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Abstract. This paper applies recently developed mixed-integer programming

(MIP) tools to the problem of optimal siting and sizing of distributed gener-

ators in a distribution network. We investigate the merits of three MIP ap-
proaches for finding good installation plans: a full AC power flow approach,

a linear DC power flow approximation, and a nonlinear DC power flow ap-
proximation with quadratic loss terms, each augmented with integer generator

placement variables. A genetic algorithm based approach serves as a baseline

for the comparison. A simple knapsack problem method involving generator
selection is presented for determining lower bounds on the optimal design ob-

jective. Solution methods are outlined, and computational results show that

the MIP methods, while lacking the speed of the genetic algorithm, can find
improved solutions within conservative time requirements and provide useful

information on optimality.

1. Introduction

Distribution networks equipped with distributed generation are increasingly com-
mon [1]. New concepts in distributed generation are being tested at experimental
facilities the world over [2]. Our problem, which we refer to as the Distributed
Generation Planning Problem or DGPP, is the following: given an existing power
system and a budget constraint, determine an placement of generators chosen from
various types of distributed generation technologies in order to minimise the net-
work’s power deficit. Stated another way, our objective is to minimize the power
deficit (that is, the power imported at the slack bus) by specifying a placement of
new generators, thereby ensuring the network has the smallest possible dependency
on external energy sources. A solution to the DGPP is both a placement design
and a list of voltages feasible for the network with the new design installed.

We simplify the problem by using steady-state power systems and considering
peak (worse-case) loads within a single time period, and generators are characterised
by their peak generation capacity and cost, the latter covering both the installation
and maintenance. The question is then: what is the greatest benefit obtainable from
a single investment in new generators? We assume that the relatively small size
of the generators allows any proposed design to be built over a short enough time
period such that the expected peak power demand does not significantly change.
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In this paper we compare three solutions to the DGPP found by mixed-integer
linear programming (MILP) and mixed-integer nonlinear programming (MINLP)
approaches. The MILP approach uses the well-known DC linear approximation
model [3]. One MINLP approach uses the full nonlinear AC power flow model,
while another MINLP model is similar to the DC model albeit with quadratic line
loss terms [4–6]. A baseline of comparison for these approaches is provided by
a genetic algorithm (GA) [7]. All approaches are tested against a diverse set of
networks and assessed relative to a lower bound on the global optimum found by
an efficiently solvable MILP knapsack problem obtained by deleting the power flow
constraints.

Our contributions lie in the formulation of the DGPP in the language of mixed-
integer nonlinear optimization and exploiting the resulting model structure to anal-
yse the optimality of this difficult problem. There is a good fit since the design vari-
ables are naturally integer-valued. While distribution expansion planning by MIP
techniques has been used extensively right up to the present [8–11], recent work has
formulated similar problems as a continuous optimal placement and sizing prob-
lem and solved with a sequential quadratic programming approach [12] or particle
swarm optimization [13], and recent related research in the literature has focused
on heuristic methods from evolutionary computation [14, 15]. In fact, the DGPP
first appeared as one aspect of a multi-criteria optimization problem, solved using
a genetic algorithm [7, 16]. A major part of our investigation is demonstrating the
maturity of general purpose open-source code (in our case, Bonmin [17]) to solve
the mixed-integer nonlinear programs arising from our new DGPP formulations.

We note that in our context of MINLP problems with non-convex functions,
exact solution methods are often impractical or not available for large-scale prob-
lems, with the deterministic ‘branch-and-bound’ decomposition algorithm of Bon-
min proving optimal points are globally optimal only for problems with convex
constraints. Even apart from the proper handling of discrete design variables, the
problem is complicated by the presence of quadratic non-convex constraints aris-
ing from the power flow and voltage control considerations on the power system.
With non-convexity problem-specific knowledge is often the best way to finding
good solutions or tractable approximate formulations, and two such formulations
are explored in this paper along with the full model. The work in this paper forms
a basis for more structured approaches that determine good lower bounds to the
globally optimal value of the DGPP.
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Table 1. Nomenclature

Node (Bus) Parameters
N = {1, . . . , N} Nodes (buses)
N−1 = {2, . . . , N} Nodes excluding the slack bus
P̄Dn + jQ̄Dn Net real (P ) and reactive (Q) power demand

at all nodes
P̄D Vector of real power demand

P̄Dtot
def
=

∑
n∈N P̄Dn Total real power demand

Q̌n, Q̂n Lower/upper reactive power limits

V1
def
= V0 + j0 Voltage at the slack node

V̌n, V̂n Lower/upper voltage magnitude limits
Y = G+ jB The network admittance matrix
Arc (Branch) Parameters
(n, k) ∈ A ⊂ N ×N Arc set
ynk = gnk + jbnk Admittance (conductance, susceptance)
Generator Parameters
Gens Generator types
B Budget (cost limit of new generators)
cGm Unit cost of generator m
P̄Gm Peak real power output of generators

Q̌Gm, Q̂Gm Lower/upper reactive power limits
V0(= |V1|) Nominal operating voltage magnitude

Variables
Pn + jQn, n ∈ N Transmitted real (P ) and reactive (Q) power

at nodes
Vn = en + jfn, n ∈ N Voltage at nodes — rectangular form
Vn = |Vn|(cos θn + j sin θn) Voltage at nodes — polar form
In, n ∈ N Transmitted current at nodes
xn Binary variable indicating presence of genera-

tor(s) at node
zsolver The optimal value of solver
P slack(V,X) The imported or slack power for a network of

voltage V with design X

j Imaginary unit, j2 = −1
def
= Defining relation
∗ Complex conjugate
Re(w) Real part of complex number w
Im(w) Imaginary part of complex number w

2. Mixed Integer Models for Distributed Generation Planning

In this section we outline three different continuous power flow models and their
augmentation with discrete placement design variables, in order to formulate the
Distributed Generation Planning Problem in various forms. Our general problem is
to minimise the objective of network power deficit, subject to power flow and voltage
constraints, along with a budget constraint on the total cost of installing generators.
The real power deficit of the network is equal to the sum of the transmission losses
and the real power demands at nodes less the contribution of any new generation
installed at the nodes.
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Our new contribution in this section is the modified power flow problems with
integer variables for generator siting. After some basic definitions, we look at
the most detailed model of power flow, the AC model, before turning to the more
approximate ‘DC’ flow models; the interested reader is referred to [18–20] for greater
detail on the underlying equations of the continous-variable power flow models of
this section. We first define and discuss the optimization problems before outlining
issues relating to their solution.

2.1. Basic Power Flow Modelling Terms and Relationships. All electrical
network models considered here are based on the abstraction of the network to a
graph G = (N ,A) with nodes n ∈ N = {1, . . . , N} and arcs A. Nodes in the
network correspond to buses in the single-line diagram representation and arcs
represent transmission lines. Table 1 contains descriptions of the various symbolic
quantities and should be referred to for definitions. It is assumed that the network
is connected and the bus admittance matrix Y is symmetric. At the slack (or swing)
bus the voltage magnitude and phase angle are specified at reference values of V0

and 0 respectively. In this work, the slack bus will always have label n = 1 and we

denote N−1
def
= {2, . . . , N} the set of nodes excluding the slack bus. Our continuous

decision variables, the node voltage variables are collected in the vector V .
In modelling power flow, it is useful to define the power flow functions P flow

n (V )
and Qflow

n (V ) representing the real and reactive power injected from node n to the
network as a function of the vector of node voltages V . Indeed, it is the choice of
the form of the flow functions that is the key distinguishing feature of the different
models, along with whether to include constraints on voltage and reactive power.

In the design problem, we choose from a given set of generator types. We denote
this set by Gens. The essential properties distinguishing each generator type m
in Gens are the peak real power output of the generator P̄Gm, the reactive power
limits of the generator (Q̌Gm, Q̂Gm) and the unit cost of the generator cGm.

The discrete generator placement design variables, one for each node and gener-
ator type are denoted

Xnm, n ∈ N ,m ∈ Gens,
with the value of the variable Xnm indicating the number of generators of type m
installed at node n. The definition of a design is a set of values for the Xnm for a
particular network and budget instance.

In the following section, we turn to outlining the different constraints resulting
from each model of power flow incorporated within the mixed-integer generator
placement design problem.

2.1.1. Cost constraint. With cGm as the unit cost of generator type m, and if the
allocated budget for generator purchase is fixed at B, the natural cost constraint is

(1)
∑
n∈N

∑
m∈Gens

cGmXnm ≤ B.

where the left hand side is the total cost of a design.

2.1.2. Real power constraints. The total contribution of real power from all installed
generators will be ∑

m∈Gens
P̄GmXnm.

Consequently the conservation of power condition P flow
n (V ) = P̄Dn at each node n

is modified to incorporate the upgraded generation to

(2) P flow
n (V ) = P̄Dn +

∑
m∈Gens

P̄GmXnm, n ∈ N−1.
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Derivation of the models’ objective functions is given in Appendix A.

2.2. The ACrec Mixed-Integer Planning Problem. The so-called ‘full’ model
of power flow is described through the constraints of conservation of real power and
bounds for reactive power and voltage magnitude. We denote as the ACrec model
as the system of constraints with the choice of rectangular coordinates and power
flow functions (3) and (4). Expressing the complex node voltage as Vn = en + jfn
in rectangular form with V = (e, f) ∈ R2N , we have

P flow
n (e, f)

def
=

∑
k∈N

Gnk(enek + fnfk) +Bnk(fnek − enfk),(3)

Qflow
n (e, f)

def
=

∑
k∈N

Gnk(fnek − enfk)−Bnk(enek + fnfk).(4)

The ACrec problem has the following mathematical description in terms of rectan-
gular variables: find

zACrec = min
e,f,X

P slack
AC (e, f,X)(5)

where P slack
ACrec(e, f,X)

def
= eTGe+ fTGf

−
∑
n∈N

∑
m∈Gens

P̄GmXnm + P̄Dtot

subject to budget constraint (1) and
Conservation of real power

P flow
n (e, f) = P̄Dn +

∑
m∈Gens

P̄GmXnm, n ∈ N−1(6)

Bounds for reactive power

Qflow
n (e, f)− Q̄Dn ≤ Q̂n +

∑
m∈Gens

Q̂GmXnm, n ∈ N−1(7)

Qflow
n (e, f)− Q̄Dn ≥ Q̌n +

∑
m∈Gens

Q̌GmXnm, n ∈ N−1(8)

Voltage bounds

e2
n + f2

n ≤ V̂ 2
n + xn(V 2

0 − V̂n), n ∈ N−1(9)

e2
n + f2

n ≥ V̌ 2
n + xn(V 2

0 − V̌n), n ∈ N−1(10)

xn ≤
∑

m∈Gens
Xnm ≤Mxn, n ∈ N−1(11)

xn binary,

Slack bus reference values

e1 = V0, f1 = 0, x1 = 1(12)

(e, f) ∈ R2N , Xnm ≥ 0, integer, xn binary,(13)

where V0 ∈ R is a given nominal voltage magnitude. We now outline the details of
each constraint. We defer discussion of the objective function to section A.

Real power constraints: The equations describing real power flow (6) follow from
the conservation of power, using the power flow function of (3).

Reactive power bounds: Relations (7) and (8) reflect the expanded reactive power
compensation capacity that is available from generators with non-zero values of
Q̌Gm or Q̂Gm. The constraints (7) and (8) on reactive power, with Q̌n ≤ Q̂n,
ensure conservation of power is achieved depending on the presence or absence of
reactive power sources. When a source of reactive power, such as a certain type
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of generator, is present at a node the value of reactive power can vary within
the operational limits determined by the source, hence the relaxation of equality
constraints to inequalities above. If no reactive power compensation is possible, the
inequality constraints collapse to a single equality with Q̌n = Q̂n = 0.

Voltage bounds: The voltage constraints (9) and (10) are magnitude bounds for

some constants V̌n ≤ V̂n (typically our bounds are taken within 6% of V0, that is,

V̌n = 0.94V0 and V̂n = 1.06V0 after [21]). In a similar vein to the reactive power
constraints in the presence of generators, we modify the voltage magnitude bounds.
The introduction of the binary variables xn is motivated by the requirement that
a generator bus operates at a nominal system voltage magnitude of V0 (see for
instance [19, p266–7]). Therefore equations (9) to (11) represent the following
logic: if there is a generator placed on node n then 0 < Mxn, implying xn = 1 as xn
is a binary variable. Thus the voltage magnitude of the node is fixed to the network
nominal operating voltage V0; otherwise, xn ≤ 0, that is xn = 0, and the voltage
magnitude is bounded by V̌n and V̂n. The positive integer M is any upper bound
on the sum in (11). The optimal choice of M in the absence of any other knowledge
of the planning problem may be computed by a knapsack problem [22, Chap. 5]:
fix n arbitrarily, and let M be the optimal objective value to

(14) max
∑

m∈Gens
Xnm subject to

∑
m∈Gens

cGmXnm ≤ B.

However a simple choice is to let M equal bB/cmin
G c, where cmin

G
def
= minm∈Gens cGm,

since

cmin
G

∑
m∈Gens

Xnm ≤
∑

m∈Gens
cGmXnm ≤ B.

2.3. The DC Power Flow Models. In light of the harder nonlinear nature of
the AC model, it is useful to look to models of a simpler structure, yet that still
capture the essentials of power flow.

In the DC model [3], so-named in analogy to the flow of current in a direct
current circuit, the reactive power inequalities (7) and (8) are disregarded and the
polar form of voltage variables and real power flow functions are used; writing
Vn = |Vn| ejθn = |Vn|(cos θn + j sin θn) in polar form with V = (θ, |V |) ∈ R2N , the
power flow functions take the form

P flow
n (θ, |V |) def

=
∑
k∈N

|Vn||Vk|(Gnk cos θnk +Bnk sin θnk),(15)

where θnk
def
= (θn−θk) represents the change in node voltage phase angles across the

arc from node n to node k. One looks to approximate (15). The specific derivations
are now outlined.

2.3.1. Linear DC Power Flow Model. Assumptions commonly used in the literature
(e.g. [23]) in deriving the DC model are:

(1) the line resistances are negligible, thus Gnk = 0 for all k ∈ N (observe that
the assumption of negligible resistances implies no transmission losses over
arcs);

(2) voltage magnitudes are close to unity (in normalised units of the nominal
voltage V0) and do not significantly affect real power flows, thus let |Vn| =
|Vk| = 1 for all n, k ∈ N ;

(3) the voltage phase angles across lines, θnk
def
= (θn − θk), are negligible in the

second and higher orders, and so we approximate with the substitutions
sin θnk ∼= θnk.
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These three assumptions transform (15) into the linear function

(16) P flow
n (θ)

def
=

∑
k∈N

Bnk(θn − θk).

Therefore the linear DC power flow model is described by the voltage phase
variables with a new linear version of the conservation equation (6) and a refer-
ence value for the phase angles. The DC Mixed-Integer Planning Problem has the
following form: find

zDC = min
θ,X

P slack
DC (X)(17)

def
= min

θ,X
−

∑
n∈N

∑
m∈Gens

P̄GmXnm + P̄Dtot

subject to budget constraint (1) and a form of conservation of real power∑
k∈N

Bnk(θn − θk)−
∑

m∈Gens
P̄GmXnm = P̄Dn, n ∈ N−1(18)

−π ≤ θn ≤ π, n ∈ N−1,(19)

θ1 = 0, θ = (θi)
N
i=1 ∈ RN , Xnm ≥ 0, integer.

We refer to this as the DC Model. Arguably, the accuracy of this model when the
assumptions are violated is poor [24]. Note that without new generation, power flow
is reduced to finding a solution to a square linear system B(θ) = −P̄D, where the
matrix B that appears in the original bus admittance matrix Y is used throughout
this paper.

2.3.2. Nonlinear DC Power Flow Model. We now turn to the derivation of a model
that is similar to the DC Model yet with an attempt to incorporate transmission
losses. The classical exposition of this model can be found in [4, Appendix D],
and [5] is also useful. As in the DC Model, one disregards the reactive power
equations and assumes that voltage magnitudes are close to unity. However we do
not neglect the line resistances. Furthermore, the voltage phase angles across lines,
θnk, are considered negligible only in the third and higher orders. As a result we
approximate the trigonometric functions with the substitutions

cos θnk ∼= 1− 1

2
θ2
nk, sin θnk ∼= θnk.

These assumptions now transform (15) into the quadratic function

(20) P flow
n (θ) =

∑
k∈N

−1

2
Gnk(θn − θk)2 +Bnk(θn − θk),

under the observation that by definition of G,∑
k∈N

Gnk = Gnn +
∑

k∈N :k 6=n

Gnk = Gnn −Gnn = 0.

This nonlinear model is essentially the DC model with line losses represented by
quadratic functions of the variables, and so we refer to the following as the DCQL
(DC Quadratic Loss) Model.
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The DCQL Mixed-Integer Planning Problem has the following form: find

zDCQL = min
θ,X

P slack
DCQL(X)(21)

where P slack
DCQL(X)

def
=

∑
n,k∈N

1

2
gnk(θn − θk)2

−
∑
n∈N

∑
m∈Gens

P̄GmXnm + P̄Dtot

subject to budget constraint (1) and
Conservation of real power∑

k∈N

−1

2
Gnk(θn − θk)2

+Bnk(θn − θk)−
∑

m∈Gens
P̄GmXnm = P̄Dn, n ∈ N−1(22)

−π ≤ θn ≤ π, n ∈ N−1,(23)

θ1 = 0, θ = (θi)
N
i=1 ∈ RN , Xnm ≥ 0, integer.

Note that by definition of the matrix G, −Gnk = gnk ≥ 0, n 6= k is the conductance
of the arc from node n to node k.

2.4. Solving the Planning Models. With the description of our planning models
completed, we now outline some issues surrounding their solution.

2.4.1. The ACrec Planning Problem. The ACrec DGPP is difficult even for fixed
values of the integer variables. The feasible set of the AC model is defined through
equalities involving nonlinear functions and inequalities involving the non-convex
power flow functions [25] and the voltage magnitude lower bound (10). Conse-
quently it should be expected that any continuous optimization problem (let alone
one with discrete variables) involving the ACrec constraints will be difficult to
solve to global optimality, and that any candidate global extrema will be difficult
to verify [26]. Nice aspects of the ACrec constraints include the sparse nature of
the Jacobian. Furthermore, the quadratic form of the ACrec model means the
Jacobian depends linearly on the variables and the functions have no higher or-
der terms beyond the second. In other words, the Hessian is constant, which can
simplify computations that check local optimality conditions.

In principle, indefinite quadratically constrained quadratic programs are NP-
hard [27] (though this is true even for MILP problems). On the positive side,
the matrix G is positive-semidefinite and so the objective is convex in the voltage
variables for fixed integer variables, and good initial points are often available from
experience. However, the feasible set is non-convex even when the integer variables
are fixed, and there may be many local minima in different components of the
feasible set. For the specific case of power or load flow, multiple feasible points are
known to exist even in simple cases [28] and for varying power injections at nodes
(as occurs for varying generator types and placements) the number of solutions to
the real power equations may change in a nonlinear manner. Quantitative analysis
has focused on the set of vectors of power injections for which the network has a
feasible voltage point [29] and this set is not convex in general [30]. This means
that even a continuous relaxation (relaxing the integrality requirements on the
design variables) of the ACrec Planning Problem may have solutions that are far
from the true global optimal solution. Recognising this non-convex nature, global
optimization approaches to power systems have employed schemes involving convex
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outer approximation for functions specifically arising in the AC (polar) model and
iterative refinement techniques [31].

2.4.2. The DC Planning Problem. This problem involves affine functions alone. It is
a MILP and is efficiently solved with state-of-the-art codes such as CPLEX. Since
the problem has a convex (linear) objective and feasible set, any local optimum
solution is a global one.

2.4.3. The DCQL Planning Problem. The considerations on solving the ACrec-
based DGPP apply to the DCQL Planning Problem. In the case of the DCQL,
there is a clearer separable structure in the phase angle differences θnk = (θn −
θk). Exploiting this specific structure can usefully improve solution algorithms for
separable mixed-integer problems [32]; while we do not use the solver of [32] in our
computations, the separable structure is retained in passing the encoded problem
to our chosen solver (Bonmin), which is able to recognise and potentially use the
separability.

While the DCQL power flow functions are no longer linear (nor convex) they
are positive-definite quadratic functions on the θ domain {0}×RN−1, and relaxing
equality in (22) to ≤, along with integrality on the X results in a convex feasible set
(cf. [5]). The physical interpretation of replacing P flow

n (θ) = P̄Dn with P flow
n (θ) ≤

P̄Dn is that while it still holds that power transmitted to the network from a node
cannot exceed that available, not all power must be transmitted - put another way,
“excess power can be shed at any node with no penalty” [5, p4]. This relaxation is
justifiable in certain situations — for example, electricity market analysis [6, p316]
or even battery storage applications — and again, we do not consider this specific
relaxation here, but note this convex substructure is a promising avenue for further
work on strong relaxations of the DCQL problem.

3. Objective Lower Bounds Obtained via Knapsack Problems

The nonlinear, nonconvex nature of the ACrec (§2.2) and DCQL (§2.3.2) Mixed-
Integer Planning Problems means that it is not always immediate whether a found
placement design is globally optimal, just locally optimal or even very good at
all. Often a close lower bound to the objective value of the global optimum can
indicate the quality of the best feasible solution known. In this section we give a
simple means of obtaining lower bounds to the objective value through a simple
relaxation. Such lower bounds serve as reference values for comparing the relative
performance of our different modelling approaches in our computational compar-
isons. However, no designs are produced. Furthermore, we do not expect to obtain
close lower bounds in every instance, considering the simple means of obtaining
the relaxation. This relaxation of each Planning Problem is obtained by simply
dropping all constraints from each problem other than the budget constraint and
integrality. For reasons given below, we call the optimal value zKS of the relaxation
the knapsack lower bound :

zKS
def
= min

X
−

∑
n∈N

∑
m∈Gens

P̄GmXnm + P̄Dtot(24)

subject to ∑
n∈N

∑
m∈Gens

cGmXnm ≤ B,(25)

Xnm ≥ 0, integer.(26)
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Equivalenty, we compute zKS as the value of

P̄Dtot − max
X≥0, integer

∑
n∈N

∑
m∈Gens

P̄GmXnm

subject to (25) and (26). Observing that the coefficients depend on m ∈ Gens alone
and consequently the variables Xnm may be aggregated at a node n, this suggests
using a ‘book-keeping’ variable X̃m =

∑
n∈N Xnm, and our problem is finding the

optimal value of the program

(27) wKS = max
X̃≥0, integer

∑
m∈Gens

P̄GmX̃m

subject to ∑
m∈Gens

cGmX̃m ≤ B.

The lower bound is then P̄Dtot − wKS . The above problem of finding wKS is
a classical knapsack problem [22, Chap. 5] in the variables X̃m and is efficiently
solved by our MIP solver CPLEX [33].

The value zKS is an underestimate of each original problem value as the losses,
which are absent in this objective, are never less than zero, and the knapsack
lower bounding problem is obtained from ignoring the power constraints; that is,
zKS ≤ zAC , and similarly zKS ≤ zDC and zKS ≤ zDCQL. No direct relations
exist however between the objective values of the other models. While no globally
optimal values are guaranteed from ACrec and DCQL solutions, we expect that
the difference between zKS and the objective value of the best feasible solution
(and zKS and the actual global optimal value) will be governed by the size of the
transmission losses.

4. Computational comparison of planning models

The aim of this section is to present the results of a computational comparison of
the different modelling approaches to the DGPP previously outlined. To the best
of our knowledge the direct comparison of three models for distributed generation
planning, and with a genetic algorithm baseline of comparison, is novel (though
comparisons of genetic algorithms in power system design [34] do exist). Here
a solver is an implementation of a DGPP solution method, as distinct from the
abstract problem statement.

4.1. Computational Process. A set of small-scale (less than 5 MW capacity)
generator types was taken from Table 3 of [7], excluding the two steam turbines
but including the CHP varieties. While heat utility was not accounted for in the
model, the CHP varieties of generator were kept in our available set as a check on
the problem formulation: with all things being equal, the solvers should select a
lower cost option out of generator types with identical electrical power properties,
which they were indeed seen to do.

Theory, implementation and results for the genetic algorithm (GA) are described
in [7,16]. The NSGA-II algorithm employed is based on fronts ranked by dominance
and equipped to pursue a well-spread approximation set of the true Pareto opti-
mal front by biasing the search toward regions of the objective space with sparse
coverage. The NSGA-II algorithm forms the heart of a multi-objective solver for
distributed generation planning encompassing objectives of imported power, cost,
emissions and efficiency. The underlying power flow model is the a form of the
polar AC equations, with voltage constraints enforced through penalties.

For a given network and a set of generator choices, the NSGA-II algorithm was
run 20 times, starting each time from an initial population size of 50, to produce
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Table 2. Test Networks. The table shows number of nodes (N)
and arcs (|A|), and total real power demand in MW (P̄Dtot).

Name (Source) N , |A| P̄Dtot Details

MP4gs [21] 4, 4 182.0 High demand with single fixed generator
MP6ww [21] 6, 11 100.0 Medium demand with two fixed generators
MP9a [21] 9, 9 67.0 Medium demand with two fixed generators
BE6a [35] 6, 8 5.450 Meshed topology, single fixed generator
CR12a [36] 12, 15 255.0 Meshed topology, 3 fixed generators
CR12rx [36] 12, 15 255.0 CR12a with resistance increased to equal reactance
GEA13a [37] 13, 12 3.900 Linear topology, equal loads at all nodes
GEA13ce [37] 13, 12 2.940 Linear topology, load distributed around centre node
GEA13in [37] 13, 12 3.510 Linear topology, increasing loads along nodes
P1sm [7] 14, 20 2.152 Meshed topology, same as IEEE 14 test case
P1md [7] 14, 20 2.152 P1sm with medium resistance and reactance
P1lg [7] 14, 20 2.152 P1sm with large resistance and reactance

20 independent imported-power/total-cost Pareto optimal fronts. Each run took
1000 evaluations. It should be noted that by increasing the number of evaluations
one would expect to marginally improve the performance of NSGA-II. The 20 in-
stances were then combined into an aggregate optimal front with the corresponding
generator placement design recorded. The respective costs of the aggregate front
were extracted in a list of budgets for the MIP problems. Each budget corresponds
to an instance of the parameter B in the planning model statements. Each MIP
problem was then solved sequentially by incrementing the budget parameter over
the budget list derived fron the GA, thus obtaining a design (or infeasible result)
for each budget value. The GA acts here as a reference for comparison of the MIP
methods through its function of generating the budgets corresponding to candidate
designs.

4.1.1. Test data. An extensive set of test networks of small node number (between 4
and 14) have been obtained from a cross-section of the power engineering literature.
A summary of the test cases and their respective sources are shown in Table 2. The
installed distributed generation was kept in the range of small to medium, 5 kW to
50 MW, following [1]. Consequently, the total net power demand over a network
was important in determining the range of the budgets: for the networks with a net
demand exceeding 50 MW we imposed a cap on the largest budget of $35 million, a
figure approximately equal to the purchase of 50 MW worth of installed generation.
For networks with a net demand much lower than 50 MW, a budget much lower
than $35 million with a feasible design was found by the GA that met most, if not
all, of the demand.

4.1.2. Vaildation of Experiments. The full AC Newton’s method power flow module
of Matlab-based power flow package, Matpower [21], version 4.0, was used as
the common evaluator of designs generated by each solution method. By using
Matpower as our standard evaluator on each valid instance, the quality of designs
can be compared independently of the solver. Each evaluation of a network with a
candidate design was initialized from the same voltage point. The slack power was
recorded after evaluation by Matpower if convergence was achieved. No voltage
constraints are enforced in the algorithm, but statistics on the deviation of voltage
magnitude outside bounds of ±0.06 from 1.00 in normalized units are retained.

The knapsack lower bounds had no placement designs to evaluate and are taken
directly from the solver output.
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4.1.3. Performance measurement methodology. We use performance profiles to com-
pare the different methods of solving the DGPP problems. Performance profiles as
used here were introduced in [38] to summarize and compare the performance of
different solvers running over the same instances. For timing performance, we use
a ratio on the x-axis, and for evaluating the quality of designs we use a relative gap
(or difference) from the knapsack lower bound on the x-axis.

Essentially, a performance profile is the cumulative distribution function of a
performance metric for a solver, relative to all the solvers one looks to compare
with (see [39, Chap. 22] for a useful exposition). The basic idea in the creation
of a performance profile for each solver is to decide on a metric of comparison (be
it iteration count, CPU run time or otherwise) where smaller values are better.
Data is collated for each instance and solver. For each instance, the best value
out of all solvers is identified, and the performance of a solver is defined as the
ratio of the solver metric value to the best value. The desired profile of a solver is
produced by sorting from best to worst the performance ratios over all instances,
then plotting the proportion of instances against the performance ratio. Thus the
point the profile leaves the vertical axis (at x-axis value 1) gives us the fraction
of instances the solver had the best metric value. If the profile reaches a height
of 1 then all instances were solved. Otherwise, the right side of the profile, where
the profile has an asymptote, tells us the proportion of instances the solver failed
to solve. Visually the better profiles are distributed closest to the upper left-hand
corner of the plot, indicating that a larger number of instances had small ratios.

4.1.4. Evaluating the quality of designs from lower bounds. Our performance pro-
file for power differs slightly from the CPU run time profile in that the power
performance data are not ratios computed relative to the best solver but are values
computed relative to the lower bounds found through the knapsack computation
(the timing data, however, follows the original approach). The independent quan-
tity (x-axis) is not a ratio, but a relative gap value, defined by

(28) gs(p) =
|zs(p)− zKS(p)|
|zKS(p)|

,

if |zKS(p)| is greater than a set tolerance (we use 10−6), otherwise

(29) gs(p) = |zs(p)− zKS(p)|,
where zs(p) is the solver value on budget instance p.

4.2. Computational Results.

4.2.1. Platform specification. Mixed-integer programming computations were run
on a Dell PowerEdge 2950 with dual quad core 3.16GHz Intel Xeon X5460 processors
and 64GB of RAM running Red Hat Enterprise Linux 5. The genetic algorithm
was implemented in Java and run on a 2.67GHz Intel Core i5-560M processor and
3.24GB of RAM running Windows XP.

4.2.2. Solving the MIP Problems. The MIP tests were formulated and run using
the AMPL modelling language [40]. The MINLP problems were solved with Bon-
min [17], version 1.5. Default parameters were used for the B-BB branch-and-bound
algorithm (based on solving a continuous nonlinear program at each node of the
search tree and branching on variables [41]). The MILP problems were solved with
CPLEX 12.3 [33]. CPLEX 12.3 is used as the NLP solver in Bonmin. The default
NLP solver Ipopt 3.10.0 [42] is used within Bonmin, and being an interior-point
method based solver there is limited use of warm-starting and previous feasible
points. It appears the main use of good feasible solutions in the MINLP algorithm
is to provide good upper bounds that help in the branch-and-bound scheme. The
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Figure 1. Multiple problem objectives against budget instances
- case GEA13a

indications are that finding feasible points is not difficult in most cases; the diffi-
culty occurs in establishing (local) optimality. On non-convex problems, Bonmin
does not guarantee globally optimal solutions; indeed, the solutions of continuous
subproblems found with Ipopt are not necessarily globally optimal. Bonmin at-
tempts to find good feasible mixed-integer solutions with settings that allow the
branch-and-bound algorithm to function as a robust heuristic in our non-convex
setting.

A time limit of 1800 seconds (30 minutes) was imposed on each budget instance
for both MIP solvers. It was observed that, if it was to do so, Bonmin returned an
infeasible result virtually immediately, otherwise any time that was spent was done
so trying to improve a known feasible solution.

4.3. Results And Discussion. Figure1 is shown as a representative instance; it
provides insight into the relative values of objective values across all solvers for this
test case. The three numbers following the key entry indicate successes of each
solver: the first is the number of failures of the solver algorithm to find a feasible
design (this is always 0 for the GA by construction), the second is the number of
failures of Matpower to converge on a design, and the third is the total number
of feasible designs which successfully converged with Matpower. Only the ACrec
solver found no feasible designs (on budget instances below threshold of $1,177,964).
This plot illustrates the gap to the knapsack lower bound: for the DC solver the
gap varies widely over the instances, while the DCQL and GA methods steadily
approach the lower bound as the budget (and the installed generation) increases.
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Figure 2. Case GEA13a Performance Profiles. Top: Relative
Gap Profile. Bottom: CPU Time Profile (base 10 log scale).

This trend fits with the expectation that the gap reduces as the line losses reduce,
which in turn occurs as more generation is installed nearby demand.

The indications of Figure 1 are borne out in the relative gap performance profile
in the upper half of Figure 2. We see that all solvers return feasible designs for all
instances except for ACrec, which found feasible designs in just under 0.6 (or 60%)
of instances. The ACrec solvers found better designs than the GA for just over
40% of cases. The DCQL, however, out-performed all solvers although its largest
relative gap value of 0.91 is comparable to the GA value of 0.93, with the largest
gap of ACrec slightly larger at 1.01. The DC solver shows a poorer distribution
with over 85% of designs within a relative gap of 0.70. In the lower half of Figure
2 is the timing profile with a base 10 log scale on the x-axis. The DC solver is
uniformly the fastest on all instances — its series is shown by a vertical line at 1
— while the DCQL is likely to be faster than the ACrec solver.

If we now compare the MP9a test case in Figure 3 we see a reversal of roles
with the ACrec solver dominating over DCQL in the timing data. The relative gap
profile shows the MIP solvers are dominant over the GA in finding good solutions.
No MIP solver distinguishes itself, though the DC is slightly worse. The relative
gap profile has an offset of the origin of all series of around 0.07, with the most
likely interpretation being that the knapsack lower bound is uniformly bad in this
instance rather than the solvers failing to get close to the global minimum objective
value.

In an unusual case, on the zero-budget (zero new generation) instance of network
MP4gs, a feasible point was identified by Matpower in 3 iterations. In contrast,
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Figure 3. Case MP9a Performance Profiles. Top: Relative Gap
Profile. Bottom: CPU Time Profile (base 10 log scale).

the ACrec solver converged to a locally infeasible point, with the same result oc-
curring with 4 other nonlinear programming solvers tested via the NEOS server
(http://www.neos-server.org/neos/solvers/index.html) and even after pro-
viding the initial feasible point. Similar infeasible results were returned for the
non-zero budget instances. The DCQL and DC solvers, however, returned feasible
designs across all budgets of the MP4gs network, indicating that approximations to
the full nonlinear case can have a greater degree of flexibility in generating designs
in certain difficult cases.

Finally, Figure 4 shows the aggregate performance of the solvers over all cases
and budget instances; the relative gap profile is zoomed to show the lower end of
the gap axis. The DCQL solver has better typical performance over the ACrec
solver and the GA in both the proportion of smaller relative gap values and time
ratios, helped by its ability to return feasible designs over all the test cases. We
see on the ‘all cases’ relative gap profile at the ‘cross-over’ point of the GA and
ACrec lines that the top 79.5% of relative gap values for the ACrec solver are
better than the top 79.5% of the GA. Put another way, for any given instance there
is a probability of approximately 79.5% of finding a improved relative gap in the
ACrec solver compared to the GA, with gaps of less than 0.16.

In the CPU time profiles the GA solver is omitted by experimental design as
its timing data is not directly comparable, but it is by far the fastest solver on
a per design basis: on the worst case run it took 362 seconds to find 15 designs
with a range of budgets, or an average of 24.29 seconds per design, while in the
best case it took 1.844 seconds to find 36 designs, or 0.051 seconds per design on
average. In addition, the GA approach generates a diverse range of feasible designs
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Figure 4. Performance Profiles, all cases. The relative gap profile
is zoomed.

Table 3. MIP Timing Statistics. Median and minimum time are
over feasible instances only.

Method: ACrec DCQL DC

Feasible designs returned (/673) 574 673 673
Time limit of 1800s reached 163 252 45
Time limit reached (%) 28.4 37.4 6.69
Median time (seconds) 118.98 356.86 0.079
Minimum time (seconds) 0.012 0.009 0.013

in parallel over its run. The DC solver is by far and away the fastest of the MIP
solvers, though ACrec or DCQL are faster on a small proportion (44/673 or 6.5%)
of instances. Overall, the DC solver rivals even the simpler knapsack problem in
time, yet is unlikely to produce the best designs as evidenced in the performance
profiles. In the compared to the DCQL solver, the ACrec solver does have a lower
median time and reaches its time limit in a smaller proportion of instances when
it does not return an infeasible result. Further timing statistics are provided in
Table 3. Indeed, the ACrec solver returned just under 15% (99/673) of instances
as infeasible, which is explainable by the fact that it has the greatest number and
type of nonlinear constraints of all methods. The DCQL solver finds equally good
or better solutions to the ACrec solver, over a wider range of budget instances.
The better performance of the DCQL solver over the ACrec solver, in terms of
improved objective values, is unexpected as the ACrec model is the ‘full’ model
from which the DCQL model is derived (including the fixing of voltage magnitude
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variables). These results indicate that the DCQL model captures sufficient power
flow structure from the AC (polar) model to enable the discovery of good designs
across our set of networks and budgets. This is something that the linear DC solver
fails to do to a sufficient extent; we postulate that the absence of line losses in the
DC model allows the DC solver to ignore the complex interaction between network
topology, demand and conservation of power.

5. Conclusion and further work

We have investigated the relative merits of different mixed-integer programming
(MIP) problems and methods, placed in comparison to a genetic algorithm ap-
proach, for finding the optimal placement of small-scale generators in a distribution
network under a budget constraint. The objective is to minimize the total power
deficit in the system. The results of the optimization are a proposed placement
of generators with a corresponding feasible steady-state voltage profile. We have
show how three models of power flow - AC, DC and DCQL (DC with quadratic
loss terms) - may be embedded in an mixed-integer programming framework for
planning, and the relative quality of their respective solutions have been assessed
over an extensive range of test networks and found to yield promising results. In-
deed, each MIP model is a viable means of finding placement designs, with the
nonlinear MIP approaches consistently showing objective value improvement over
the stochastic genetic algorithm in numerous cases. While the speed of the GA
is superior to the MIP approaches, the linear DC approach is able to find designs
within the same order-of-magnitude time frame, of equal quality to the GA in cer-
tain cases. The AC power flow based MIP approach did surprisingly poorly, failing
to find valid designs much less often than the more approximate DCQL approach.
It has been seen that the DCQL model offers a good trade-off between accurately
capturing the AC power flow and a tractable set of constraints leading to feasible
designs over a wide set of budget instances.

One extension of this work is to consider a convex relaxation of the full AC power
flow constraints, where an optimal solution to the relaxation provides a strong lower
bound to the original non-convex program (e.g. [43]), retaining sufficient structure
in order to identify good designs. Iterative refinement and decomposition of the
domain may be applied in order to yield stronger bounds. Future work on the GA
side includes increasing the GA evaluations to quantify their effect on the resulting
population, and improvement of the internal AC power flow solver, including the
integration of the DCQL power flow model into the GA to see if performance is
improved as the MIP models indicate.

We have shown that current MIP methods are capable of tackling the DGPP
over a variety of problems across numerous test networks, and in fact may improve,
with respect to designs, upon the state-of-the-art in genetic algorithm approaches.
A simple relaxation model has been introduced to provide lower bounds and shown
to serve as a useful point of reference for discussing optimality.

Appendix A. Modelling the Objective Function

As previously mentioned, our objective is to minimise the network’s imported
or slack power, defined to be the real power deficit of the system and is equal to
the sum of the transmission losses and the real power demands at nodes, less the
contribution of newly installed generation, giving the objective function

(30) P slack(V,X)
def
= P loss(V )−

∑
n∈N

∑
m∈Gens

P̄GmXnm + P̄Dtot.
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The last term P̄Dtot
def
=

∑
n∈N P̄Dn is given from problem information, and though it

is a constant, it is kept in the objective throughout to give the numerical results an
immediate physical meaning. We still require the expression for line losses P loss(V ),
which is simply expressed as

P loss(V )
def
=

∑
n∈N

P flow
n (V ).

Because the loss function depends on the functions P flow
n (V ), the form taken is

specific to each model, as we now outline.
DCQL: The transmission losses in the DCQL model are computable as

P loss(θ)
def
=

∑
n∈N

P flow
n (θ)

=
∑
n,k∈N

Bnkθnk −
1

2
Gnkθ

2
nk.

Observing that Bnk = Bkn, so Bnkθnk = −Bknθkn and the sum over all n and k is
zero,

P loss(θ) =
1

2

∑
n,k∈N

(−Gnk)θ2
nk =

1

2

∑
n,k∈N

gnkθ
2
nk(31)

where −Gnk = gnk ≥ 0, n 6= k is the conductance of the arc from n to k.
DC : In this case, gnk is set to 0 for all n, k ∈ N , so P loss(θ) = 0.
ACrec: Since P flow

n (V ) = Re(Vn(Y V )∗n),

P loss
ACrec(e, f) =

∑
n∈N

Re(Vn(Y V )∗n) = Re
∑
n∈N

Vn(Y V )∗n

= Re(V T (Y V )∗)

= eTGe+ fTGf,

where G is the real part of the network admittance matrix Y . Notably, the loss
function is a convex quadratic form of the variables e, f since G is a positive-
semidefinite matrix.
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