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Abstract. Let G be a σ-compact, locally compact group and I be a closed

2-sided ideal with finite codimension in L1(G). It is shown that there are a

closed left ideal L having a right bounded approximate identity and a closed
right ideal R having a left bounded approximate identity such that I = L+R.

The proof uses ideas from the theory of boundaries of random walks on groups.

1. Introduction

A Banach algebra A is said to be idempotent if A2 = A where A2 is defined
to be span{ab : a, b ∈ A}. Of course A is idempotent if it has an identity, but it
can be a difficult and fruitful question to decide whether a Banach algebra which
does not have an identity is idempotent. This question was tackled by W. Rudin,
see [27], in the case when A is the group algebra L1(G) of a non-discrete, locally
compact group G and he showed that L1(G) is idempotent for many groups G.
Shortly afterwards P.J. Cohen showed that if a Banach algebra A has a bounded
approximate identity then every element in A is a product, see [2], [1], Theorem
11.10 or [10], Theorem 32.22. Since, by [10] Theorem 20.27, every group algebra
has a bounded approximate identity, it follows that group algebras are idempotent.

The question of whether an ideal in a group algebra is idempotent generally
depends on properties of the ideal and of the group for its answer. Ideals in L1(G)
do not, in general, have a bounded approximate identity, see [26] and [14], and
may fail to be idempotent, see [29], Theorem 7.6.3 and [10], Theorem 42.16. In
all these examples G is abelian and the ideals have infinite codimension. However
it is shown here that for an arbitrary locally compact group G, if I is an ideal
with finite codimension in L1(G), then I is idempotent. This will be an immediate
consequence of the following

Theorem 1.1. Let G be a σ-compact, locally compact group and I be a closed
2-sided ideal with finite codimension in L1(G). Then

I = L+R ,
where L is a closed left ideal in L1(G) with a right bounded approximate identity
and R is a closed right ideal in L1(G) with a left bounded approximate identity.

For σ-compact G the theorem implies directly that finite-codimensional ideals
in L1(G) are idempotent, and indeed that every element in the ideal is a sum
of 2 products. The same conclusion holds if G is not σ-compact because each
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element f of the ideal is an L1-function on G and hence is supported on some
open, σ-compact subgroup of G. Applying the theorem to the subalgebra of L1(G)
consisting of functions supported on this open subgroup shows that f is the sum of
2 products in I.

Idempotence of proper ideals in group algebras has been established previously
in a number of cases, which usually require that the group be amenable. Once
again, one of the earliest results is due to Rudin, who showed in [28] that, if G is
compact and I is an ideal in L1(G) which has a Banach space complement, then
I has a bounded approximate identity. It was shown by H. Reiter in [21] that the
codimension one ideal

L1
0(G) =

{
f ∈ L1(G) :

∫
G

f dm

}
,

where m denotes the left invariant Haar measure on G, has a bounded approximate
identity if and only if G is amenable. This theorem of Reiter was extended by Liu,
van Rooij and Wang who showed in [17], Theorem 2 that, if G is amenable, then
every complemented ideal in L1(G) has a bounded approximate identity. Their
argument developed further the method used by Rudin in [28]. As a final result in
this direction, cohomological techniques show that, when G is an amenable group,
an ideal I in L1(G) has a bounded approximate identity if and only if it is weakly
complemented, see [9], Proposition VII.2.37 or [3]. As observed above, even in the
case when G is abelian there are many ideals which do not satisfy this condition.

Since finite-codimensional ideals are complemented, the theorem proved here
says nothing new about amenable groups; indeed its conclusion is not as strong
as known results. For non-amenable groups though it is just about as strong as
can be expected (but see the discussion of connected groups below). In the case
when I = L1

0(G), this is shown by the previously cited theorem of Reiter, [21]. More
generally, it is shown in [36] that, if G is not amenable, then no finite-codimensional
ideal in L1(G) has a bounded approximate identity.

Even when G is not amenable, idempotence of certain ideals in L1(G) can be
shown by considering amenable subgroups of G. If G is locally compact and H is
a closed subgroup of G, then

JH = span {f − f ∗ δh : h ∈ H}− ,

is a closed left ideal in L1(G). When H is a normal subgroup JH is a 2-sided ideal.
Then JH has a right bounded approximate identity if and only if H is amenable,
see [22], Theorems 10.1 and 10.2. This fact may be used, in conjunction with a Lie
groups argument, to show that, if G is connected, then finite-codimensional ideals
in L1(G) are idempotent, see [38]. These methods in fact show that L1

0(G) is a sum
of two left ideals each having a right bounded approximate identity, i.e., that the
approximate identities are on the same side.

Free groups with 2 or more generators are neither amenable nor connected and
so the results cited above say nothing about idempotence of finite-codimensional
ideals in their group algebras. There are few factorization theorems applying to
general group algebras. In [34] it was shown that, if I has codimension 1 in L1(G),
then every element of I is a sum of 4 products and in [37] the number of products
required was reduced to 2. The proof in [37] corresponds to part of the argument
used here and we recall the main points of that proof in section 3 below. In [35]
it was shown that, if G is discrete and finitely generated, then each ideal having
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codimension 2 in L1(G) is idempotent, the number of products required increasing
with the number of generators of G. The theorem proved here improves these
results by being applicable to all finite-codimensional ideals, all locally compact
groups and by showing that only 2 products are required in all cases.

The rest of the paper gives the proof of the theorem, which is set out in sections
as follows. In the next section it is shown that to each finite-codimensional ideal I
in L1(G) there corresponds a finite-dimensional, bounded representation ρI of G.
The closure of the range of ρI is a compact group, K, and harmonic analysis on K
plays an essential role in the proof. In the case when I = L1

0(G), K becomes trivial
and the proof reduces to the argument given in [37]. This argument uses ideas
connected with random walks on G which must be incorporated in the general case
and the requisite facts are recalled in section 3. Section 4 uses the random walk
techniques to produce functions in L1(G) which convolve approximately like matrix
coefficients of ρI . In the case when G is amenable these approximations are related
to the weak containment of the irreducible representations of K in the regular
representation of G but are, of course, much weaker. The functions produced in
section 4 are used in section 5 to define L, R and their approximate identities and
to show that I = L+R. The final section discusses some further consequences of
the theorem and some open problems.

2. The representation ρI and compact group K

Let I be a 2-sided, closed ideal with finite codimension in L1(G) and define
V = L1(G)/I. Then V is a finite-dimensional Banach algebra.

Since I is an ideal, it is closed under translation and so the regular representation
of G on L1(G) induces a finite-dimensional representation of G by isometries on V.
Call this representation ρI . Thus

ρI(x)(f + I) = δx ∗ f + I (x ∈ G, f + I ∈ V).

Since ρI : G→ Isometries(V), the closure of ρI(G) in the operator-norm topology
on V is a compact group of isometries on V. Define K = ρI(G)− to be this compact
group, so that ρI : G→ K.

Now the identity representation of K on V is finite-dimensional, continuous and
bounded and so it induces a finite-dimensional representation Θ of L1(K) on V
given by

Θ(φ)v =
∫
K

φ(k)kv dmK(k) (v ∈ V, φ ∈ L1(K)).

Define Ĩ = kernel(Θ). Then Ĩ is a finite-codimensional, closed, 2-sided ideal in
L1(K) and so has a bounded approximate identity, by [28] or [17]. This bounded
approximate identity can be described explicitly in terms of the representation
theory of K.

It follows from [10], Theorem 38.7 that there is a finite set, S, of irreducible
unitary representations, σ, of K such that

Ĩ = {f ∈ L1(K) : f̂(σ) = 0, σ ∈ S},

where f̂(σ) denotes the Fourier transform of f at σ, [10], 28.34.
Let Hσ denote the Hilbert space on which σ represents K and suppose that the

dimension of Hσ is dσ. Choose an orthonormal basis {hα} for Hσ and define

cσαβ(k) = 〈σ(k)hβ , hα〉
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to be the matrix coefficient of σ(k) with respect to this basis, see [10], 27.5. Then
the functions cσαβ are continuous on K and satisfy the orthogonality relations

(1)
∫
K

cσαβ c̄
τ
γδ dmK =

{
1
dσ
, if σ = τ , α = γ and β = δ

0, otherwise,

where c̄τγδ denotes the complex conjugate of cτγδ, see [10], 27.15 and 27.19. They
also satisfy the translation relations

(2) δk ∗ c̄σαβ =
dσ∑
γ=1

cσγα(k)c̄σγβ ,

see [10], Theorem 27.20(i) and convolve as scaled matrix units

c̄σαβ ∗ c̄τγδ =

{
1
dσ
c̄σαδ, if σ = τ and β = γ

0, otherwise,

[10], Theorem 27.20(iii).
The subspace of L1(K) spanned by {c̄σαβ} is an ideal in L1(K) which is isomorphic

to V and also to
⊕

σ∈S B(Hσ), where B(Hσ) ∼= Mdσ . In the following, V will be
identified with this ideal. Thus {c̄σαβ} is a basis for V. The identity element of
V is then the function

(3) z =
∑
σ∈S

dσ

(
dσ∑
α=1

c̄σαα

)
.

The function z: (i) belongs to the centre of L1(K); (ii) is idempotent, i.e.,
z∗z = z; and (iii) L1(K) = Ĩ⊕V, where V = L1(K)∗z and Ĩ = L1(K)∗(δe − z).
These properties of z are shown in [10], Theorem 27.24.

The bounded approximate identity for Ĩ has the form uλ ∗ (δe−z), where (uλ) is
a bounded approximate identity for L1(K). The functions uλ may also be chosen
to be central, see [10], Theorem 28.53.

Unless G itself is compact, there is no function in L1(G) with properties (i)–(iii).
For instance, if I = L1

0(G), then K is the trivial group and z is the constant function
1. However functions can be found in L1(G) which satisfy analogous properties in
an approximate way. In the case when I = L1

0(G) these functions are probability
measures.

3. Probability measures on G and the case when I = L1
0(G)

The case of the theorem when I = L1
0(G) has been proved in [37], where the

ideals L and R are described in terms of a random walk on G.
For each probability measure µ on G define

Jµ =
{
f − f ∗ µ : f ∈ L1(G)

}−
.

Then Jµ is a closed left ideal in L1(G), Jµ ⊂ L1
0(G), and Jµ has a right bounded

approximate identity
(
uλ,n = uλ ∗ (δe − 1

n

∑n
k=1 µ

∗k)
)
, where (uλ) is a bounded

approximate identity for L1(G). Similarly, define

µJ =
{
f − µ ∗ f : f ∈ L1(G)

}−
.

Then µJ is a closed, right ideal in L1(G), µJ ⊂ L1
0(G) and µJ has a left bounded

approximate identity.
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Theorem 3.1 ([37], 3.8). Let µ be a probability measure on G such that µ is
absolutely continuous with respect to Haar measure and such that supp(µ) = G.
Then

L1
0(G) = µJ + Jµ.

Any choice of probability measure satisfying the hypotheses gives such a decom-
position of L1

0(G) and so it is far from being unique.
The argument from [37] is to be incorporated in the current proof and needed

facts and notation from that paper are recalled in this section. An important idea
is the notion of the boundary of the random walk with transition probability µ.
This is defined in probabilistic terms in [7], [11] and [18], VI.2 but the following
functional analytic definition is more appropriate here.

It may be shown, see [37], that the quotient space L1(G)/Jµ becomes an abstract
L1-space if we define its positive cone to be the closure of L1(G)+/Jµ, where L1(G)+

denotes the set of positive functions in L1(G). By the theorem of Kakutani, see
[12] or [16], Theorem 1.1.2, there are a measure space (Ω, ν) and an isometric
isomorphism B : L1(G)/Jµ → L1(Ω, ν) such that B

(
(L1(G)+/Jµ)−

)
= L1(Ω, ν)+.

An action of G on Ω may be defined so that Ω is a measurable G-space, ν is
quasi-invariant and that under the induced action of L1(G) on L1(Ω, ν), B is a
left L1(G)-module isomorphism, see section 2 of [37]. The left action of L1(G)
on L1(Ω, ν) will be denoted (f, ξ) 7→ f.ξ

(
f ∈ L1(G), ξ ∈ L1(Ω, ν)

)
. Thus, if

ξ = B(g + Jµ) ∈ L1(Ω, ν), then

f.ξ = f.B(g + Jµ) = B(f ∗ g + Jµ).

A consequence of this construction of (Ω, ν) is that

(4)
∫
G

f dm =
∫

Ω

B(f + Jµ) dν
(
f ∈ L1(G)

)
.

When µ is absolutely continuous with respect to m and supp(µ) = G, the mea-
sure ν may be chosen such that B(µ+ Jµ) = 1Ω. (In probability theory, µ is said
to be non-degenerate and ν to be µ-stationary in this case. In algebraic terms, µ
is a right modular unit for Jµ.) Then µ.1Ω = 1Ω and B is given by

B(f + Jµ) = f.1Ω

(
f ∈ L1(G)

)
.

If A ⊂ Ω is measurable, then 1A, the characteristic function of A, lies in the
positive cone of L1(Ω, ν), and so the construction of L1(Ω, ν) implies that for every
ε > 0 there is a positive fA ∈ L1(G) such that

(5) ‖1A − fA.1Ω‖L1(Ω,ν) < ε.

If {A1, A2, . . . , Ap} is a measurable partition of Ω, we may choose positive functions
fAi (i = 1, 2, . . . , p), such that ‖1Ai − fAi .1Ω‖L1(Ω,ν) < ε for each i. Moreover,
these functions may be chosen so that∥∥∥∥∥1Ω −

(
p∑
i=1

fAi

)
.1Ω

∥∥∥∥∥
L1(Ω,ν)

< ε.

It follows, by replacing each fAi by fAi ∗ ( 1
n

∑n
k=1 µ

∗k) if necessary, that the func-
tions fAi may be chosen such that

(6)

∥∥∥∥∥µ′ −
p∑
i=1

fAi

∥∥∥∥∥
L1(G)

< ε,
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for some µ′ in the convex hull of the convolution powers of µ.
The decomposition of L1

0(G) may be deduced from properties of the operator T
in B

(
L1(Ω, ν)

)
defined by

Tξ = µ.ξ
(
ξ ∈ L1(Ω, ν)

)
.

This T is a positive, norm 1 operator on L1(Ω, ν). Furthermore, T maps bounded
functions to bounded functions and its restriction to L∞(Ω, ν) also has norm
1. The ergodic theorem for operators, [6], Corollary VIII.5.5, implies then that(∑n

k=1 T
k
)
/n converges in the strong operator topology to a projection P such

that

range(P ) =
{
ξ ∈ L1(Ω, ν) : Tξ = ξ

}
and kernel(P ) =

[
(I − T )L1(Ω, ν)

]−
.

It is shown in [37] that Tξ = ξ only if ξ is constant, whence kernel(T ) has codimen-
sion 1 in L1(Ω, ν), i.e.,

(7) L1
0(Ω, ν) =

{
ξ − µ.ξ : ξ ∈ L1(Ω, ν)

}−
.

Since B(L1
0(G) + Jµ) = L1

0(Ω, ν), see (4), we have

L1
0(G) = µJ + Jµ.

What is required in the following is the fact that

(8) lim
n→∞

1
n

n∑
k=1

µ∗k.ξ
‖·‖−→ Pξ =

(∫
Ω

ξ dν

)
1Ω

(
ξ ∈ L1(Ω, ν)

)
.

4. Some Approximation Results

In this section G will be a σ-compact, locally compact group, K an arbitrary
compact group, and ρ : G → K a continuous group homomorphism with range
dense in K. It is shown how harmonic analysis on K may be pulled back, in an
approximate sense, to G via ρ. Should the irreducible representations of G which
factor through ρ happen to be weakly contained in the regular representation of G,
which occurs only if G is amenable, see [19], Theorem 4.21 or [8], Theorem 3.5.2,
these approximations could be made with the aid of weak containment. They
continue to hold when G is not amenable however. The approximations will be
used in section 4 with K and ρ as defined in section 1.

Let φ be a Borel measurable function on K. Then φ ◦ ρ is a Borel function on
G which will be denoted φ̃. For each measure, λ, on G define the measure φ̃λ by(

φ̃λ
)

(E) =
∫
E

φ̃(x) dλ(x) =
∫
E

(φ ◦ ρ)(x) dλ(x) for all Borel E ⊂ G.

Let λ be a bounded measure on G. Then λ has a direct image under ρ which is the
measure ρ̃(λ) defined on K by

ρ̃(λ)(E) = λ
(
ρ−1 (E)

)
for all Borel E ⊂ K.

The map ρ̃ is a homomorphism from M(G), the convolution algebra of bounded
measures on G, to M(K). In the following ρ̃(λ) will be denoted simply by λ̃. Then

(φ̃λ)∼= φλ̃ (φ ∈ B(K), λ ∈M(G))

and for positive λ

‖φ̃λ‖M(G) = ‖φλ̃‖M(K) (φ ∈ B(K), λ ∈M(G)) ,
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where B(K) denotes the space of bounded Borel measurable functions on K.
Since G is σ-compact, there is a probability measure µ on G which is absolutely

continuous with respect to Haar measure and such that supp(µ) = G. Choose a
fixed probability measure with these properties. (This is the only point at which it
is necessary that G be σ-compact.) The closed, convex hull of the set of convolution
powers of µ will be denoted co(µ).

Since supp(µ) = G and the range of ρ is dense in K, the support of µ̃ is dense
in K. Then, since K is compact, the convolution powers of µ̃ converge to mK , the
Haar measure on K, in the weak-∗ topology and also in the sense that, for every
open subset U ⊂ K,

(9) lim
n→∞

µ̃∗n(U) = mK(U),

see [13] or [25], Theorem VI.3.2.

Theorem 4.1. (i) Let U ⊂ K be open and let ξ ∈ L1(Ω, ν). Then
mK(U)

(∫
Ω
ξ dν

)
1Ω belongs to the norm closure of

{
(1̃Uµ′).ξ : µ′ ∈ co(µ)

}
.

(ii) Let φ ∈ C(K) and ξ ∈ L1(Ω, ν). Then
(∫
K
φdmK

) (∫
Ω
ξ dν

)
1Ω belongs to

the norm closure of
{

(φ̃µ′).ξ : µ′ ∈ co(µ)
}

.

Proof. (i) Suppose for the time being that ξ is non-negative. We establish first that
mK(U)

(∫
Ω
ξ dν

)
1Ω belongs to the weak closure in L1(Ω, ν) of{

(1̃Uµ′).ξ : µ′ ∈ co(µ)
}
.

For this, let {A1, A2, . . . , Ap} be a measurable partition of Ω. Then by (5) and (6)
there are positive functions fAi ∈ L1(G) such that:

fAi .1Ω − 1Ai is arbitrarily small ;(10) ∫
Ω

fAi .1Ω dν =
∫
G

fAi dm = ν(Ai) (i = 1, 2, . . . , p) ; and(11)

fA1 + fA2 + · · ·+ fAp − µ′ is arbitrarily small for some µ′ ∈ co(µ).(12)

Combining with (8) and replacing each fAi by fAi ∗
(

1
n

∑n
k=1 µ

∗k) for some n,
which does not affect (10)–(12), these functions may be chosen to also satisfy:

(13) fAi .ξ −
(∫

Ω

ξ dν
)
1Ai is arbitrarily small for i = 1, 2, . . . , p.

With the aid of (9), these functions may be chosen to satisfy one further condi-
tion. Since mK is translation invariant, (9) implies that for every x ∈ G

(δx ∗ µ∗n)∼(U)→ mK(U) as n→∞.

Since µ is absolutely continuous with respect to Haar measure on G, the map
x 7→ (δx ∗ µ∗n)∼(U) : G→ [0, 1] is continuous for each n. Hence, by the dominated
convergence theorem, we have for every f ∈ L1(G) that

(f ∗ µ∗n)∼(U) =
∫
G

f(x) (δx ∗ µ∗n)∼(U) dm(x)

−→ mK(U)
∫
G

f(x) dm(x) as n→∞.
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In particular,

(fAi ∗ µ∗n)∼(U) n−→
(∫

G

fAi dm
)
mK(U) = ν(Ai)mK(U).

Pulling back to a statement about functions on G yields∫
G

1̃U (fAi ∗ µ∗n) dm =
∥∥1̃U (fAi ∗ µ∗n)

∥∥
L1(G)

n−→ ν(Ai)mK(U).

Hence, once again replacing fAi by fAi ∗µ∗n if necessary, it may be supposed that:

(14)
∥∥1̃UfAi∥∥L1(G)

− ν(Ai)mK(U) is arbitrarily small.

Clearly 1̃UfAi ≤ fAi and so (1̃UfAi).ξ ≤ fAi .ξ. (Here we use that ξ ≥ 0.) Hence,
because Ai ∩Aj = ∅, (13) implies that∫

Aj

(1̃UfAi).ξ dν ≈

{∫
Ω

(1̃UfAi).ξ dν, for i = j

0, for i 6= j.

Since 1̃UfAi and ξ are positive,
∫

Ω
(1̃UfAi).ξ dν =

∥∥1̃UfAi∥∥L1(G)

∫
Ω
ξ dν. With the

aid of (14) this yields that∫
Aj

(1̃UfAi).ξ dν ≈

{
ν(Ai)mK(U)

∫
Ω
ξ dν, if i = j

0, for i 6= j.

Now let F =
∑p
j=1 λj1Aj be a simple function in L∞(Ω, ν). Then we may choose

functions fAi which satisfy the above approximations and such that fA1 + fA2 +
· · ·+ fAp ≈ µ′ for some µ′ in co(µ). Then∫

Ω

(1̃Uµ′).ξF dν ≈
p∑

i,j=1

λj

∫
Aj

(1̃UfAi).ξ dν

≈
p∑
i=1

λiν(Ai)mK(U)
(∫

Ω

ξ dν

)
=

(∫
Ω

F dν

)
mK(U)

(∫
Ω

ξ dν

)
.

This approximation can be made for any finite number of simple functions simul-
taneously by using a partition {A1, . . . , Ap} subordinate to all of them.

Since the simple functions F =
∑p
j=1 λj1Aj , ranging over all measurable parti-

tions {Aj} of Ω and all λj , form a dense subset of L∞(Ω, ν), it follows as claimed
that (

∫
Ω
ξ dν)mK(U)1Ω belongs to the weak closure of {(1̃Uµ′).ξ : µ′ ∈ co(µ)}.

Now {(1̃Uµ′).ξ : µ′ ∈ co(µ)} is convex and so, by [6], Corollary V.2.14, its weak
closure and norm closure are the same. Hence (

∫
Ω
ξ dν)mK(U)1Ω belongs to the

norm closure of this set. Moreover, if ξ1, . . . , ξs are non-negative functions in
L1(Ω, ν) and ε > 0, there is µ′ ∈ co(µ) such that∥∥∥∥(1̃Uµ′) .ξr − (∫

Ω

ξr dν

)
mK(U)1Ω

∥∥∥∥
L1(Ω,ν)

< ε (1 ≤ r ≤ s).

To see this, note that the above arguments will show that
((∫

Ω
ξr dν

)
mK(U)1Ω

)s
r=1

belongs to the weak closure in L1(Ω, ν)s of
{(

(1̃Uµ′).ξr
)s
r=1

: µ′ ∈ co(µ)
}

and then

apply [6], Corollary V.2.14 to L1(Ω, ν)s.
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Finally an arbitrary ξ ∈ L1(Ω, ν) may be written as a linear combination of
4 non-negative functions. Hence, since ξ 7→ (1̃Uµ′).ξ and ξ 7→

∫
Ω
ξ dν are linear,(∫

Ω
ξ dν

)
mK(U)1Ω is the norm limit of a sequence of functions of the form (1̃Uµ′).ξ

(µ′ ∈ co(µ)) for each ξ ∈ L1(Ω, ν).
(ii) A similar argument, using the fact that∫

K

φdµ∗n →
∫
K

φdmK as n→∞

proves the claim when φ is positive, whence it follows for all φ ∈ C(K). Al-
ternatively, the claim may be deduced from (i) by approximating φ mK-almost
everywhere by a linear combination of characteristic functions of open sets. �

The proof does not show which µ′ in co(µ) give the approximations because of
the appeal to [6], Corollary V.2.14 in passing from the weak closure to the norm
closure. For this reason the lemma cannot be stated in the limit form∥∥∥∥∥

(
1̃U

1
n

n∑
k=1

µ∗k

)
.ξ −mK(U)

(∫
Ω

ξ dν

)
1Ω

∥∥∥∥∥
L1(Ω,ν)

−→ 0 as n→∞

despite having

1
n

n∑
k=1

µ̃∗k(U)→ mK(U),
1
n

n∑
k=1

µ∗k.ξ →
(∫

Ω

ξ dν

)
1Ω

and

∥∥∥∥∥f ∗
(

1
n

n∑
k=1

µ∗k

)∥∥∥∥∥
L1(G)

→ ‖B(f + Jµ)‖L1(Ω,ν) as n→∞.

The results below are most conveniently stated in a limit form and to do this it
is necessary to adjoin an ideal point ∞ to co(µ) and to define a topology T of
neighbourhoods of ∞.

The open neighbourhoods of ∞ include the sets:

A(U, ε) = {µ′ ∈ co(µ) : |µ̃′(U)−mK(U)| < ε} ,
where U ⊂ K is open;

B(φ, ε) =
{
µ′ ∈ co(µ) :

∣∣∣∣∫
K

φdµ̃′ −
∫
K

φdmK

∣∣∣∣ < ε

}
,

where φ ∈ C(K);

C(f, ε) =
{
µ′ ∈ co(µ) :

∣∣∣‖f ∗ µ′‖L1(G) − ‖B(f + Jµ)‖L1(Ω,ν)

∣∣∣ < ε
}
,

where f ∈ L1(G);

D(U, ξ, ε) =

{
µ′ ∈ co(µ) :

∥∥∥∥(1̃Uµ′).ξ −mK(U)
(∫

Ω

ξ dν

)
1Ω

∥∥∥∥
L1(Ω,ν)

< ε

}
,

where U ⊂ K is open and ξ ∈ L1(Ω, ν); and

E(φ, ξ, ε) =

{
µ′ ∈ co(µ) :

∥∥∥∥(φ̃µ′).ξ −
(∫

K

φdmK

)(∫
Ω

ξ dν

)
1Ω

∥∥∥∥
L1(Ω,ν)

< ε

}
,

where φ ∈ C(K) and ξ ∈ L1(Ω, ν).
It is clear that any intersection of finitely many sets of the forms A, B and C

is not empty because 1
n

∑n
k=1 µ

∗k will belong to this intersection for n sufficiently
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large. The proof of the Theorem shows that in fact any intersection of finitely many
sets of the forms A to E is not empty. We define the topology on co(µ) so that
these intersections form a filterbase of neighbourhoods of ∞.

Definition 4.2. Let T be the topology on co(µ) with base consisting of all finite
intersections of sets of the forms A to E. If for every ε > 0 there is an M ∈ T such
that

‖Φ(µ′)− L‖ < ε whenever µ′ ∈M
we shall say that

Φ(µ′) −→ L as µ′ →∞.

Theorem 4.1 may now be restated as: for every open U ⊂ K, every continuous
φ on K and every ξ ∈ L1(Ω, ν),(

1̃Uµ′
)
.ξ −→ mK(U)

(∫
Ω

ξ dν

)
1Ω and(

φ̃µ′
)
.ξ −→

(∫
K

φdmK

)(∫
Ω

ξ dν

)
1Ω as µ′ →∞.

Lemma 4.3. Let φ be a continuous function on K, M1 ∈ T and ε > 0. Then there
are µ1 ∈M1 and M2 ∈ T such that∥∥∥∥(φ̃µ1) ∗ µ2 −

(∫
K

φdmK

)
µ2

∥∥∥∥
L1(G)

< ε

for every µ2 ∈M2.

Proof. Theorem 4.1 shows that there is a µ1 ∈M1 such that∥∥∥∥(φ̃µ1).1Ω −
(∫

Ω

φdmK

)
1Ω

∥∥∥∥
L1(Ω,ν)

< ε.

Since L1(Ω, ν) is isometric to L1(G)/Jµ, it follows from the definition of the topol-
ogy T that there is an M2 ∈ T such that∥∥∥∥(φ̃µ1) ∗ µ2 −

(∫
K

φdmK

)
µ2

∥∥∥∥
L1(G)

< ε

for every µ2 ∈M2. �

Lemma 4.4. Let U ⊂ K be an open set such that mK(U) = mK(U) and let ε > 0
be given. Then there is an open neighbourhood, V , of e in K such that

‖φ ∗ 1U − 1U‖L1(K) < ε

for every φ ∈ C(K) satisfying: (i) φ ≥ 0; (ii) supp(φ) ⊂ V ; and (iii)
∫
K
φdmK = 1

Proof. Since mK is a regular measure, there are: a compact set C ⊂ U ; and an open
set W ⊃ U such that mK(W \C) < ε. Choose V to be a symmetric neighbourhood
of e such that V C ⊂ U and V U ⊂W . Then for every φ satisfying (i)–(iii),

(φ ∗ 1U ) (k) =


1, if k ∈ C
0, if k 6= W

0 ≤ c ≤ 1, if k ∈W \ C.

Hence this V satisfies the assertion of the lemma. �
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Definition 4.5. For φ ∈ C(K) and k ∈ K the left translate of φ by k is the
function δk ∗ φ. It will be denoted by φk.

We shall use the fact that if supp(φ) ⊂ V , then supp(φk) ⊂ kV .

Lemma 4.6. Let M1 ∈ T and ε > 0 be given. Let U ⊂ K be an open set such
that mK(U) = mK(U) and let k ∈ K. Choose V ⊂ K as in Lemma 4.4 and let
φ ∈ C(K) satisfy (i)–(iii) of that Lemma. Then there are µ1 ∈ M1 and M2 ∈ T
such that ∥∥∥(φ̃kµ1) ∗ (1̃Uµ2)− (φk ∗ 1U )∼µ2

∥∥∥
L1(G)

< 5ε

for every µ2 ∈M2.

Proof. Let W and C be as chosen in the proof of Lemma 4.4. Then, by translation
invariance of mK , mK(kW \ kC) < ε. By Lemma 4.3 and the definition of T there
are µ1 ∈M1 and M2 ∈ T such that for every µ2 ∈M2∥∥∥(φ̃kµ1) ∗ µ2 − µ2

∥∥∥
L1(G)

< ε,(15)

µ̃2(kW \ kC) < ε,(16) (∫
K

φk dµ̃1

)
µ̃2(U) < mK(U) + ε(17)

and µ̃2(kC) > mK(kC)− ε.(18)

The convolution of φk with 1K is again the constant function and so we have

µ2 = 1̃Uµ2 + 1̃K\Uµ2 = (φk ∗ 1U )∼µ2 + (φk ∗ 1K\U )∼µ2.

Hence (15) may be written∥∥∥[(φ̃kµ1) ∗ (1̃Uµ2)− (φk ∗ 1U )∼µ2

]
+
[
(φ̃kµ1) ∗ (1̃K\Uµ2)− (φk ∗ 1K\U )∼µ2

]∥∥∥
L1(G)

< ε.

We abbreviate the first term inside the norm on the left of this inequality as FU
and the second as FK\U so that the inequality becomes

(19)
∥∥FU + FK\U

∥∥
L1(G)

< ε.

The idea of the proof is to show that FU and FK\U have small mass where their
supports overlap.

Now supp(1U µ̃2) ⊂ U and supp(φkµ̃1) ⊂ kV so that

supp ((φkµ̃1) ∗ (1U µ̃2)) ⊂ kW.

It follows that 1kW ((φkµ̃1) ∗ (1U µ̃2)) = (φkµ̃1) ∗ (1U µ̃2), whence

1̃kW
(

(φ̃kµ1) ∗ (1̃Uµ2)
)

= (φ̃kµ1) ∗ (1̃Uµ2)

because each of these measures is positive. Similarly, supp ((φk ∗ 1U )µ̃2) ⊂ kW and
it follows that

(20) FU = 1̃kWFU = 1̃kCFU + 1̃kW\kCFU .

It may be seen in a similar way that supp(F̃K\U ) ⊂ K \ kC. Hence 1̃kCFK\U = 0
and the intersection of the supports of FU and FK\U is contained in supp(1̃kW\kC).
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Since 0 ≤ φk ∗ 1U ≤ 1 it follows from (16) that ((φk ∗ 1U )µ̃2) (kW \ kC) < ε,
which implies that ∥∥1̃kW\kC ((φk ∗ 1U )∼µ2)

∥∥
L1(G)

< ε.

Also, by (17) we have

(φkµ̃1) ∗ (1U µ̃2) (kW ) < mK(U) + ε

and, since supp(φk) ⊂ kV and V −1C ⊂ U , we have

(φkµ̃1) ∗ (1U µ̃2) (kC) = ((φkµ̃1) ∗ µ̃2) (kC)
> µ̃2(kC)− ε, by (15),
> mK(kC)− 2ε, by (18).

Hence (φkµ̃2) ∗ (1U µ̃2) (kW \ kC) < 3ε and∥∥∥1̃kW\kC ((φ̃kµ1) ∗ (1̃Uµ2)
)∥∥∥

L1(G)
< 3ε.

Therefore ‖1̃kW\kCFU‖L1(G) < 4ε. Hence, by (20),

‖FU‖L1(G) =
∥∥1̃kCFU∥∥L1(G)

+
∥∥1̃kW\kCFU∥∥L1(G)

<
∥∥1̃kC (FU + FK\U

)∥∥
L1(G)

+ 4ε, since 1̃kCFK\U = 0,

≤
∥∥FU + FK\U

∥∥
L1(G)

+ 4ε,

< 5ε, by (19).

�

Theorem 4.7. Let M1 ∈ T and ε > 0 be given. Let φ1, φ2 ∈ C(K). Then there
are µ1 ∈M1 and M2 ∈ T such that∥∥∥(φ̃1µ1) ∗ (φ̃2µ2)− (φ1 ∗ φ2)∼µ2

∥∥∥
L1(G)

< ε

for every µ2 ∈M2.

Proof. Suppose for now that φ1 ≥ 0 and
∫
K
φ1 dmK = 1.

Since mK(K) = 1, there are at most countably many s in φ2(K) such that the
level set Ls = {k ∈ K : φ2(k) = s} has non-zero measure. By covering φ2(K)
with open disks whose boundaries do not contain any such s, we may find complex
values si and mutually disjoint open sets Ui ⊂ K, i = 1, 2, . . . , p, such that

|si − φ2(k)| < ε for k ∈ Ui(21)

and K \

(
p⋃
i=1

Ui

)
has measure 0.(22)

Then |φ2(k)−
∑p
i=1 si1Ui(k)| < ε for all k ∈

⋃p
i=1 Ui.

Note that (22) implies that mK(U i) = mK(Ui) for each i. Hence a symmetric
neighbourhood V of e in K may be chosen as in Lemma 4.4 such that V Ci ⊂ Ui
and V U i ⊂Wi where Ci ⊂ Ui ⊂Wi satisfy

mK(Wi \ Ci) <
ε

5
∑p
i=1 |si|

.

Since K is compact there are k1, k2, . . . , kq in K such that {kjV : j = 1, 2, . . . , q}
is an open cover. Let {u(j) : j = 1, 2, . . . , q} be a partition of unity subordinate
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to this open cover, so that u(j) ∈ C(K) and supp(u(j)) ⊂ kjV for each j and∑q
j=1 u

(j) = 1K . Define

tj =
∫
K

u(j)φ1 dmK

and

ψ(j) =

{
t−1
j δk−1

j
∗ (u(j)φ1), if tj 6= 0

0, if tj = 0.

Then: (i) ψ(j) ≥ 0 (ii) supp(ψ(j)) ⊂ V , (iii)
∫
K
ψ(j) dmK = 1 for each j with tj 6= 0

and

(23)
q∑
j=1

tjψ
(j)
kj

= φ1.

By Lemma 4.6 there are µ1 ∈M1 and M2 ∈ T such that∥∥∥(ψ̃(j)
kj
µ1

)
∗
(
1̃Uiµ2

)
−
(
ψ

(j)
kj
∗ 1Ui

)∼
µ2

∥∥∥
L1(G)

<
ε∑p

i=1 |si|

for 1 ≤ i ≤ p and 1 ≤ j ≤ q and for every µ2 ∈M2. Hence∥∥∥∥∥(ψ̃(j)
kj
µ1

)
∗

(
p∑
i=1

si1̃Uiµ2

)
−

(
ψ

(j)
kj
∗

p∑
i=1

si1Ui

)∼
µ2

∥∥∥∥∥
L1(G)

< ε

for 1 ≤ j ≤ q and for every µ2 ∈M2. Now (23) implies that∥∥∥∥∥(φ̃1µ1

)
∗

(
p∑
i=1

si1̃Uiµ2

)
−

(
φ1 ∗

p∑
i=1

si1Ui

)∼
µ2

∥∥∥∥∥
L1(G)

< ε

for every µ2 ∈M2, where we have used that
∑q
j=1 tj =

∫
K
φ1 dmK = 1.

Since |
∑p
i=1 si1Ui(k)− φ2(k)| < ε for every k not in a set of measure 0,∥∥∥∥∥φ1 ∗ φ2 − φ1 ∗

(
p∑
i=1

si1Ui

)∥∥∥∥∥
∞

< ε.

Furthermore, by choosing a smaller M2 if necessary, it may be supposed that

‖φ1µ̃1‖M(K)

∥∥∥∥∥
(

p∑
i=1

si1Ui

)
µ̃2 − φ2µ̃2

∥∥∥∥∥
M(K)

< ε.

for every µ2 ∈M2. Therefore∥∥∥(φ̃1µ1

)
∗
(
φ̃2µ2

)
− (φ1 ∗ φ2)∼µ2

∥∥∥
L1(G)

< 3ε

for every µ2 ∈M2.
The desired estimate may be obtained for arbitrary φ1 ∈ C(K) by writing φ1 as

a linear combination of four positive functions whose integral over K is 1 and by
scaling ε. �

The final approximation theorem in this section relies on the following lemma,
which is an immediate consequence of Theorem 4.1.
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Lemma 4.8. Let F ⊂ C(K) be compact. Then

(φ̃µ′).1Ω →
(∫

K

φdmK

)
1Ω

uniformly for φ in F as µ′ →∞.

Note that, since K is compact, the set φK = {φk = δk ∗ φ : k ∈ K} is compact
for every φ ∈ C(K).

Theorem 4.9. Let φ ∈ C(K) and f ∈ L1(G). Then(
φ̃(f ∗ µ′)

)
.1Ω →

(∫
K

φdmK

)
f.1Ω as µ′ →∞.

Proof. Note first of all that f ∗ µ′ =
∫
G
f(x)δx ∗ µ′ dm(x) and φ̃(δx ∗ µ′) = δx ∗

(φ̃x−1µ′), whence

φ̃(f ∗ µ′) =
∫
G

f(x)δx ∗ (φ̃x−1µ′) dm(x).

Also f.1Ω =
∫
G
f(x)δx.1Ω dm(x). Hence∥∥∥∥(φ̃(f ∗ µ′)

)
.1Ω −

(∫
K

φdmK

)
f.1Ω

∥∥∥∥
L1(Ω,ν)

=
∥∥∥∥∫

G

f(x)δx.
((

φ̃x−1µ′
)
.1Ω −

(∫
K

φdmK

)
1Ω

)
dm(x)

∥∥∥∥
L1(Ω,ν)

≤
∫
G

|f(x)|
∥∥∥∥(φ̃x−1µ′

)
.1Ω −

(∫
K

φdmK

)
1Ω

∥∥∥∥
L1(Ω,ν)

dm(x).

Now {φ̃x−1 : x ∈ G} ⊂ φ̃K , which is compact, and so(
φ̃x−1µ′

)
.1Ω →

(∫
K

φx−1 dmK

)
1Ω

uniformly for x in G as µ′ → ∞ and
∫
K
φx−1 dmK =

∫
K
φdmK for every x ∈ G

because mK is translation invariant. Hence∥∥∥∥(φ̃x−1µ′
)
.1Ω −

(∫
K

φdmK

)
1Ω

∥∥∥∥
L1(Ω,ν)

→ 0

uniformly for x ∈ G as µ′ →∞. Therefore∥∥∥∥(φ̃(f ∗ µ′)
)
.1Ω −

(∫
K

φdmK

)
f.1Ω

∥∥∥∥
L1(Ω,ν)

→ 0 as µ′ →∞.

�

4.1. Comparison with weak containment. In the case when G is amenable,
the probability measure µ may be chosen so that Ω is a one point set, see [11], [24]
or [37], Theorem 1.2. Then Jµ = L1

0(G) and

f.1Ω =
(∫

G

f dm

)
1Ω (f ∈ L1(G)).

Theorem 4.9 then reduces to the statement that

lim
µ′→∞

∫
G

φ̃(f ∗ µ′) dm =
(∫

K

φdmK

)(∫
G

f dm

)
(φ ∈ C(K), f ∈ L1(G)).
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This restricted case may be seen directly because Jµ being equal to L1
0(G) means

that

(24) lim
n→∞

∥∥∥∥∥f ∗
(

1
n

n∑
k=1

µ∗k

)
−
(∫

G

f dm

)(
1
n

n∑
k=1

µ∗k

)∥∥∥∥∥
L1(G)

= 0

for f ∈ L1(G), which implies that the trivial representation of G is weakly contained
in the regular representation and also implies the Property P1, see [20], Section 8.4
and [8], Sections 3.2, 3.5, 3.7. Then the special case of Theorem 4.9 follows because

lim
n→∞

∫
G

φ̃µ∗n dm = lim
n→∞

∫
K

φdµ̃∗n (φ ∈ C(K))

and, since µ∗n w-∗→ mK , this limit equals
∫
K
φdmK .

That the approximation theorems in this section are much weaker than Property
P1 or weak containment of the trivial representation may be seen by considering
the case when K = {e}. In that case Theorem 4.7 reduces in effect to the familiar
estimate ∥∥∥∥∥µ ∗

(
1
n

n∑
k=1

µ∗k

)
− 1
n

n∑
k=1

µ∗k

∥∥∥∥∥
L1(G)

<
2
n
,

which is of course much weaker than (24). This latter estimate is essential for
the definitions of the bounded approximate identities in Jµ and µJ and also for
the application of the ergodic theorem described in section 3. The estimates in
Theorems 4.1, 4.7 and 4.9 are used in an analogous way in the next section.

5. Proof of the Main Theorem

The proof of the theorem follows the same steps as the case when I is L1
0(G).

First the ideals L andR are defined and it is shown that they have bounded approx-
imate identities. Next the quotient L1(G)/L and its subspace I/L are described
and it is shown that the left bounded approximate identity for R is a bounded
approximate identity for I/L. Finally it is deduced that I = L+R.

Let ρI , K and z be as defined in section 2. As in section 4, let µ be a fixed
probability measure on G which is absolutely continuous with respect to Haar
measure and satisfies supp(µ) = G. We now impose one further condition on µ.

Since G is σ-compact, it has a compact normal subgroup N such that G/N is
separable, see [10], Theorem 8.7. Then mN , the normalized Haar measure on N ,
belongs to the centre of M(G). We require that µ = mN ∗µ, which may be achieved
by replacing µ by mN ∗µ if necessary. The quotient map L1(G)→ L1(G)/Jµ then
factors through the map TN : L1(G) → L1(G/N), see [20], 3.4.4 for the definition
of TN . Since L1(G/N) is separable, it follows that L1(Ω, ν) is separable. (It may
be shown that in fact the quotient map factors through TN even without supposing
that µ = mn ∗ µ, see [37], Proposition 5.2 for a related result.)

5.1. Definition of L and R. For the definition of L, choose probability measures
µ1, µ2, . . . , from co(µ) satisfying

(25) ‖(z̃µn) ∗ (z̃µn+1)− z̃µn+1‖L1(G) <
1
2n

(n = 1, 2, . . . ).
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These may be chosen by applying Theorem 4.7 repeatedly as follows. Since z∗z = z
there are µ1 ∈ co(µ) and M1 ∈ T such that

‖(z̃µ1) ∗ (z̃µ′)− z̃µ′‖L1(G) <
1
2

for every µ′ ∈ M1. Choose such µ1 and M1. Now suppose that µn ∈ co(µ) and
Mn ∈ T have been chosen such that

‖(z̃µn) ∗ (z̃µ′)− z̃µ′‖L1(G) <
1
2n

for every µ′ ∈ Mn. Then by Theorem 4.7, there are µn+1 ∈ Mn and Mn+1 ∈ T
such that

‖(z̃µn+1) ∗ (z̃µ′)− z̃µ′‖L1(G) <
1

2n+1

for every µ′ ∈Mn+1.
It follows from the definition of T that, if C is a countable subset of C(K), then

{µn} may also be supposed to satisfy
∫
G
φ̃ dµn →

∫
K
φdmK as n → ∞ for every

φ in C. Now K is a closed subgroup of a finite dimensional matrix group and is
therefore separable. Hence C(K) has a dense countable subset and {µn} may be
chosen to satisfy

(26) lim
n→∞

∫
G

φ̃ dµn =
∫
K

φdmK for every φ ∈ C(K).

The definition of Jµ implies immediately that f ∗
(

1
n

∑n
k=1 µ

∗k)→ 0 as n→∞ for
every f in Jµ and so it may be further supposed that

(27) lim
n→∞

f ∗ µn = 0 for every f ∈ Jµ.

Now (26) and (27), together with the fact that L1(Ω, ν) is separable, imply that
the filterbase defining the topology T can be chosen to be countable. Hence it may
be supposed that, in this topology, µn →∞ as n→∞.

Define, for positive integers m ≤ n,

um,n =
n∏

r=m

(δe − z̃µr) = (δe − z̃µm) ∗ (δe − z̃µm+1) ∗ · · · ∗ (δe − z̃µn)

(The factors in this product do not commute and so it is necessary to specify the
order of the product.) Then

(28) um,n+1 − um,n = −um,n ∗ (z̃µn+1)

where ‖um,n ∗ (z̃µn+1)‖M(G) <
(

1
2

)n ‖um,n−1‖M(G). Hence

‖um,n+1‖M(G) ≤ ‖um,n‖M(G) +
(

1
2

)n
‖um,n−1‖M(G) ,

which implies that

‖um,n‖M(G) ≤ e ‖um,m‖M(G) ≤ e(1 + ‖z‖∞)

for all m and n. Then, by (28),

‖um,n+1 − um,n‖M(G) ≤
(

1
2

)n
e(1 + ‖z‖∞)

so that {um,n}∞n=1 is a Cauchy sequence for each m.
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Define
um = lim

n→∞
um,n (m = 1, 2, 3, . . . ).

Then for each m

(29) ‖um‖M(G) ≤ e(1 + ‖z‖∞).

(It is not difficult to see that in fact lim supm→∞ ‖um‖M(G) ≤ 1 + ‖z‖L1(K).)
When n ≥ m we have

‖um ∗ un − um‖M(G) = ‖(um − um,n−1) ∗ un‖M(G)

≤ e(1 + ‖z‖∞) ‖um − um,n−1‖M(G)(30)

→ 0 as n→∞.

Also, for f ∈ L1(G) and v ∈ V = L1(G)/I we have

f ∗ v =
∫
G

f(x)ρI(x)v dm(x).

Hence, for each v ∈ V

lim
n→∞

(z̃µn) ∗ v = lim
n→∞

∫
G

z̃(x)ρI(x)v dµn(x)

=
∫
K

z(k)kv dmK(k), by (26),

= v, since z is the unit in V.

Therefore um ∗ v = 0 for every v ∈ V, and it follows that

(31) f ∗ um ∈ I (m = 1, 2, 3, . . . , f ∈ L1(G)).

Define
L = {f ∈ L1(G) : lim

m→∞
f ∗ um = f}.

Then L is a left ideal in L1(G) and is closed because {um} is bounded, see (29).
It follows from (30) that L 6= 0 and, since I is closed, from (31) that L ⊂ I. Let

{uλ}λ∈Λ be a bounded approximate identity for L1(G). Then {uλ ∗um}(λ,m)∈Λ×Z+

is contained in L by (30), is a bounded net by (29) and is a right approximate
identity for L by definition. Therefore L is a closed, left ideal having a right
bounded approximate identity.

The right ideal R is defined in an analogous way. The probability measures µn
must be chosen to satisfy, in addition to (25)-(27),

(32) ‖(z̃µn+1) ∗ (z̃µn)− z̃µn+1‖L1(G) <
1
2n

(n = 1, 2, . . . ).

This condition may be imposed on µn as it is chosen or, alternatively, if µ is chosen
to be a symmetric measure, then it follows automatically from (25). Define, for
m ≤ n,

wm,n = (δe − z̃µn) ∗ · · · ∗ (δe − z̃µm+1) ∗ (δe − z̃µm)

and
wm = lim

n→∞
wm,n.

Next define
R = {f ∈ L1(G) : lim

m→∞
wm ∗ f = f}.



18 G. WILLIS

Then R is a closed right ideal in L1(G) with left bounded approximate identity
{wm ∗ uλ}(m,λ)∈Z+×Λ.

5.2. Description of L1(G)/L and I/L. The quotient space L1(G)/Lmay be seen
to be isomorphic to V⊗̂L1(Ω, ν). For this, define a G-action on V⊗̂L1(Ω, ν) by

x.(v ⊗ ξ) = ρI(x)v ⊗ δx.ξ (v ∈ V, ξ ∈ L1(Ω, ν)).

Then the map x 7→ x.F is continuous and bounded for each F in V⊗̂L1(Ω, ν) and
so we may define an action of L1(G) on V⊗̂L1(Ω, ν) by

f.F =
∫
G

f(x)x.F dm(x) (f ∈ L1(G), F ∈ V⊗̂L1(Ω, ν))

so that V⊗̂L1(Ω, ν) becomes a Banach left L1(G)-module.
Define a left L1(G)-module homomorphism Q : L1(G)→ V⊗̂L1(Ω, ν) by

Q(f) = f.(z ⊗ 1Ω) (f ∈ L1(G)).

Recall that we have identified V with an ideal in L1(K), so that z belongs to
V. It will be useful to have the following description of Q(f) in terms of matrix
coefficients. We abbreviate the double sum

∑
σ∈S

∑dσ
α,β=1 as

∑
σ,α,β .

Lemma 5.1. Q(f) =
∑
σ,α,β

cσαβ ⊗ (dσ c̃σαβf).1Ω.

Proof. By definition

Q(f) = f.(z ⊗ 1Ω)

=
∫
G

f(x)(ρI(x)z ⊗ δx.1Ω) dm(x)

=
∑
σ,β

dσ

∫
G

f(x)(ρI(x)cσββ ⊗ δx.1Ω) dm(x), by (3),

=
∑
σ,α,β

∫
G

dσf(x)c̃σαβ(x)(cσαβ ⊗ δx.1Ω) dm(x), by (2),

=
∑
σ,α,β

c̄σαβ ⊗ (dσ c̃σαβf).1Ω.

�

It may now be shown that Q induces an isomorphism between L1(G)/L and
V⊗̂L1(Ω, ν).

Lemma 5.2. Q is surjective and the kernel of Q equals L.

Proof. Let F be in V⊗̂L1(Ω, ν). Since {cσαβ} is a basis for V, F may be written
uniquely as F =

∑
σ,α,β c

σ
αβ⊗ξσαβ for some {ξσαβ} ⊂ L1(Ω, ν) and there is a constant

M > 0 such that∥∥∥∥∥∥
∑
σ,α,β

cσαβ ⊗ ξσαβ

∥∥∥∥∥∥ ≤
∑
σ,α,β

‖cσαβ‖∞‖ξσαβ‖L1(Ω,ν) ≤M

∥∥∥∥∥∥
∑
σ,α,β

cσαβ ⊗ ξσαβ

∥∥∥∥∥∥ .
The description of the map B : L1(G)/Jµ → L1(Ω, ν) in section 3 implies that
functions fσαβ ∈ L1(G) may be chosen such that ‖fσαβ‖L1(G) < 2‖ξσαβ‖L1(Ω,ν) and
with ξσαβ = fσαβ .1Ω.
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Now by Lemma 5.1

Q

∑
σ,α,β

˜̄cσαβ(fσαβ ∗ µ′)

 =
∑
τ,γ,δ

c̄τγδ ⊗

∑
σ,α,β

dτ c̃
τ
γδ

˜̄cσαβ(fσαβ ∗ µ′)

 .1Ω

and, by Theorem 4.9, as µ′ →∞ the right hand side converges to

∑
τ,γ,δ

c̄τγδ ⊗

∑
σ,α,β

dτ

∫
K

cτγδ c̄
σ
αβ dmKξ

σ
αβ

 =
∑
σ,α,β

c̄σαβ ⊗ ξσαβ , by (1),

= F.

Since for every µ′ ∈ co(µ)∥∥∥∥∥∥
∑
σ,α,β

˜̄cσαβ(fσαβ ∗ µ′)

∥∥∥∥∥∥
L1(G)

≤ 2M

∥∥∥∥∥∥
∑
σ,α,β

c̄σαβ ⊗ ξσαβ

∥∥∥∥∥∥ ,
we have thus shown that for every ε > 0 there is

g =
∑
σ,α,β

˜̄cσαβ(fσαβ ∗ µ′) in L1(G)

with ‖g‖L1(G) ≤ 2M‖F‖ and ‖F −Q(g)‖ < ε. It follows that Q is surjective.
A similar calculation to that in the last paragraph shows that

Q(z̃µ′)→ z ⊗ 1Ω as µ′ →∞.

Hence Q(um) = 0 for each m and it follows that L ⊂ kernel(Q).
On the other hand, suppose that Q(f) = 0. Then, by Lemma 5.1,∑

σ,α,β

c̄σαβ ⊗ (dσ c̃σαβf).1Ω = 0.

Since {c̄σαβ} is a linearly independent set, and by the construction of (Ω, ν), it
follows that

c̃σαβf ∈ Jµ for all σ, α, β.

Hence

f ∗ (z̃µm) =
∫
G

f(x)δx ∗ (z̃µm) dm(x)

=
∫
G

f(x) (δx ∗ z̃) (δx ∗ µm) dm(x)

=
∫
G

f(x)

∑
σ,α,β

dσ c̃
σ
αβ(x)˜̄cσαβ

 (δx ∗ µm) dm(x), by (2) and (3),

=
∑
σ,α,β

˜̄cσαβ
((
dσ c̃

σ
αβf

)
∗ µm

)
,

→ 0 as m→∞, by (27).

Therefore f ∗ um → f as m→∞ and kernel(Q) ⊂ L. �
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It may now be seen that Q(I) = V ⊗ L1
0(Ω, ν). For this, define the operator

R : V ⊗ L1(Ω, ν)→ V on simple tensors by

R(v ⊗ ξ) =
(∫

Ω

ξ dν

)
v

and extend to V ⊗L1(Ω, ν) by linearity. Then it is clear that R is surjective and it
is also an L1(G)-module homomorphism because

R (f.(v ⊗ ξ)) = R

(∫
G

f(x) (ρI(x)v ⊗ δx.ξ) dm(x)
)

=
∫
G

f(x)R(ρI(x)v ⊗ δx.ξ) dm(x)

=
∫
G

f(x)
(∫

Ω

δx.ξ dν

)
ρI(x)v dm(x)

=
(∫

Ω

ξ dν

)∫
G

f(x)ρI(x)v dm(x)

=
(∫

Ω

ξ dν

)
f.v

= f.R(v ⊗ ξ).

Hence R (Q (f)) = R (f.(z ⊗ 1Ω)) = f.z = f + I so that R ◦Q is the quotient map
L1(G)→ L1(G)/I. It follows that Q(I) = kernel(R) = V ⊗ L1

0(Ω, ν).

5.3. The approximate identity for Q(I). Next we show that the left bounded
approximate identity for R is also an approximate identity for V ⊗ L1

0(Ω, ν). For
this, note that for each c̄σαβ in the basis for V and each ξ in L1

0(Ω, ν)

(z̃µm).
(
c̄σαβ ⊗ ξ

)
=

∫
G

z̃(x)µm(x)(ρI(x)c̄σαβ ⊗ δx.ξ) dm(x)

=
dσ∑
γ=1

c̄σγβ ⊗
(
z̃c̃σγαµm

)
.ξ, by (2),

→
dσ∑
γ=1

c̄σγβ ⊗
(∫

K

zcσγα dmK

)(∫
Ω

ξ dν

)
1Ω, as m→∞

= 0,

where we have used Theorem 4.1(ii) and that µm → ∞ as m → ∞. Therefore
wm.(c̄σαβ ⊗ ξ) → c̄σαβ ⊗ ξ as m → ∞ and {wm ∗ uλ}(m,λ)∈Z+×Λ is a left bounded
approximate identity V ⊗ L1

0(Ω, ν) as well as for R.

5.4. The decomposition of I. Let f be in I. Then Q(f) belongs to V⊗L1
0(Ω, ν).

Hence, by Cohen’s factorization theorem, in its module version given in [1], Theorem
11.10 and [10], Theorem 32.22, there are w in R and F in V ⊗ L1

0(Ω, ν) such that
Q(f) = w.F . There is g1 in I such that F = Q(g1) and so we have f = w ∗ g1 + g2

for some g2 in L, showing that f belongs to R+ L as desired.
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6. Corollaries and Further Questions

6.1. Automatic continuity. The theorem implies that finite-codimensional ideals
in group algebras are idempotent, that every element is the sum of 2 products in
fact. It is shown in [5] that various automatic continuity results follow.

Corollary 6.1. Let G be a locally compact group. Then:
(i) each finite-codimensional ideal in L1(G) is closed;

(ii) each derivation D from L1(G) to a finite-dimensional Banach bimodule X
is continuous; and

(iii) each homomorphism from L1(G) to a finite-dimensional Banach algebra is
continuous.

A similar argument to that given in the introduction implies the

Corollary 6.2. Let G be a locally compact group and I be a closed, two-sided
ideal with finite codimension in L1(G). Suppose that {an} is a sequence in I which
converges to 0. Then there are elements u and v in I and sequences {sn} and {tn}
converging to 0 such that

an = sn ∗ u+ v ∗ tn for every n.

Corollary 6.2 implies that, if I is an ideal with finite codimension in L1(G) and
T : I → X is a bimodule homomorphism, then T is continuous. The question of
automatic continuity of derivations from general group algebras is still open. The
standard technique for treating this question, described in [4] and [32], uses two
steps. Step 1 shows that a certain ideal, called the continuity ideal, has finite
codimension in the algebra and step 2 uses an approximate identity argument to
show that the restriction of the derivation to the continuity ideal is continuous. This
approach does succeed in showing that all derivations from C∗-algebras are contin-
uous, [23], and is used in [38] to show that derivations from L1(G) are continuous
for certain groups G. In the case of general locally compact groups, Corollary 6.2
would suffice to carry out step 2 if step 1 could be completed. However our current
understanding of the structure of general group algebras seems inadequate for this.
If the Continuum Hypothesis is assumed, there are discontinuous homomorphisms
from group algebras of infinite abelian and certain other groups, [30].

6.2. One-sided factorization. If G is a connected group, then L1
0(G) is the sum

of 2 left ideals each having a right bounded approximate identity, see [38]. Similar
arguments to those above then show that left L1

0(G)-module homomorphisms from
L1

0(G) are continuous. It is not known whether, for a general locally compact group
G, if I is a finite-codimensional ideal in L1(G) and {an} is a sequence in I which
converges to 0, there are an integer k and sequences {c(i)n } which converge to 0 and
elements b(i) in I, 1 ≤ i ≤ k, such that

(33) an =
k∑
i=1

c(i)n ∗ b(i) (n = 1, 2, 3, . . . ),

i.e., whether there is a one sided factorization of null sequences in I. Such a
factorization could be shown for `10(G), where G is an arbitrary discrete group,
if it could be shown for free groups. Let Fk be the free group on k generators
x1, x2, . . . , xk. Then the k left ideals [`1(Fk) ∗ (δe − δxm)]−, m = 1, 2, . . . , k,
each have a right bounded approximate identity and their sum is dense in `10(Fk).
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However this does not suffice to prove that (33) holds in `10(Fk). It may be that
factorization properties in `10(Fk) distinguish between the groups Fk, k = 1, 2, 3,
. . . , see Question 27 on page 467 of the volume in which [5] appears. Note that
parts (d) and (e) of this question are answered in the present paper.

6.3. Homological unitality. The algebra A is said to be homologically unital
or H-unital if the complex

(34) {0} ←−−−− A d←−−−− A⊗A d←−−−− A⊗A⊗A d←−−−− . . .

where

d : a1 ⊗ · · · ⊗ an 7→
n−1∑
i=1

(−1)i−1a1 ⊗ · · · ⊗ aiai+1 ⊗ · · · ⊗ an,

is acyclic, see [40]. An algebra is H-unital if it has a unit and a Banach algebra
is H-unital if it has a bounded approximate identity. Suppose that A is a finite-
codimensional ideal in the group algebra L1(G). Then, as shown in [17], when G
is amenable A has a bounded approximate identity and so in this case A is H-
unital. The Main Theorem implies that the first homology group of (34) vanishes
for arbitrary G but it is not known in general whether a finite-codimensional ideal
in L1(G) can be H-unital when G is not amenable. What is known is that `10(Fk)
is not H-unital for k ≥ 2 because the complex (34) is not exact at the second
place: this follows from the same calculation which shows that the second bounded
cohomology group of Fk is non-zero, see [33], Chapter 8. Now the existence of a
bounded approximate identity in L1

0(G) characterises amenability of G, [21], and
it may be that H-unitality of L1

0(G), or perhaps the condition that some of the
homology groups of (34) after the first vanish, characterises amenability or some
interesting larger class of locally compact groups. The one sided factorization which
holds when G is connected might help to show that some further homology groups
vanish in this case.

6.4. Extension to other ideals. A natural question to ask is: which ideals in
L1(G) may be decomposed as in the Main Theorem? It is shown in [38] that, if G
is discrete or connected and N is a closed normal subgroup, then the ideal

(35) IN = {f ∈ L1(G) :
∫
N

f(xn)mN (n) = 0 for almost every x in G}

has such a decomposition. It can be shown that a necessary condition for I to have
such a decomposition is that I should be weakly complemented. Furthermore, a
subspace of an L1-space is weakly complemented if and only if the quotient by
that subspace is a local L1-space in the sense defined in [15] and so an equivalent
necessary condition is that L1(G)/I should be a local L1-space. That the quo-
tient space has this form in the cases where such a decomposition is known may
be seen directly because finite-dimensional spaces are isomorphic to L1-spaces and
L1(G)/IN ∼= L1(G/N). Recall too that L1(G)/Jµ ∼= L1(Ω, ν) and that this iso-
morphism was used in an essential way in the application of the ergodic theorem
in section 2 and in the proof of Theorem 3.1. This suggests the

Conjecture 6.3. The ideal I in L1(G) has a decomposition

I = L+R,
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where L is a closed left ideal with a right bounded approximate identity and R is a
closed right ideal with a left bounded approximate identity if and only if I is weakly
complemented.

Further evidence for the conjecture is the fact that, when G is amenable, I has
a bounded approximate identity if and only if it is weakly complemented, see [9],
Proposition VII.2.37 and [3]. Also, when G is abelian, the ideal I is weakly com-
plemented if and only if it is the kernel of a Γ closed element of the coset ring of Γd,
where Γ denotes the dual group of G and Γd denotes Γ with the discrete topology,
see [17], Theorem 12. A similar description of the weakly complemented ideals in
L1(G) when G is non-abelian, might allow the techniques used here and in [39] to
be used to prove the conjecture. However such a characterization of weakly com-
plemented ideals in non-commutative group algebras seems to be beyond current
techniques.

6.5. One last question. We have seen that each element in L1
0(G) is a sum of 2

products and is in fact a product when G is amenable. It is not known whether
each element in L1

0(G) is a product when G is not amenable. This question is
particularly intriguing in the case when G is a free group.
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