis, as shown in Figure 6.7 (b). Again, we are left with four
triangular regions that are filled up with interwoven bricks, in the same manner as before. In
this case, two triangles have sides of length p, and the other two have sides of length p− 1.

We show that the diameter is D = 2p+ 1. We proceed as in the case of even D. In this case
we distinguish block vertices and ‘axis vertices’ (i.e. vertices belonging to the central spine
or to the horizontal semi-axes). We also distinguish two central vertices at the intersection of
the vertical spine and the two horizontal semi-axes. It is clear that starting from any block or
axis vertex we can reach the closest central vertex in at most p steps. Now, if we start at a
vertex belonging to one of the larger triangles, of side length p, we can reach the corresponding
corner (which is one of the central vertices) in at most p steps. Starting at a vertex in one of
the smaller triangles, of side length p − 1, we can reach the corresponding corner in at most
p − 1 steps, and the nearest central vertex is just one step away. Since both central vertices
are adjacent, the proof of the diameter follows.

Regarding the number of vertices, we have 2p + 2 vertices on the vertical spine, plus 2p
vertices from the horizontal semi-axes, plus 6d(p−2)/2e block vertices, plus the triangles. If p
is even, the two large triangles contribute p(p−2) extra vertices, and the two smaller triangles
contribute (p− 2)2 extra vertices. If p is odd, the two large triangles contribute (p− 1)2 extra
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vertices, and the two smaller triangles contribute (p−1)(p−3) extra vertices. Hence the total
number of vertices is 2p2 + p if p is even, and 2p2 + p+ 3 if p is odd.

�

These constructions are also asymptotically optimal in the sense of the average degree:

F Corollary 6.3 The average degree δ̂ of the constructions in Theorem 6.4 tends to 3 as p
approaches infinity.

Proof:

The number of edges is

3p2 − 6p+ 6 if D = 4r
3p2 − p− 1 if D = 4r + 1
3p2 − 6p+ 4 if D = 4r + 2
3p2 − p+ 3 if D = 4r + 3

(6.11)

�

Despite being asymptotically optimal, these constructions can be improved without much
effort for particular values of D, but extracting a general pattern and counting the vertices for
arbitrary D may prove a challenge. In Table 6.3 we give the order of the largest graphs that
have been constructed for some small values of D. The actual graphs can be seen in [124].
Note that for diameters D = 2, . . . , 6, the upper bound given in the table is smaller than the
upper bound given by Theorem 6.4, and the largest graphs are optimal. These graphs have
been obtained by exhaustive computer search.

Diameter 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
Upper bound 4 6 10 14 22 32 41 50 61 72 85 98 113 128 145

Order of largest graph 4 6 10 14 22 28 37 44 52 68 77 90 104 124 135

Table 6.3: Orders of the largest known subgraphs of the two-dimensional mesh, with ∆ = 3
and 2 ≤ D ≤ 16.

6.4 Conclusions and open problems

To us, it is always amazing that a simple combinatorial setting like this one provides such
a wealth of interesting and difficult problems. In the preceding two sections we have seen
constructions that result in lower bounds for Nk(∆, p), that are asymptotically close to the
upper bounds, for small values of k and ∆, with ∆ < 2k. Now, is that also possible for
arbitrary k and ∆ < 2k? How close can we get to the upper bounds? The constructions in
Section 6.2 could be generalized to higher dimensions, more precisely to the case ∆ = 2k− 2.
The constructions in Section 6.3 might also be extended to ∆ = 5 in dimension 3, but it does
not appear to be easy.

There are several additional properties that could be considered for every construction, like
connectivity (sic fault-tolerance), average path length, symmetry, etc. For example, in parallel
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computing applications, our constructions of Section 6.2 might not be the best ones, as they
impose a relatively high communication overhead on the square vertices.

On the other hand, what is the computational complexity of finding the largest degree&diameter
bounded subgraph in the mesh? Does it remain NP−hard for all dimensions?, for some di-
mensions?, for any dimension? If it remains NP−hard, then, can it be approximated to within
a constant ratio?

This same study can be carried out for other host networks of theoretical and/or practical
importance: the hypercube, the butterfly, the cube-connected cycles, Cayley graphs, etc. In
Chapter 7 we discuss the honeycomb grid and the hypercube, and in Chapter 8 there is a
preliminary heuristic study involving some random networks, but other than that, the field
remains totally virgin.



7
The Degree-Diameter Subgraph Problem in other

host networks

In this chapter we continue investigating the Degree-Diameter Problem in other classes of
host networks of practical importance, namely the honeycomb grid (Section 7.1), and the
hypercube (Section 7.2). This chapter represents work in progress. The contents of Section
7.1 will appear in [88], and Section 7.2 is the main topic of [87].

7.1 DDS in honeycomb grids

In Chapter 6 we addressed the Degree-Diameter Problem in the k-dimensional mesh or grid.
Now, the infinite two-dimensional mesh is just one of the three regular tilings of the plane
(see [79]). Another such tiling is the hexagonal grid , and we can apply the methods developed
for the mesh to obtain some results for the hexagonal grid as well. As a model for parallel
architectures, the hexagonal grid, or honeycomb network , offers some advantages in routing
and broadcasting (see [140]).

7.1.1 Volume of maximal balls

Let H denote the infinite hexagonal grid in dimension two. Note that H is regular of degree
3. Although there is no hexagonal tiling of the three-dimensional space (or spaces of higher
dimensions), we can also generalize the hexagonal grid to higher dimensions in a certain way.
Note that the k-dimensional mesh is the cartesian product of the (k − 1)-dimensional mesh
with the infinite path P∞. In analogy with that, we define the k-dimensional hexagonal grid
H(k) for k > 2, as the Cartesian product of the (k − 1)-dimensional hexagonal grid H(k−1)

with P∞.

Since the distance function in a connected graph is a metric in the usual sense, we can talk
about open and closed balls in H, just like we did in the mesh. Again, we are interested in the
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volume or number of vertices contained in a ball, and we are looking for the maximal closed
balls, i.e. the closed balls with the largest volume.

The maximal closed ball of radius bD/2c and diameter D in dimension k will be denoted by
H

(k)
D . If k = 2 we can omit the superscript. HD is centered in a fixed vertex if D is even, or

it has an edge as the center if D is odd. Figure 7.1 depicts closed balls with even diameters
2,4,6, and Figure 7.2 depicts the closed balls H1, H3 and H5. We denote the volume of HD

by |HD|.

H2 H4 H6

Figure 7.1: Maximal balls of even diameter in the two-dimensional hexagonal grid

H5H3H1

y1 y2

y3y4

x1
x2

Figure 7.2: Maximal balls of odd diameter in the two-dimensional hexagonal grid

F Lemma 7.1 Let D = 4q + r, where q, r ∈ N, r ∈ {0, 1, 2, 3}. Then

|HD| =


6q2 + 3q + 1 when r = 0,
6q2 + 6q + 2 when r = 1,
6q2 + 9q + 4 when r = 2,
6q2 + 12q + 6 when r = 3.

(7.1)

Proof:

First consider the case of D even. Then, counting the vertices in horizontal rows we get

|HD|= (2q + 1) + (2q + 3) + · · ·+ (2q + 2q + 1) + (2q + 2q − 1) + · · ·+ (2q + 1) + (q + 1) =
= 6q2 + 3q + 1,
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when D ≡ 0(mod 4), i.e., D = 4q, q ∈ N, and

|HD|= (q + 1)(2q + 3) + (2q + 5) + · · ·+ (2q + 2q + 3) + (2q + 2q + 1) + · · ·+ (2q + 3) =
= 6q2 + 9q + 4,

when D ≡ 2(mod 4), i.e., D = 4q + 2, q ∈ N.
For odd D we also count the vertices in horizontal rows, and we get

|HD|= (q + 1) + (2q + 3) + (2q + 5) · · ·+ (2q + 2q + 1) +
+ (2q + 2q + 1) + (2q + 2q − 1) + · · ·+ (2q + 3) + (q + 1) =

= 6q2 + 6q + 2,

when D ≡ 1(mod 4), i.e., D = 4q + 1, q ∈ N, and

|HD|= (2q + 3) + (2q + 5) + · · ·+ (2q + 2q + 3) + (2q + 2q + 3) + (2q + 2q + 1) · · ·+ (2q + 3) =
= 6q2 + 12q + 6,

when D ≡ 3(mod 4), i.e., D = 4q + 3, q ∈ N.
�

From this we can obtain generating functions for |HD|:

F Lemma 7.2 The ordinary generating functions for |HD| are:

1−x3

(x−1)4 for even values of D (7.2)

− 2(x2+x+1)
(x−1)2(x2−1)

for odd values of D (7.3)

− x4+x2+1
(x−1)2(x4−1)

for all D (7.4)

Proof: The subsequence for even D is well-known: the Centered Triangular Numbers (se-
quence A005448 of OEIS). For oddD we consider the two sub-cases separately: ForD = 4k+1,
the ordinary generating function (o.g.f) is −2(1+4x+x2)

(x−1)3 , whereas for D = 4k + 3, the o.g.f. is

−6(1+x)
(x−1)3 . Now, if f(x) is the o.g.f. for the sequence a0, a1, a2, . . ., then f(x2) is the o.g.f for

the sequence a0, 0, a1, 0, a2, 0 . . ., and xf(x2) is the o.g.f for the sequence 0, a0, 0, a1, 0, a2, 0 . . ..
Therefore, in order to obtain the o.g.f for odd D we just have to add up −2(1+4x2+x4)

(x2−1)3 and

−6(1+x2)
(x2−1)3 . We can do the same with (7.2) and (7.3) to get (7.4).

�

Now, from Equation 7.4 and with the aid of Mathematica we can get a general formula
for |HD|:

F Corollary 7.1

|HD| ≤
6D2 + 12D − 2iiD + 2i(−i)D + 3(−1)D + 13

16
(7.5)
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Proof: This result can be demonstrated independently from Mathematica, by checking that
Equation 7.5 specializes to Equation 7.1 in each one of the four cases r = 0, 1, 2, 3.

�

In order to get formulas for |H(k)
D | in arbitrary dimension k, we note that |H(k)

D | can be
decomposed according to the following recurrence formula:

|H(k)
D | = |H

(k)
D−2|+ |H

(k−1)
D |+ |H(k−1)

D−2 | (7.6)

This situation is similar to that of the k-dimensional grid, which is explained in Chapter 6.
By taking p = bD/2c, and making f(k, p) = |H(k)

D |, we get the recurrence

f(k, p) = f(k − 1, p) + f(k, p− 1) + f(k − 1, p− 1) (7.7)

which is easier to handle, though here we would have to distinguish two cases: even and odd
D. There is a well-known sequence that satisfies Eq. 7.7, namely the sequence of Delannoy
numbers. Subsequently we define the Generalized Delannoy Numbers as any number sequence
satisfying Eq. 7.7. In Chapter 6 we have already discussed the ‘classical’ Delannoy numbers,
and solved Equation 7.7 for particular initial values of f . Let Ak(x) be the generating function
for f(k, p), i.e. Ak(x) =

∑
p≥0 f(k, p)xp. Then

Ak(x) =
1 + x

1− xAk−1(x) = . . . =
(1 + x)k−2

(1− x)k−2
A2(x) (7.8)

Therefore, using Eq. 7.8 and Lemma 7.2 we prove the following

F Theorem 7.1

Ak(x) =


(1−x3)(1+x)k−2

(x−1)4(1−x)k−2 = (1+x)k−2

(1−x)k−1 for even D

− 2(x2+x+1)(1+x)k−2

(x−1)2(x2−1)(1−x)k−2 = 2(x2+x+1)(1+x)k−3

(1−x)k+1 for odd D (7.9)

�

Using the same methodology that we used in the proof of Lemma 7.2 we should also be able
to obtain a unified formula for Ak(x) in arbitrary diameter, at least in principle, but the
expressions that we get are too cumbersome for general usage, and we will not derive them
here. Nevertheless, we can obtain the unified formula for dimension three:

F Corollary 7.2 The ordinary generating functions for |H(3)
D | are:

A3(x) =


(1−x3)(1+x)

(1−x)5 for even values of D
2(x2+x+1)(1+x)

(1−x)3(x2−1)
for odd values of D

(x2−x+1)(x2+x+1)
(x−1)4(x+1)2 for all D

(7.10)
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�

As we did in dimension 2, we can now get a general formula for |H(3)
D |:

F Corollary 7.3

|H(3)
D | =

(1 +D)(2D2 + 4D + 13 + 3(−1)D)

16
(7.11)

Proof: The partial fraction decomposition of Equation 7.10 for all D is

3

16(x+ 1)2
+

13

16(x− 1)2
+

3

4(x− 1)3
+

3

4(x− 1)4

Therefore,

|H(3)
D | =

3

16
(−1)D(D + 1) +

13

16
(D + 1)− 3

8
(D + 1)(D + 2) +

1

8
(D + 1)(D + 2)(D + 3)

�

It is quite surprising that this formula turns out to be simpler than in the two-dimensional
case, in the sense that it does not involve the imaginary unit. In terms of cases, Equation
7.5 distinguishes four cases, while Equation 7.11 only makes a distinction between two cases:
even and odd D. For practical purposes we can decompose Equation 7.11 into four cases as
well:

F Corollary 7.4 Let D = 4q + r, where q, r ∈ N, r ∈ {0, 1, 2, 3}. Then

|H(3)
D | =


8q3 + 6q2 + 5q + 1 if r = 0,

8q3 + 12q2 + 8q + 2 if r = 1,

8q3 + 18q2 + 17q + 6 if r = 2,

8q3 + 24q2 + 26q + 10 if r = 3.

(7.12)

�

Figure 7.3 depicts the ball H(3)
4 , and Figure 7.4 depicts the ball H(3)

5 .

Now, for arbitrary D we can also obtain asymptotic information about |H(k)
D |, just as we did

for |Bk(p)| in Section 6.1. Again, let p = bD/2c; applying Theorem 6.2 we get

F Corollary 7.5

|H(k)
D | =

{
(2p)k−2

(k−2)! + o(pk−2) if D is even,
3(2p)k

4k! + o(pk) if D is odd.

�

Note that the sequence for odd D grows quite faster than the sequence for even D.
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Figure 7.3: Maximal ball of diameter 4 in the three-dimensional hexagonal grid
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Figure 7.4: Maximal ball of diameter 5 in the three-dimensional hexagonal grid



7. The Degree-Diameter Subgraph Problem in other host networks 92

7.1.2 Lower bounds in the two-dimensional grid

In general, we are looking for a largest subgraph of H(k) of given diameter D and given
maximum degree ∆, where ∆ ≤ 2k − 1. We will denote by Nk(∆, D) the order of such a
subgraph. In Subsection 7.1.1 we discussed upper bounds for Nk(∆, D), and now let us see
some constructions that provide lower bounds. We start with dimension 2, and as we did
before, we omit the subscript in this case.

Since ∆(H) = 3, it makes sense to consider ∆ ≤ 3. If ∆ = 1, then the largest subgraph of
H is an edge and hence N(1, D) = 2. If ∆ = 3, then the largest subgraph of H is HD, hence
N(3, D) = |HD|. Thus it remains to find a lower bound on N(∆, D) for ∆ = 2. Since the
diameter D of S is given and H is bipartite, the largest subgraph of H is a path of length D,
for D < 3, or a cycle of length 2D.

F Theorem 7.2 Let D be a positive integer and let H be the infinite honeycomb grid. Then

N(2, D) =

{
D + 1 if D ≤ 4,
2D otherwise.

Proof: From Figures 7.1 and 7.2 it follows that, for D ≤ 4, the graph HD contains no cycle.
Hence a largest subgraph of H of diameter D and maximum degree 2 is a path on D + 1
vertices. Clearly such a path exists for each D ∈ {1, 2, 3, 4}.
Let us suppose that D ≥ 5. Since H is bipartite, the largest possible subgraph of H of given
diameter D and ∆ = 2 is a cycle C on 2D vertices. We distinguish the following posibilities:

Case 1: D > 4 is even.
Consider a border cycle C of the two horizontal rows of hexagons which contain the
central vertex x (see the red cycle in Figure 7.5). If D = 4q, q ∈ N, then C has
2q + 2q − 3 + 2q + 2q − 1 + 4 = 8q vertices. If D = 4q + 2, q ∈ N, then C contains
2q+ 2q− 1 + 2q+ 2q− 3 + 4 = 8q vertices. Thus, for every even D > 4 there is a cycle
C in HD of length 2D.

Case 2: D > 4 is odd.
Suppose that D = 4q + 1, q ∈ N. A border cycle C of the central horizontal row of
hexagons (see Figure 7.6) contains 2q hexagons, i.e., 8q+2 vertices. Now suppose that
D = 4q + 3, q ∈ N. Consider three horizontal rows of hexagons: the central one, the
upper neighbouring one and the lower neighbouring one (see Figure 7.6). A border
cycle C of these rows contains 2q + 2q − 1 + 2q + 2q − 1 + 8 = 8q + 6. Thus, for every
odd D > 4, C contains 2D vertices.

�

7.1.3 Lower bounds on NG(∆, D) for ∆ = 4.

We start with the following statements.

F Proposition 7.1 Let D ≥ 4 be an even integer and HD a largest subgraph of the infinite
honeycomb grid of diameter D. Let x denote the central vertex of HD and e denote any
edge incident to x. Then there are D/2 + 1 vertices u such that distHD(u, x) ≥ D − 1 and
distHD−e(u, x) > D.
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D = 4q D = 4q + 2

Figure 7.5: The set Y for even diameter

D = 4q + 1 D = 4q + 3

Figure 7.6: The set Y for odd diameter
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Proof: Consider the graph HD (see Figure 7.1) after deleting the upper edge incident to the
central vertex x. First suppose that D/2 is even. Hence D = 4q, q ∈ N and q ≥ 1. A set Y of
vertices u of HD such that distHD(u, x) ≥ D − 1 and distHD−e(u, x) > D are vertices of the
most up path in HD (see Figure 7.7, the vertex x is encircled and Y consists of all the red
vertices). Thus |Y | = 2q + 1 = D/2 + 1.

Now suppose that D/2 is odd. A set Y of vertices u of HD such that distHD(u, x) ≥ D−1 and
distHD−e(u, x) > D are vertices of the most up row inHD and their neighbours (see Figure 7.7,
the vertex x is encircled and Y consists of all the red vertices). Thus |Y | = 2D+2

4 = D/2 + 1.

�

D = 4q D = 4q + 2

Figure 7.7: The set Y for even diameter

F Proposition 7.2 Let D ≥ 5 be an odd integer and HD a largest subgraph of the infinite
honeycomb grid of diameter D ≥ 4. Let x1x2 denote the central edge of HD, e1 denote any
edge incident to x1 and e2 the edge incident to x2 in an opposite position. Then there are
D/2 + 1 vertices u such that distHD(u, x) ≥ D − 1 and distHD−e(u, x) > D.

Proof: Consider the graph HD (see Figure 7.2), keeping notation of the vertices x1 and x2.
Now we delete the upper left edge e1 incident to x1 and the lower right edge e2 incident to
x2. The subgraph of HD so obtained will be denoted by H̄D. Let Y denote a set of vertices
u of H̄D such that distHD(u, x1x2) ≥ D − 1 and distH̄D(u, x1x2) > D.

Let D = 4q + r, q ∈ N, r ∈ {1, 3}. We show that |Y | = 2(q + 2). The set Y consists of the
upper left row, the rightmost bottom row, and two extra vertices, as can be seen in Figure
7.8 (vertices of the central edge are encircled, and Y consists of all the red vertices). Clearly
|Y | = 2(q + 2).

�

F Theorem 7.3 Let D ≥ 2 be a positive integer such that D = 4q + r, q ∈ N, r ∈ {0, 2}.
Then
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D = 4q + 1 D = 4q + 3

Figure 7.8: The set Y for odd diameter

N3(4, D) ≤


5 if D = 2
16 if D = 4
8q3 + 6q2 + 3q − 3 if r = 0 and q ≥ 2,
8q3 + 18q2 + 15q + 1 if r = 2 and q ≥ 1.

(7.13)

Proof: By the assumptions, D is even. Consider a graph H(3)
D . Note that H(3)

D consists of
the layers L0, . . . LD. Let xi denote the central vertex of Li (i = 0, . . . , D) and let yji denote
the neighbours of xi in Li, (i = 1, . . . , D − 1 and j = 1, 2, 3). Note that the vertices yji
correspond to the vertices yji+1, i = 1, . . . D − 2 and j = 1, 2, 3, i.e., the vertices yji , y

j
i+1 are

at the same positions in corresponding layers Li, Li+1. From the graph H
(3)
D , for each odd

i = 1, 3, . . . , D− 3 we delete all edges between some vertex of Li at even distance from xi and
corresponding vertex in Li+1. Similarly for each even i = 2, 4, . . . , D − 2, we delete all edges
between some vertex of Li at odd distance from xi and corresponding vertex in Li+1.

If r = 0, then e = xD/2y
1
D/2, otherwise e = xD/2y

2
D/2. Let Y denote a set of all vertices u of

LD/2 such that distLD/2(u, xD/2) ≥ D − 1 and distL(D/2)−e(u, xD/2) ≥ D + 1. Now we delete
the vertices y2

2, y1
D−1, all the vertices of Y and all edges incident to any of the deleted vertices

in H(3)
D . We also delete all the edges xiy1

i whenever i is odd, all the edges xiy2
i whenever i is

even.

Such a graph will be denoted by GD. Let L̄0 . . . , L̄D denote layers of GD, i.e., L̄i = GD ∩ Li,
i = 0, . . . , D.

It is easy to see that ∆(GD) = 4. Now we show that the diameter of GD is D, i.e., for each
u ∈ V (GD)

distGD(u, xD/2) ≤ D/2. (7.14)
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Let i denote the index of the layer L̄i which contains vertex u. We suppose that i = D/2, i.e.,
the vertex u belongs to the middle layer. Clearly L̄D/2 is connected and distGD(u, xD/2) ≤ D/2
except the case when D = 6. In this case, L̄3 consists of two components. The component
containing vertex xD/2 clearly satisfy condition (7.14), hence it remains to consider the other
component which contains only vertex y1

3. But then the path P = y1
3, y

1
4, x4, x3 has length 3,

hence we satisfy condition (7.14). Note that y1
4 denote the corresponding vertex of y1

3 in L̄4

and clearly y1
4x4 ∈ E(GD).

Now we consider the following possibilities:
Case 1: i < D/2.

First we suppose that i is odd. By the construction of GD, y
q
i y
q
i+1 ∈ E(GD), q = 1, 2, 3.

Let P denote a shortest path between u and any of the vertices yqi , say y
l
i, l ∈ {1, 2, 3}.

Clearly distL̄i(u, y
l
i) ≤ i−1. If ylixi ∈ E(GD), then we add the edges ylixi, xixi+1 to P .

If ylixi 6∈ E(GD), then we add the edges yliy
l
i+1, y

l
i+1xi+1 to P . In both cases we have

shown that the length of P is at most i+ 1. Since distGD(xi+1, xD/2) = D/2− i− 1,
we obtain distGD(u, xD/2) ≤ i+ 1 +D/2− i− 1 = D/2.
Now we suppose that i is even. If there is a u, xi-path P of length at most i in
L̄i, we add the edge xixi+1 to P , P has length at most i + 1 and we easily satisfy
condition (7.14). Hence suppose that there is no such path P in L̄i. Let u′ denote the
corresponding vertex of u in L̄i+1 and let P ′ denote a shortest u′xi+1-path in L̄i+1.
Note that, by the construction of GD, such the vertex and the path exist, and the
length of P ′ is at most i. Let z′ denote the vertex of P ′ at distance 2 from xi+1 on P ′,
and let z denote the corresponding vertex of z′ in L̄i. Since i is even, zz′ ∈ E(GD).
Let Q denote the copy of the u′z′-subpath of P ′ in L̄i. Note that Q has length at most
i − 2. Then the u, xi+1-path P consisting of Q, the edge zz′ and the z′xi+1-subpath
of P ′ has length at most i+ 1. And, since distGD(xi+1xD/2) = D/2− i− 1, we obtain
distGD(u, xD/2) ≤ i+ 1 +D/2− i− 1 = D/2.

Case 2: i > D/2.
Similarly as in the previous case we can show that distGD(u, xi−1) ≤ D − i+ 1 inter-
changing the role of the parity of i. And, since distGD(xi−1xD/2) = i − 1 −D/2, we
obtain distGD(u, xD/2) ≤ D − i+ 1 + i− 1−D/2 = D/2.

Finally we count the number of vertices of GD from the number of vertices of H(3)
D . From

Corollary 7.11 we have |V (H3
D)| = 8q3 + 6q2 + 5q + 1 when D = 4q, q ∈ N and |H3

D| =
8q3 + 18q2 + 17q+ 6 when D = 4q+ 2, q ∈ N. If D = 2, then we deleted one vertex from L1 to
get L̄1, thus we have |V (GD)| = 5. If D = 4, we deleted three vertices from L2 to get L̄2 and
one vertex from L3 to get L̄3, thus we obtain |V (GD)| = 16. For all D ≥ 6, we deleted one
vertex from L2 to get L̄2, one vertex from LD−1 to get L̄D−1 and D/2 + 1 vertices from LD/2
to get L̄D/2 by Proposition 7.1. Thus we obtain |V (GD)| = 8q3 + 6q2 + 3q − 3 when D ≡ 0(
mod 4) and that |V (GD)| = 8q3 + 18q2 + 15q + 1 when D ≡ 2( mod 4).

�

F Theorem 7.4 Let G = P ×H, let D ≥ 2 be a positive integer such that D = 4q+r, q ∈ N,
r ∈ {1, 3}. Then
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NG(D, 4) ≤


2 if D = 1
8 if D = 3
22 if D = 5
8q3 + 12q2 + 6q − 2 if r = 1 and q ≥ 2,
8q3 + 24q2 + 24q + 6 if r = 3 and q ≥ 1.

It is easy to observe that D is odd. Consider a graph H
(3)
D for odd D and note that H(3)

D

consists of layers L0, . . . , LD−1. Let x1
i , x

2
i denote the end vertices of the central edge in

Li (i = 0, . . . D − 1), let yji denote the neighbours of x1
i or x2

i in Li (i = 1, . . . , D − 2 and
j = 1, 2, 3, 4). We will keep the labelling of these vertices in Li as shown in Figure 7.2. Note
that the vertices x1

i , x
2
i and y

j
i (j = 1, 2, 3, 4) are at same positions in all the mentioned layers.

From the graph HD we delete all edges between any vertex of Li at even (nonzero) distance
from x1

ix
2
i and corresponding vertex in Li+1 for each odd i = 3, . . . , D − 4. Similarly for each

even i = 2, 4, . . . , D−3, we delete all edges between any vertex of Li at odd distance from x1
ix

2
i

and corresponding vertex in Li+1. If r = 1, then we set e1 = x1
i y

1
i and e2 = x2

i y
3
i , otherwise

we set e1 = x1
i y

2
i and e2 = x2

i y
4
i . Let Y denote a set of all vertices u of L(D−1)/2 such that

distL(D−1)/2
(u, x1

ix
2
i ) ≥ D − 1 and distL(D−1)/2−{e1,e2}(u, x

1
ix

2
i ) ≥ D + 1. Now we delete all

the vertices of Y and all the edges incident to at least one vertex of Y from H
(3)
D . We also

delete the edges x1
i y

1
i , x

2
i y

3
i whenever i is odd and different from D − 2, and the edges x1

i y
2
i ,

x2
i y

4
i whenever i is even and different from 2. If D = 5, we delete the edges x1

2y
2
2 and x2

2y
4
2,

otherwise we delete the central edge x1
2x

2
2. Similarly, if D = 3, then we delete the edges x1

1y
1
1

and x2
1y

3
2, otherwise we delete the central edge x1

D−2x
2
D−2.

The resulting graph will be denoted by GD. Let L̄0, . . . , L̄D−1denote layers of GD, i.e., L̄i =
GD ∩ Li, i = 0, . . . , D − 1.

Clearly ∆(GD) = 4. Now we show that the diameter of GD is D, i.e., for each u ∈ GD the
distance from u to x1

(D−1)/2x
2
(D−1)/2 is at most (D − 1)/2.

Let i denote the index of the layer Li which contains vertex u. If i = (D−1)/2, i.e., the vertex
u belongs to the middle layer, then the distance from arbitrary vertex of Li to x1

(D−1)/2x
2
(D−1)/2

is at most (D − 1)/2 in Li except the case when D = 7, and u = y1
3 or u = y3

3. But then,
up to symmetry, say for u = y1

1, the path consisting of edges uy1
4, y1

4x
1
4 and x1

4x
1
3 has length

3 = (D − 1)/2. Clearly distGD(u, x1
i ) 6= distGD(u, x2

i ), therefore, up to symmetry, we can
assume that distGD(u, x1

i ) < distGD(u, x2
i ).

Now we consider the following possibilities:
Case 1: i < (D − 1)/2.

We start with odd i. By the construction of GD, y
q
i y
q
i+1 ∈ E(G) for every q = 1, 2, 3, 4.

Consider a shortest path P between u and any of the vertices yqi , say y
l
i, l ∈ {1, 2}.

Clearly distGD(u, yli) ≤ i−1. If ylix
1
i ∈ E(GD), then we add the edges ylix

1
i and x

1
ix

1
i+1

to P . Otherwise we add the edges yliy
l
i+1 and yli+1x

1
i+1 to P . In both possibilities

we have shown that the length of P is at most i + 1. Since distGD(x1
i+1, x

1
(D−1)/2 =

(D − 1)/2− (i+ 1), the distance of u from x1
(D−1)/2x

2
(D−1)/2 is at most (D − 1)/2.

Now we suppose that i is even. If i = 2, then every vertex of L2 is at distance at most
2 from x1

2x
2
2 and the distance of u from x1

(D−1)/2x
2
(D−1)/2 is at most (D − 1)/2. Let

us suppose that i > 2. If there is a ux1
i -path P in Li of length at most i − 1, then
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the distance of u from x1
(D−1)/2x

2
(D−1)/2 is at most (D − 1)/2. Hence suppose that

there is no such path P in Li. Let u′ denote the corresponding vertex of u in Li+1

and let P ′ be a shortest u′x1
i+1-path in Li+1. By the construction of GD such a path

and such a vertex exist and the length of P ′ is at most i. Let z′ denote the vertex of
P ′ at distance two from x1

i+1 on P ′, and let z denote the corresponding vertex of z′

in Li. Since i is even, zz′ ∈ E(GD). Let Q be the copy of the u′z′-subpath of P ′ in
Li. Clearly the length of Q is at most i − 2. Then the u, x1

i+1-path P consisting of
Q, the edge zz′ and the z′, x1

i+1-subpath of P ′ has length at most i + 1. And, since
distGD(x1

i+1, x
1
(D−1)/2) = (D − 1)/2− (i+ 1), the distance of u from x1

(D−1)/2x
2
(D−1)/2

is at most (D − 1)/2.
Case 2: i < (D − 1)/2.

Similarly as in Case 1 we can show that distGD(u, x1
i−1) ≤ (D−1)− i+1 interchanging

the role of the parity of i. And, since distGD(x1
i−1x

1
(D−1)/2) = i − 1 − (D − 1)/2, we

obtain distGD(u, x1
(D−1)/2) ≤ (D − 1)− i+ 1 + i− 1− (D − 1)/2 = (D − 1)/2.

Finally we count the number of vertices in GD from the number of vertices of H(3)
D . From

Corollary 7.11 we have |H3
D| = 8q3 + 12q2 + 8q + 2 when D = 4q + 1, q ∈ N and |H3

D| =
8q3 + 24q2 + 26q+ 10 when D = 4q+ 3. For D = 1 we have |G1| = 2 since G1 consists of only
one edge. If D = 3, then we deleted two vertices in H3 to obtain the middle layer L, thus
|G3| = 8. If D = 5, then we deleted six vertices from H5 to obtain L, implying that |G5| = 22.
If D ≥ 7, then we obtained L from HD deleting 2(q+ 2) vertices by Proposition 7.2. Thus we
obtain |GD| = 8q3 + 12q2 + 6q − 2 when D = 4q + 1 and |GD| = 8q3 + 24q2 + 24q + 6 when
D = 4q + 3.

�

7.2 DDS in the k-dimensional hypercube

The hypercube is one of the network topologies that arise very frequently in parallel architec-
tures. The k-dimensional hypercube Qk can be defined recursively as

Q2 = K2

Qk = Qk−1 ×K2 for k > 2.

Qk is a k-regular graph of 2k vertices and k2k−1 edges, and diameter k. It is bipartite and
vertex-transitive for all k ≥ 1, and hamiltonian for k ≥ 2. The vertices of Qk can be seen as
the binary strings of length k, with two strings connected iff they differ in just one bit. The
Hamming distance between two vertices is the number of bits in which they differ. Therefore,
Qk can also be seen as the Hasse diagram of a finite boolean algebra. Sometimes we will make
use of this duality, and we might refer to Qk as a graph or as a boolean algebra interchangeably.

7.2.1 First case: Smaller diameter

As usual, let us denote byNk(∆, D) the order of the largest subgraph of degree ∆ and diameter
D in Qk. Let us assume that ∆ > 2 and D ≤ ∆ ≤ k.
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From the definition of Qk it can be seen that Qk contains Qi as a subgraph, for every 2 ≤ i ≤
k− 1. This fact provides a straightforward lower bound for Nk(∆, D) when D ≤ ∆, since Qk
contains a subcube Q∆, and in turn, Q∆ contains a subgraph of order

Φ∆(D) =
D∑
i=0

(
∆

i

)
(7.15)

made up by the first D + 1 levels of Q∆.

The function Φ∆(D) represents the volume of the Hamming ball of radius D. There seems to
be no simple combinatorial closed form for (7.15) but it is well known that

1√
8D(1− D

∆)
2H(D

∆
)∆ ≤ Φ∆(D) ≤ 2H(D

∆
)∆ (7.16)

where H(x) = −x log x − (1 − x) log(1 − x) is the binary entropy function [33]. Moreover, it
can be shown that Φ∆(D) ≤ (∆e

D )D [98].

If D ≤ ∆ = k, then it is clear that Φ∆(D) is also an upper bound for Nk(∆, D). However, as
we move to higher dimensions, keeping ∆ and D fixed, we should be able to construct larger
graphs. Again, the reason for that is that we can move along the extra dimensions in order
to avoid ‘collisions’. In other words, if D ≤ ∆ = k < k′, then

Φ∆(D) ≤ Nk′(∆, D) ≤ Φk′(D) (7.17)

So, let k = ∆ + r, with r ∈ N. We are interested in finding the smallest value of r such
that N∆+r(∆, D) becomes strictly larger than Φ∆(D). For example, we know that for r =
(∆ − 1)bD/2c we can construct a full tree of degree ∆ and height bD/2c, with diameter
2bD/2c, and order

M∆,bD/2c = 1 + ∆
(∆− 1)bD/2c − 1

∆− 2
=

∆(∆− 1)bD/2c − 2

∆− 2
, (7.18)

which grows faster than Φ∆(D). Therefore, we have the following lower bound:

F Proposition 7.3 If ∆ ≥ D, Nk(∆, D) ≥ max{Φ∆(D), M∆,bD/2c}

�

It remains to be determined if the tree construction can also be achieved for smaller r, and
the exact values of ∆ and D for which M∆,bD/2c > Φ∆(D). We have determined those values
empirically for 3 ≤ ∆ ≤ 12, 1 ≤ D ≤ 12, and results are shown in Table 7.1. The actual
values of M∆,bD/2c and Φ∆(D) can be consulted in the appendices.
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D
1 2 3 4 5 6 7 8 9 10 11 12

3 +
4 + +
5 +
6 + +

∆ 7 + + +
8 + + + +
9 + + + + +
10 + + + + + +
11 + + + + + +
12 + + + + + + +

Table 7.1: Values of ∆ and D for which ∆(∆−1)bD/2c−2
∆−2 > Φ∆(D)

7.2.2 Second case: Larger diameter

The case ∆ < D ≤ k seems to be more difficult than the former, but at least for D = ∆+1 = k
we can give a construction that achieves the upper bound 2D:

F Theorem 7.5 Let k = D = ∆ + 1 ≥ 4. Then Nk(∆, D) = ND(D− 1, D) = ΦD(D) = 2D.

Proof: We know that Qk consists of four copies of Qk−2, with edges between them. Let us
arbitrarily label the copies of Qk−2 with the letters A,B,C,D. Copy A is joined to B and C,
but not D. In our construction we will take the four copies of Qk−2, and we will add some
of the ‘inter-copy’ edges. Pick an arbitrary vertex v of A, and partition the vertices of A into
two classes, one consisting of the vertices at even distance from v (including v itself), and the
other one consisting of the vertices at odd distance from v. We will call them the ‘even’ and
‘odd’ class, respectively. Now we add the edges joining the even class to B, and the edges
joining the odd class to C, and thereafter there is only one way to join B and C with D,
keeping the degree equal to ∆ = k− 1. Figures 7.9 and 7.10 show the construction for ∆ = 3
and ∆ = 4, respectively.

Figure 7.9: Construction for ∆ = 3 and D = 4



7. The Degree-Diameter Subgraph Problem in other host networks 101

Figure 7.10: Construction for ∆ = 4 and D = 5

Now we only need to show that the resulting graph has diameter ∆ + 1 = k. W.l.o.g. the
proof reduces to show that from a vertex v ∈ A we can reach any other vertex w in at most
k steps. If w ∈ A we can reach it in at most k− 2 steps, since Qk−2 has diameter k− 2. Now
let w ∈ B ∪ C. Assume w.l.o.g that w ∈ B. If w is connected to A, then we can trivially
reach v from w in at most k − 1 steps. If w is not connected to A, then the k − 2 neighbours
of w belonging to B are connected to A. Each one of the neighbours of w is connected to a
different vertex of A, and at least one of these must be reachable from v in less than k − 2
steps, since there is only one vertex in A at distance k − 2 from v. 1 There are, in fact, k − 3
disjoint paths of length < k from v to w.

Finally let w ∈ D. Either w is connected to B or w is connected to C; let us assume that it
is connected to u ∈ B. Then we have k − 3 paths of length at most k − 1 from v to u, and
the result follows.

�

7.3 What next?

This chapter leaves many questions open. In contrast with the square grid or mesh, which
was its own dual tiling, the honeycomb grid has a dual tiling that is different from itself,
namely the triangular tiling (Figure 7.11). It is interesting to replicate the study made for the
square mesh and the honeycomb grid with the triangular tiling, thus completing the picture
for regular tilings. Above all, it would be interesting to establish a connection between the
results for the honeycomb grid and the triangular tiling, and the fact that they are duals.
Then, the next logical move could be towards semiregular tilings of the plane, and spaces of
higher dimension.

1This is the reason why we have to take k > 3.
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Figure 7.11: Duality between hexagonal and triangular tilings

The issues discussed in Section 6.4 also apply here. In particular, there is a fertile ground
for devising practical constructions, i.e. constructions that possess additional nice properties,
besides low degree and diameter (e.g. symmetry and fault-tolerance).

In the study of the hypercube we have yet to find upper bounds for Nk(∆, D) other than
the trivial bounds. In the case D ≤ ∆ ≤ k, we need to refine the lower bounds, and solve
the inequality ∆(∆−1)bD/2c−2

∆−2 > Φ∆(D) more precisely. We also need lower bounds for ∆ <
D − 1 ≤ k.



8
Computational approach to MaxDDBS

After studying the Degree-Diameter Subgraph Problem from the mathematical viewpoint in
different classes of host graphs, in this Chapter we address the problem from the computational
viewpoint, and we propose a heuristic algorithm to deal with it, given its intractable nature.
We analyze the performance of the algorithm both theoretically and experimentally. These
results have been published in [44].

8.1 Heuristic algorithm for MaxWDDBS

The problems MaxDDBS and MaxWDDBS have not been studied in their full generality
from the computational perspective yet, but some special cases and single-constraint restric-
tions have. For example, [95] gives an approximation algorithm for a special case: Finding
the minimum-diameter spanning tree with bounded degree. That paper also considers edge
weights, but restricts the host graph to be a complete graph.

A variant of the Largest Degree-Bounded Subgraph Problem was studied in [5], where the
goal was to maximize the number of edges, and the problem was proved to be not in Apx for
any ∆ ≥ 2, and two polynomial-time approximation algorithms were given: one with ratio
min{m/ log n, n∆/(2 log n)} for unweighted graphs, and another one with ratio min{n/2,m/2}
for general weighted graphs. Obviously, the latter can also be used for unweighted graphs by
taking all the weights equal to 1.

Our goal here is to maximize the number of vertices, and we give a greedy algorithm for the
unweighted case (Algorithm 8 below). The algorithm works with two sets of vertices: dead
and alive. A vertex is dead if it has already reached the maximum degree ∆, or if it has no
more incident edges that can be added; otherwise it is alive. The algorithm grows the desired
subgraph from a star, by adding edges incident to the live vertices.

Some remarks are due in Algorithm 8. First of all we need to clarify the somewhat vague
expressions ‘if possible’ (Step 4), and ‘if necessary’ (Step 5), which are meant to simplify the
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Algorithm 8: Unweighted bounded-degree subgraph

Input : A connected undirected graph G = (V,E), and an integer 2 ≤ ∆ ≤ |V |.
Output: A subgraph S = (VS , ES) of G, such that degS(v) ≤ ∆ for all v ∈ VS , and

|VS | is maximized.

1 Initially, take S as any ∆-star (a star of degree ∆) of G;
2 Mark the central vertex of S as killed (the other vertices of G are alive);
3 repeat
4 Pick a live vertex u ∈ VS (with degS(u) < ∆) and add an incident edge e = (u, v) to

S (if possible);
5 Mark u or v (or both) as killed, if necessary;
6 until no more edges can be added ;
7 Return S = (VS , ES);

structure of the algorithm. In Step 4, if there exists a live vertex u, with degS(u) < ∆, and
having an incident edge e = (u, v), where v is also alive, then we pick both u and e. This
could also involve adding v to S, if v /∈ S. If there is no such e, or if it exists, and degS(u)
reaches min(∆,degG(u)) after the addition of e, then we mark u as killed in Step 5. Similarly,
v is marked as killed if degS(v) reaches min(∆,degG(v)) after the addition of e.

Note also that Steps 1 and 4 of Algorithm 8 are left somewhat undetermined. The choice of
the initial ∆-star in Step 1, and the live vertex u and the incident edge e in Step 4, can greatly
affect the outcome. In our implementation, reported in Section 8.2, we chose in Step 4 the
vertex u with the highest degS(u), and picked the incident edge e = (u, v) so that v was not
in S, or with the lowest degS(v). This choice of e is obvious, since we want S to have as many
vertices as possible. This combination of choices results in an approximately breadth-first
exploration of the graph, which performed better than depth-first or random heuristics. In
the next section we give some experimental results that support our claim.

As for the initial ∆-star, a natural choice is to construct it around the vertex with the highest
degree in G; nevertheless we discuss some alternatives below. Whatever the heuristic, in the
worst case we can guarantee the following result:

F Lemma 8.1 Algorithm 8 produces a polynomial-time approximation of the Largest Degree-
Bounded Subgraph, with a worst-case approximation ratio min(n,N∆,D)

∆+1 .

Proof: First let us check that the algorithm is correct, and it runs in polynomial time. The
initial ∆-star is guaranteed to exist by the assumption that ∆ does not exceed the maximum
degree of G. Then, the ‘killed’ tags guarantee that no vertex of S will exceed the upper bound
∆. Finally, the way that S is grown (by adding edges incident to S) ensures that S will be
connected, given that G is itself connected. The number of iterations is bounded above by
the number of edges of G, hence the algorithm runs in polynomial time in the size of G.

Now, for the approximation ratio, we have that |VS | ≥ ∆ + 1 in the worst case (that is, when
S consists only of the initial ∆-star), and we know that the number of vertices of the optimal
solution is at most min(n,N∆,D). Therefore, OPT

ALG ≤ min( n
∆+1 ,

N∆,D

∆+1 ) =
min(n,N∆,D)

∆+1 . That
completes the proof. �
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This approximation ratio is tight, as shown by the following example:
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Figure 8.1: A worst-case input for Algorithm 8

Figure 8.1 depicts a worst-case input for Algorithm 8, assuming that ∆ = 3. The vertex with
the highest degree is 4, so the initial 3-star could be made up by the vertices 1, 2, 3, and 4,
and after that, no more vertices may be added. On the other hand, an optimal solution would
consist of all the vertices, except 2. A remedy for this situation would be to modify Step 1,
so as to choose a vertex with higher centrality around which to construct the initial ∆-star.
For example, in a tradeoff between cost and effectiveness we could compute G2, and take the
vertex x with the highest degree in G2, having degG(x) ≤ ∆. However, with this heuristic it
is also possible to construct an example with roughly the same approximation ratio, as shown
in Figure 8.2.
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Figure 8.2: Another worst-case input for Algorithm 8

Again, let ∆ = 3. In this case, vertex 13 will have the largest degree in G2, and will
thus be used as the center of the initial 3-star. Then, the algorithm might return S =
{9, 10, 11, 12, 13, 14, 15, 16}, whereas an optimal solution consists of all the vertices, except 11
and 16.

Nevertheless, in practice the algorithm seems to behave better than this, but an average-case
analysis of its performance still remains open.

Another single-constraint restriction of MaxDDBS, the Largest Diameter-Bounded Subgraph
Problem, was studied in [7], where it was also proved not to be in Apx, and a polynomial-time
approximation algorithm with ratio O(n1/2) was given (Algorithm 9). This algorithm can be
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generalized in a straightforward manner to the case where G = (V,E) is a weighted graph.
First we have to define the d-th power of G appropriately: We compute the distance between
every pair of vertices u, v ∈ V , and then we add a new edge (u, v), with weight equal to
dist(u, v), if dist(u, v) ≤ d. If the weight of some edge (u, v) is greater than d, we delete (u, v)
from G. Now, with Gd so defined, we can apply Algorithm 9 directly.

Algorithm 9: Diameter-bounded subgraph

Input : A connected weighted undirected graph G = (V,E), and an integer
1 ≤ D ≤ |V |.

Output: A subgraph T = (VT , ET ) of G, such that diam(T ) ≤ D, and |VT | is
maximized.

1 Compute the bD/2c-th power, GbD/2c, of G;
2 Find the vertex v ∈ GbD/2c with the maximum degree, and let T ∗ = (VT , ET ) be the
subgraph of GbD/2c induced by v and its neighbours;

3 Output T = (VT , E ∩ ET );

For arbitrary weights, it is very difficult to predict the size of the subgraph T produced by
Algorithm 9. However, for practical purposes it is not unreasonable to assume that D is large
compared to the weights. If D is large enough, larger than the weight of any single edge, then
no edges will be deleted from G in the computation of GbD/2c, and we get the following

Proposition 8.1 [7] Under the assumptions above, Algorithm 9 produces a polynomial-time
approximation of the Largest Diameter-Bounded Subgraph, with approximation ratio O(n1/2).

We can also get a bound for the best case:

F Proposition 8.2 Let ∆ > 2 be maximum degree of the host graph G. Then, the order of
the subgraph constructed by Algorithm 9 is bounded above by ∆(∆−1)bD/2c−2

∆−2 .

Proof: Reasoning as in Proposition 3.1, we can limit ourselves w.l.o.g. to the version without
weights. The order of the subgraph S ⊆ G constructed by Algorithm 9 equals the order of
the largest star in GbD/2c. Let x be the center of this star. Now, if we expand back this star
as a subgraph of G, we will get at most ∆ vertices at distance one from x, each one of them
having at most ∆ − 1 descendants, and so on. Therefore, the total number of vertices of S
will be at most M∆,bD/2c = ∆(∆−1)bD/2c−2

∆−2 . �

The latter result translates directly into a lower bound for the approximation ratio, provided
that we have a lower bound for the order of an optimal solution in G. This is the case for
G = Kn, and 3 ≤ ∆ ≤ 20, 2 ≤ D ≤ 10 [63], and when G is the two-dimensional square grid,
for ∆ = 3 and 6 ≤ D ≤ 16 [124].

Note also that, because of the floor function, Algorithm 9 returns a solution of the same order
for D = 2p and D = 2p+ 1.

Clearly, if we perform Algorithm 8 on a graph G, and then Algorithm 9 on the resulting
subgraph S, we get a heuristic polynomial-time algorithm for MaxDDBS. If G is a weighted
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graph, in the first stage we can make all the weights equal to one and apply Algorithm 8.
Then, in the second stage we restore the original weights, and perform Algorithm 9 with
weights, thus getting an approximation of MaxWDDBS. Putting it all together we get the
following

F Theorem 8.1 If D is large enough, the greedy algorithm outlined above approximates
MaxWDDBS in polynomial time, with a worst-case approximation ratio min(n,N∆,D)

∆+1 .

Proof: As we said before, the algorithm works by performing Algorithm 8 on G without
weights, and then Algorithm 9 on the output subgraph S with weights. The output S of
Algorithm 8 contains a ∆-star, and so does the output T of Algorithm 9. Hence T contains
at least ∆ + 1 vertices, and again, OPTALG ≤ min( n

∆+1 ,
N∆,D

∆+1 ) =
min(n,N∆,D)

∆+1 .

It is clear that the algorithm runs in polynomial time. �

We should remark again that N∆,D is not known exactly for most combinations of ∆ and D.
We have upper bounds (equal or very close to the Moore bound in most cases), and a table
of lower bounds, i.e. the largest graphs that have been found so far [63]. Assuming that G is
large enough, so that n > N∆,D, and replacing N∆,D by M∆,D, we get that OPT

ALG ≤ O(∆D−1).
Again, this bound is tight, since Algorithm 9 works on the subgraph produced by Algorithm 8,
which in the worst case is the largest admissible star. This does not look like a very promising
result, but the algorithm works in practice much better than this, as we shall see in the next
section.

On the other hand, as a consequence of Proposition 8.2, if G is the complete graph Kn,
with n ≥ M∆,D, then an optimal solution will have order at most M∆,bD/2c, and the best
approximation ratio will be M∆,D

M∆,bD/2c
= O((∆− 1)D/2), since in this case we do know that an

optimal solution will have order ≈M∆,D. This is also likely to happen in large dense graphs,
other than Kn.

8.2 Experimental results

In Section 8.1 we have provided a heuristic strategy to solve MaxWDDBS, and we proved
some approximation ratios for the solution. But how good is the algorithm in practice? We
have implemented our algorithm and tested it on a variety of unweighted networks. There are
currently two implementations of the algorithm: one in MATLAB R©, written by myself, and
another one in JavaTM, written by A. Dekker, who also assisted with experiments 1, 3, and
4. The second experiment is mine, and experiments 1 and 3 were independently confirmed
by myself with the MATLAB R© program. Additionally, I carried out other experiments on
Erdös-Rényi random graphs, which are not included here because they do not add any new
insight, just confirm the results of Experiment 3. Our experiments show that the average
performance of the algorithm is better than the worst case performance given in Theorem 8.1.

8.2.1 First experiment

Our first experiment supports the tie-breaking rules that we chose for Algorithm 8, as explained
in Section 8.1. We computed an approximation of MaxDDBS on three 100-vertex host graphs,
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with ∆ = 3 and D = 6, using four different rules for choosing u ∈ VS and v. The three input
graphs were: the antiprism, the complete graph K100, and a toroidal square grid. The value
of 13 obtained for the antiprism is optimal. Note that the fourth rule, which approximates
breadth-first search, produces better results than the other three.

Input Graph
Preferred (u, v) choice Antiprism K100 Toroidal square grid
Low degree u 13 4 12
High degree u 11 4 12
Low degree v and u 12 17 17
Low degree v, high u 13 22 20

Table 8.1: Average orders of subgraphs found for ∆ = 3 and D = 6, with different choices of
u and v

8.2.2 Second experiment: Performance on the mesh

For an arbitrary graph we only have a very loose upper bound of the optimal solution, namely
min(∆+1, N∆,D), which in turn leads to pessimistic approximation ratios. However, in Section
6.1 we derived better upper bounds for the mesh, which we can now use to get more accurate
approximation ratios.

Thus, we have tested the algorithm on a sufficiently large two-dimensional square grid, and
computed the MaxDDBS for ∆ = 3 and 2 ≤ D ≤ 20. The results are summarized in Table
8.2. For even diameter, the approximation ratio lies between 1.3 and 1.17, with a tendency
to decrease as D grows. For odd diameter the approximation ratios are somewhat larger, but
still good and decreasing. Overall, the results compare reasonably well with the largest known
subgraphs, depicted in [124].

Diameter 2 3 4 5 6 7 8 9 10 11
Upper bound 5 8 13 18 25 32 41 50 61 72

Algorithm result 4 4 10 10 20 20 33 33 49 49
Approximation ratio 1.25 2 1.3 1.8 1.25 1.6 1.24 1.51 1.25 1.47

Diameter 12 13 14 15 16 17 18 19 20
Upper bound 85 98 113 128 145 162 181 200 221

Algorithm result 69 69 93 93 121 121 153 153 189
Approximation ratio 1.23 1.42 1.21 1.38 1.2 1.3 1.18 1.3 1.17

Table 8.2: Algorithm performance on the two-dimensional grid, with ∆ = 3 and 2 ≤ D ≤ 20.

Figure 8.3 also shows the performance of the algorithm graphically. The smooth upper curve
represents the upper bound of the MaxDDBS, while the jagged curve below corresponds to
the actual performance of the algorithm. The subgraphs constructed by the algorithm follow
an interesting pattern; Figure 8.4 shows the one for D = 16.
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Figure 8.3: Algorithm performance on the two-dimensional grid, with ∆ = 3 and 2 ≤ D ≤ 20

Figure 8.4: Subgraph constructed by the algorithm on the two-dimensional grid, with ∆ = 3
and D = 16
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8.2.3 Third experiment: Some random graphs

In our third experiment we run the algorithm with ∆ = 3 and D = 6 on a range of input
graphs of order N (ranging from 100 to 300), produced by the Watts rewiring process [149] on
an N -vertex antiprism (i.e. with average degree 4). This process relocates edges at random
with probability p. Figure 8.5 illustrates an example, where the probability p of an edge
being rewired is 0.05. For such small values of p, the graphs produced are known as ‘Small
World’ graphs or Watts-Strogatz graphs. For p = 1, the process produces graphs very close
to Erdős-Rényi random graphs.

For comparison, we also use Barabási-Albert ‘Scale Free’ graphs, which are created by a
preferential attachment process, which generates an approximately power-law distribution of
node degrees [10, 9]. For comparison to the rewired antiprisms, these were constructed to
also have average degree 4. In addition, toroidal square grids, and complete graphs were also
used. Since the rewiring and preferential attachment processes are random in nature, Table
8.3 and Figure 8.6 show the average results over 50 runs. For each result, Table 8.3 also gives
an upper bound of the approximation ratio; this is the number in parentheses right below.

Figure 8.5: A 100-vertex antiprism rewired with a probability p = 0.05 of edges being randomly
relocated. The 22 vertices of the ∆ = 3, D = 6 subgraph identified by our algorithm are
marked in black. This figure was provided by Anthony Dekker for [44].

Note that for the ‘Small World’ graphs with 0.01 ≤ p ≤ 0.02, results improve noticeably
with the size of the input graph (increasing by 10–16%), presumably because of the greater
probability of finding a segment of input graph with a topology that suits the algorithm (this
is statistically significant at the 10−15 level). The effect is smaller for 0.05 ≤ p ≤ 0.5 and for
‘Scale Free’ graphs (though still equally significant). However, the increase occurs primarily
as the order N of the input graph increases from 100 to 200: beyond this point results begin
to converge to an upper limit.

Subgraphs in this experiment were largest for random and approximately random networks
with 0.2 ≤ p ≤ 1 (statistically significant at the 10−15 level). For these graphs, the limiting
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Figure 8.6: Average orders of subgraphs found for ∆ = 3 and D = 6 on various input graphs
with order N ranging from 100 to 300: rewired antiprisms with 0 ≤ p ≤ 1, ‘Scale Free’ graphs
(SG), toroidal square grids (SG), and complete graphs (K). Courtesy of Anthony Dekker.
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Watts rewiring probability p
0 0.01 0.02 0.05 0.1 0.2 0.5 1 SF SG KN

100 13 15.9 17.6 19.5 20.7 21.4 21.6 21.9 20.7 20 22
(1) (6.3) (5.7) (5.1) (4.8) (4.7) (4.6) (4.6) (4.8) (1.25) (4.5)

150 13 17.1 18.7 20.3 21.4 21.5 21.8 21.9 21.6 20 22
(1) (8.8) (8.0) (7.4) (7.0) (7.0) (6.9) (6.8) (7.0) (1.25) (6.8)

N 200 13 17.9 19.4 20.5 21.4 21.8 21.9 22.0 21.7 20 22
(1) (10.5) (9.7) (9.2) (8.8) (8.6) (8.6) (8.6) (8.7) (1.25) (8.5)

250 13 18.2 19.2 20.7 21.5 21.8 22.0 22.0 21.8 20 22
(1) (10.3) (9.8) (9.1) (8.8) (8.6) (8.6) (8.5) (8.6) (1.25) (8.5)

300 13 18.5 19.3 20.9 21.7 22.0 22.0 22.0 21.8 20 22
(1) (10.2) (9.7) (9.0) (8.7) (8.6) (8.5) (8.5) (8.6) (1.25) (8.5)

Table 8.3: Average orders of subgraphs found for ∆ = 3 and D = 6 on rewired antiprisms and
other graphs. SF refers to ‘Scale Free’ graphs, and SG to toroidal square grids. The numbers
in parentheses are upper bounds of the approximation ratios.

value is 22, the result obtained for complete graphs KN , which agrees with the prediction
provided by Proposition 8.2. In other words, sufficiently large random or near-random input
graphs with average degree only slightly more than the desired subgraph degree ∆ behave like
complete graphs: the additional edges in KN provide no benefit.

The 13-vertex result for the unrewired antiprism (p = 0) is optimal. For the toroidal square
grid, the optimal subgraph would have order 22. Apart from these two cases, an upper bound
on the order of optimal subgraphs is min(N, 188), and we can thus calculate the upper bounds
on approximation ratios in Table 8.3. Particularly for low values of p, these bounds are likely
to be overly pessimistic. However, since a 132-vertex graph with ∆ = 3 and D = 6 is known
[58], the approximation ratios for K200 and K300 are bounded below by 6.

8.2.4 Fourth experiment: A naturally occurring network

Our fourth experiment involves a graph of 516 genetic diseases, taken from the data displayed
at diseasome.eu, and shown in Figure 8.7. This graph has 1188 edges, linking diseases
that share one or more genes, and a diameter of 15. Applying our algorithm finds clusters of
related diseases, of varying size. This illustrates the performance of our algorithm on naturally
occurring graphs, as well as suggesting possible applications in medical research and systems
biology.

Table 8.4 shows the orders of subgraphs found by the algorithm when applied to the human
diseasome graph, for various values of ∆ and D. Comparing to the known upper bounds for
the degree-diameter problem [63] or to the order of the input graph (where that is lower),
yields the upper bounds on approximation ratios. These are shown in parentheses right below
each result. For ∆ = 6 and D = 4, the ratio of 17.2 results from comparing the subgraph of
order 30 found by the algorithm with the order of the input graph, which is 516.

In summary, although our algorithm produces optimal results in some cases (such as the
antiprism without rewiring), and good suboptimal results in other cases (such as the square
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Figure 8.7: The human diseasome graph. The 39 vertices of the ∆ = 3, D = 8 subgraph
identified by our algorithm are marked in black and highlighted in the inset on the upper
right. Courtesy of Anthony Dekker.

Diameter D
4 6 8 10 12 14 16 18 20

3 10 22 39 64 93 117 134 151 167
(3.8) (8.5) (13.2) (8.1) (5.5) (4.4) (3.9) (3.4) (3.1)

4 17 40 74 118 167 210 246 284 309
(9.4) (12.9) (7.0) (4.4) (3.1) (2.5) (2.1) (1.8) (1.7)

∆ 5 26 64 115 184 260 335 399 439 452
(16.3) (8.1) (4.5) (2.8) (2.0) (1.5) (1.3) (1.2) (1.1)

6 30 79 145 240 315 402 442 461 462
(17.2) (6.5) (3.6) (2.2) (1.6) (1.3) (1.2) (1.1) (1.1)

7 36 93 170 272 352 414 456 472 472
(14.3) (5.5) (3.0) (1.9) (1.5) (1.2) (1.1) (1.1) (1.1)

Table 8.4: Orders of subgraphs found for the human diseasome graph.
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grid), approximation ratios in the worst case (for the range of graphs tested) can rise to the
range of 10 to 20. Typically, results lie between these two extremes. In general, performance
on the complete graph KN provides a limit to performance on randomly constructed input
graphs of lower degree.

8.3 Some open questions

In this chapter we have studied the Maximum Degree&Diameter Bounded Subgraph Problem
(MaxDDBS), and its weighted version (MaxWDDBS), from the computational perspective.
Given that MaxDDBS and MaxWDDBS are computationally hard, we have proposed a
heuristic algorithm for dealing with them, analysed its approximation ratio, and conducted a
series of experiments to check its performance. Though the approximation ratio is quite high
in the worst case, experimental results show that it can be a lot smaller in several practical
situations.

These preliminary studies open up several interesting research lines for future development;
here we summarize a few of them:

1. In several cases, the theoretical approximation ratio that we have found lies considerably
above the real performance of the algorithm, as reflected in the experiments of Section
8.2. A more accurate theoretical analysis of the approximation ratio may involve com-
puting N∆,D, which remains elusive so far. On the other hand, for particular classes of
host graphs it is possible to find tighter upper bounds for MaxDDBS, rather than using
M∆,D, as we have done in the case of the mesh and the hexagonal grid. Besides being
interesting in their own right, these upper bounds also provide the means to refine the
approximation ratio, and evaluate the performance of the algorithm more accurately in
that particular class of host graphs. This remains open for hypercubes, and for other
classes of host graphs of practical interest, such as vertex-transitive, cube-connected
cycles, butterflies, etc.

2. It is necessary to conduct a more comprehensive set of experiments on larger random
and deterministic host networks of different types. This experimental analysis faces
several practical issues as well, such as computing an upper bound for MaxDDBS in
that particular network (other than M∆,D), and generating large realistic connected
random networks.

3. Regarding computational complexity, we already know that the problems MaxDDBS
and MaxWDDBS are NP−hard and not in Apx. Now, where do they stand in rela-
tion with other complexity class hierarchies (e.g. parallel, randomized, fixed-parameter,
etc.)?. For example, are these problems fixed-parameter tractable?, and if so, devise an
efficient data-reduction algorithm to deal with them.

4. So far we have concentrated on two parameters only: ∆ and D. However, in order
to address realistic situations, future algorithms should also take into account other
parameters, like the ones discussed in Section 1.2 (connectivity, fault-tolerance, etc.).
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Conclusion

In this final chapter we strive to make sense of all the different strands of our work, enumerate
our main activities and results during the candidature, and summarize the most important
research questions that remain open.

9.1 Summary of results

• In the classical Degree-Diameter Problem (DDP) we have contributed to raise the lower
bounds with the aid of analytic constructions (graph compounding), and algebraic tech-
niques (Cayley graphs and voltage assignment). The first technique yields large graphs
of diameter 6, while the second class of techniques yields large bipartite graphs. In
the case of algebraic techniques we have paved the way for further applications in the
construction of other types of graphs. We have focused on the use of finitely presented
groups and rewriting systems, thus departing from the more traditional approach based
on permutation groups.

• As a natural generalization of the classical Degree-Diameter Problem we have introduced
the Degree-Diameter Subgraph Problem (DDS). Then we have fixed three types of host
networks, which are very popular as models for parallel architectures: the mesh, the
honeycomb grid, and the hypercube. For these host networks we have computed Moore-
like upper bounds, and we have constructed large subgraphs with the aid of ad hoc
techniques. In our view, the main theoretical contribution of the thesis resides here.

• Furthermore, we have discussed complexity and algorithmic issues related to DDS and its
weighted version (MaxWDDBS), which is a more realistic model in practical situations.
We have designed a first practical algorithm to deal with the problem, and studied its
performance. Theoretically, our algorithm performs rather poorly in the worst case, but
it behaves much better in practice, as shown by our experiments. Our algorithm can be
the basis for future, more efficient algorithms.
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So far these are the results connected with our main research goals. As a bonus we have
obtained some accessory results:

1. We have contributed to the formalization and organization of current knowledge about
construction techniques in the Degree-Diameter Problem, and algebraic techniques in
particular. We have commented some recent advances in the field, and highlighted the
connection between seemingly unrelated problems and sources.

2. We have made some modest contributions to the theory of rewriting systems, which can
be used for speeding up algebraic computations related with DDP.

3. We have implemented the following algorithms and computational procedures, thus ex-
panding our arsenal of software tools for problem solving:

• The Knuth-Bendix completion procedure for string-rewriting systems.

• Construction of the derived graph, given a base graph and a finite group.

• Algorithms for computing and estimating the diameter of a graph.

• Our heuristic algorithm for solving MaxDDBS.

• Generation of different graph classes, such as toroidal grids, antiprisms, and some
random graphs.

4. Together with Eyal Loz, Geoffrey Exoo, and Guillermo Pineda-Villavicencio, we have
set up the website http://combinatoricswiki.org/wiki, a collaborative repository on
Combinatorics, which has already attracted several other researchers to publish their
problems and results online.

9.2 Summary of research problems

Below we summarize the main research directions that either arise as a result of the thesis,
or have been discussed here, but still contain open questions. In this summary we just give
an overview of the open questions; for more details see the section on open problems at the
end of each chapter. We follow the same order as in the body of the thesis, and start with
algebraic techniques.

Hopefully, the reader is by now convinced about the potential of algebraic techniques, es-
pecially voltage assignment, for constructing large graphs with given degree and diameter.
However, in order to unleash the full power of that technique we need to further develop the
theory of rewriting systems and group theory. Let us start by enumerating the problems in
those two areas, which are, in general, very difficult. Recall that we are mainly concerned
with finitely presented groups.

• In order to apply the theory of rewriting systems here it is necessary to compute complete
rewriting systems for several classes of groups, and efficient algorithms to find the normal
form of any word, that do not rely on repeated application of the reduction rules. That
would translate directly into efficient algorithms for computing the exact diameter of
the corresponding Cayley graph.

http:// combinatoricswiki.org/wiki
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• Regarding the generalization of Cayley graphs, voltage assignment, there already exist
crude estimates for the diameter of the derived graph [155], and for its girth [62]. We
need to improve the estimates for the diameter. In terms of group theory, that means
computing the order of arbitrary elements.

• The above results have enabled to identify certain classes of groups that are suitable for
constructing cages (e.g. perfect groups). It is interesting to apply those same groups to
the Degree-Diameter Problem, and identify additional classes of groups that could be
useful.

• In general, we want to obtain conditions on the base digraph and the voltage group, that
enable us to predict properties of the derived graph (such as diameter, bipartiteness, pla-
narity, vertex-transitivity, edge-transitivity, distance-transitivity, k−connectivity, etc.).
With the aid of these conditions, develop a methodology to construct large graphs of
some particular class via voltage assignment.

The Degree-Diameter Subgraph Problem was introduced in this thesis, and thus it is a virgin
area for research. There is plenty to be done here:

• The work we have done for the mesh and the honeycomb grid can be extended to other
regular and semiregular tilings in the plane and higher dimensions, and to other classes
of host graphs of practical application, like the hypercube and its variants.

• In mid-term, we can investigate larger classes of host graphs, such as Cayley, vertex-
transitive, bipartite, and planar. The idea is to establish a connection between the order
of the largest subgraph of given degree and diameter and other graph parameters (e.g.
eigenvalues, girth, chromatic number, etc.)

• For practical applications we must consider additional parameters, such as connectivity
and fault-tolerance, symmetry, and others.

• Complex random networks are pervasive today, and DDS offers a broad scope for research
here.

Finally, there are a lot of algorithmic and complexity issues, both in DDP and DDS:

• First of all, there is the issue of the complexity of DDP, which remains open.

• Computational techniques for solving DDP have not been studied systematically. There
have only been isolated attepmts, that mostly make use of the techniques developed for
other problems (e.g. local search with 2-Opt [1]). There is no comprehensive study, and
no specific heuristics tailored for DDP.

• In the case of DDS, we must find better algorithms than the one we propose here, which
is a combination of an algorithm for solving the Bounded-Degree Spanning Subgraph,
and another one for the Largest Diameter-Bounded Subgraph. Heuristics must play an
important role here, since MaxDDBS is not only NP-hard, but it cannot be approxi-
mated either within a constant factor in polynomial time.
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• We already know that MaxDDBS and MaxWDDBS are NP-hard and not in Apx,
but where do they stand in relation with other complexity classes? Furthermore, it is
important to identify classes of host graphs where these problems can be solved, or can
be approximated in polynomial time.
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Tables of combinatorial functions

D
1 2 3 4 5 6 7 8 9 10 11 12

3 4 4 10
4 5 5 17 17
5 6 6 26 26 106
6 7 7 37 37 187 187

∆ 7 8 8 50 50 302 302 1814
8 9 9 65 65 457 457 3201 3201
9 10 10 82 82 658 658 5266 5266 42130
10 11 11 101 101 911 911 8201 8201 73811 73811
11 12 12 122 122 1222 1222 12222 12222 122222 122222 1222222
12 13 13 145 145 1597 1597 17569 17569 193261 193261 2125873 2125873

Table 1: Values of ∆(∆−1)bD/2c−2
∆−2 for 3 ≤ ∆ ≤ 12, 1 ≤ D ≤ 12, and D ≤ ∆.

D
0 1 2 3 4 5 6 7 8 9 10 11 12

0 1
1 1 2
2 1 3 4
3 1 4 7 8
4 1 5 11 15 16
5 1 6 16 26 31 32

∆ 6 1 7 22 42 57 63 64
7 1 8 29 64 99 120 127 128
8 1 9 37 93 163 219 247 255 256
9 1 10 46 130 256 382 466 502 511 512
10 1 11 56 176 386 638 848 968 1013 1023 1024
11 1 12 67 232 562 1024 1486 1816 1981 2036 2047 2048
12 1 13 79 299 794 1586 2510 3302 3797 4017 4083 4095 4096

Table 2: Values of Φ∆(D) for 0 ≤ D ≤ ∆ ≤ 12



List of abbreviations and acronyms

ALG The value of the objective function returned by some approximation algorithm
for some particular instance of a combinatorial optimization problem

BFS Breadth-First Search

DDP The Degree-Diameter Problem

DFS Depth-First Search

gcd Greatest common divisor

iff if, and only if

lcm Least common multiple

HSAGA Hybrid Simulated Annealing and Genetic Algorithm

MaxDDBS The Maximum Degree & Diameter Bounded Subgraph Problem

MaxWDDBS The Maximum Weighted Degree & Diameter Bounded Subgraph Problem

OPT Optimal value of the objective function for some instance of a combinatorial
optimization problem

PTAS Polynomial Time Approximation Scheme

s.t. such that

TSP Travelling Salesman Problem

w.l.o.g. without loss of generality



Index

k−walk, 10
Šiagová, J., 26
Širáň, J., 26

algebraic singularity, 77
Allwright, J., 43
approximation algorithm, 42
approximation ratio, 42
APX, 42
arc

endvertices, 10
head, 10
tail, 10

arcs
multiple, 10
parallel, see arcs, multiple

Atanassov, K., 76, 77
automorphism, 13

group, 8

Barabási-Albert preferential attachment model,
33

Beneš network, 31
binary entropy function, 99
botnet, 4
bouquet, 12, 26
bricks, 81
butterfly, 30

cage, 27
Cayley color digraph, 15
Cayley color graph, 15
Cayley digraph, 15
Cayley graph, 15

diameter, 19
collection, 67
Comellas, F., 35, 43
cube, 29
Cube-Connected Cycles, 30
cycle, 11

hamiltonian, 12

de Bruijn graph, 36
defining relations, 13
degree-diameter problem, 33
Degree-Diameter Subgraph Problem, 38
Dekker, A., 107
Delannoy numbers, 77

generalized, 88
derived length, 67
DFS, 20
digraph, 10

connected, 11
derived, 22
diregular, 10
distance, 11
empty, 10
finite, 10
in-regular, 10
order, 10
out-regular, 10
simple, 10
strongly connected, 11
trivial, 10
walk, 10

Dinneen, M.J., 26, 43, 65
dipole, 12, 26
discrete logarithm, 63
dumbbell, 12

edge
loop, 10

epimorphism
group, 8

evolutionary algorithms, 41
Exoo, G., 44, 71
expansion, 22
exponent, 66

fault tolerance, 4
fibre, 23
free group, 14
free monoid, 13
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Gauss, K.F., 75
general linear diophantine equation, 69
generalized D-gon, 37
generalized word problem, 15
generating set, 8
generators, 13
girth, 11
Gröbner bases, 61
graph, 11

acyclic, 11
automorphism group, 13
bipartite, 12
complete, 12
polarity, 13

Cayley, 43, 64
circulant, 15, 70
complement, 28
complete, 12
connected, 12
cycle, 11
diameter, 11
distance, 11
distance-transitive, 13
edge-transitive, 13
maximum degree, 11
minimum degree, 11
path, 11
r-partite, 12
radius, 12
regular, 12
simple, 11
vertex-transitive, 13

graphs
cartesian product, 28
compounding, 29
base graph, 29
replaced graph, 29
source graph, 29

difference, 28
Erdös-Rényi random graph, 33
intersection, 28
isomorphic, 12
join, 28
scale-free, 33
union, 28

greedy technique, 40
grid, 31

toroidal, 31
group, 8

abelian, 8
commutative, 8
inverse, 8
involution, 8
metabelian, 66, 71
metacyclic, 65
order, 8
perfect, 71
polycyclic, 66
quaternion, 20
regular, 9
simple, 71
solvable, 67, 71
torsion, 15
transitive, 9

group presentation, 15

Hafner, P.R., 26, 43, 65
Hamming distance, 98
Heawood graph, 56
hexagonal grid, 85
homomorphism

group, 8
honeycomb network, 85
HSAGA, 44
hypercube, 29

incidence graph, 37
incidence relation, 37
incidence structure, 37

incident, 37
order, 37

inclusion ambiguity, 18
inner automorphism, 8
isomorphism, 12

group, 8

Jajcay, R., 71

Kautz graph, 36
Kavitha, T., 72
Knuth-Bendix criterion, 18

lattice points, 74
lift, 22
line, 37
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line graph, 29
lines

concurrent, 37
local search, 40, 43
Loz, E., 26, 35

matching, 11
perfect, 11

MaxDDBS, 38
maximal balls, 74
MaxWDDBS, 38
McKay, B., 26
memetic algorithms, 42
mesh, 31
metaheuristics, 39
Miller, M., 26
Mitjana, M., 43
monoid, 7

identity, 8
monoid presentation, 13
monomorphism

group, 8
Moore bound, 38
Moore graph, 33
multiplicative order, 65

natural projection, 22
neighborhood structure, 39
net voltage, 22
normal subgroup, 9

objective function, 39
one-step reduction relation, 16
orbit, 9
order sequence, 72
ordering

admissible, 17
compatible, 17
DegLex, 18
Mora, 18
ShortLex, 18, 20

overlap ambiguity, 18

path, 11, 12
endvertices or ends, 12
hamiltonian, 12
inner vertex, 12

paths

independent, 12
permutation cycle, 9

length, 9
permutation group, 9

free, 72
semiregular, 72

permutation representation, 9
action, 9

point, 37
points

collinear, 37
polarity, 55, 58
polarity graph, 37
polycirculant conjecture, 72
polycyclic generating sequence, 67
presentation

complete, 17, 67
PTAS, 42

quotient group, 9

random search, 26, 27
regular tilings, 85
Riordan array, 77

Sampels, M., 44
Schröder, J., 77
search space, 39
semidirect product, 65
semiregularity problem, 72
set

independent, 11
stable, 11

sieve, 26
escalation, 26
girth, 27

simulated annealing, 40
stabilizer, 9
standard form, 23
string rewriting system, 16

canonical, 17
complete, 17
confluent, 17
convergent, 17
locally confluent, 17
noetherian, 17
normalized, 17
terminating, 17
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well founded, 17
string rewriting systems

equivalent, 17
subdigraph, 10

induced, 10
proper, 10
spanning, 10

subgraph, 11
induced, 11
proper, 11
spanning, 11

subgroup, 8
subgroup generated, 8
subnormal series, 66
symmetric group, 9

tabu search, 41
term ordering, 17
theta-graph, 12
threshold accepting, 41, 43
triangular tiling, 101

Vassilev-Missana, M.V., 76, 77
vertex

degree, 11
eccentricity, 11
in-degree, 10
in-neighborhood, 10
out-degree, 10
out-neighborhood, 10

vertex duplication, 37, 71
voltage assignment, 22
voltages, 22

walk
closed, 10
length, 10
minimal closed, 24
natural, 10, 23
open, 10

Watts-Strogatz small world model, 33
Wohlmuth, O., 43
word

irreducible, 16
reducible, 16

word problem, 14
words

joinable, 16
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