THE CONTROL OF CHROMOSOME SEGREGATION IN MOUSE OOCYTES

Simon I.R. Lane BSc (Hons I)

PhD Thesis

April 2012

The thesis contains no material which has been accepted for the award of any other degree or diploma in any university or other tertiary institution and, to the best of my knowledge and belief, contains no material previously published or written by another person, except where due reference has been made in the text. I give consent to this copy of my thesis, when deposited in the University Library, being made available for loan and photocopying subject to the provisions of the Copyright Act 1968.

Simon Lane, 2nd April 2012

I hereby certify that the work embodied in this thesis contains published papers of which I am a joint author. I have included as part of the thesis a written statement, endorsed by my supervisor, attesting to my contribution to the joint publications (Appendix I).

Simon Lane, 2nd April 2012

This page is dedicated to Dr. C. K. Mercer

Acknowledgements

My sincerest thanks to Prof. Keith Jones for his tireless supervision and guidance, and for all the sound advice he has offered throughout my PhD.

I want to thank my family, who have been very understanding and supportive through my student years. In particular, Mum, for her endless encouragement, support and belief, and Dad too for his unique mix of wisdom and humour.

Thank you to the members of the Jones' lab; Janet, Jessica, Julie, Keith, Kyra, Michelle, Phoebe, Sophia, Suzanne, Wai and Yan, who made my PhD such an enjoyable experience.

Lastly I thank Charlene, for sticking by me through the good times and the trying times and for making every day worthwhile.

TABLE OF CONTENTS

	Table of contents			
	abstract			
-	ble of Figures t of commonly used abreviations			
List of commonly used abreviations 1 Introduction				
-	Aims of this introduction	15 15		
1.2	Cell cycle machinery	15		
	Cyclin dependent kinase 1	15		
	The anaphase promoting complex	16		
1.2.3	The spindle assembly checkpoint	17		
1.2.4	Molecular basis for the spindle assembly checkpoint	19		
1.3	Meiosis I	22		
1.3.1	Meiosis overview: Two divisions, two arrests	22		
1.3.2	Primordial germ cell differetiation	25		
1.3.3	Recombination	25		
1.3.4	Germinal vesicle arrest	26		
1.3.5	Follicle recruitment and growth	28		
1.3.6	Resumption of meiosis I	29		
1.3.7	Early prometaphase I: Spindle assembly	29		
1.3.8	Late prometaphase: The SAC	30		
1.3.9	Sister mono-orientation	32		
1.3.10	Kinetochore capture and error correction	32		
1.3.11	Checkpoint criteria	33		
1.3.12	Metaphase	34		
1.3.13	Anaphase	35		
1.3.14	Exit from meiosis I	36		
1.3.15	Aneuploidy in oocytes	37		
1.4	Thesis Aims	38		
1.4.1	The spindle assembly checkpoint in mouse oocytes	38		
1.4.2	Meiosis I checkpoint criteria	38		
1.4.3	The SAC role of aurora kinases in meiosis	38		
1.4.4	Timing of meiosis I exit	38		
2	Methods and Materials	40		
2.1	Mouse handling and dissection	40		
2.1.1	Ethics	40		
2.1.2	Breeding	40		
2.1.3	Hormonal priming	40		
2.1.4	Dissection	40		
-				

Oocyte collection and handling Handling pipette manufacture	41 41
Oocyte collection	41
Oocyte culture	41
M2 media	41
	42
	42
Milirinone and oocyte synchronization	42
Western Blot	44
	44
	44
	44
	45
-	45
	45
•	46
-	46 46
-	40
	49
-	49
DNA Sequencing	50
mDNA curthosic	50
mikina synunesis	50
mRNA synthesis Linearisation and DNA preparation	50
-	
Linearisation and DNA preparation	50
Linearisation and DNA preparation RNA polymerase reaction	50 52
Linearisation and DNA preparation RNA polymerase reaction RNA purification and preparation	50 52 52
Linearisation and DNA preparation RNA polymerase reaction RNA purification and preparation Oocyte fixation	50 52 52 54
Linearisation and DNA preparation RNA polymerase reaction RNA purification and preparation Oocyte fixation General techniques	50 52 52 54 54
Linearisation and DNA preparation RNA polymerase reaction RNA purification and preparation Oocyte fixation General techniques Fixing for kinetochore counting	50 52 52 54 54 54
Linearisation and DNA preparation RNA polymerase reaction RNA purification and preparation Oocyte fixation General techniques Fixing for kinetochore counting Fixing to preserve stable microtubules	50 52 52 54 54 54 54 54
Linearisation and DNA preparation RNA polymerase reaction RNA purification and preparation Oocyte fixation General techniques Fixing for kinetochore counting Fixing to preserve stable microtubules Immunofluorescence	50 52 54 54 54 54 54 54
Linearisation and DNA preparation RNA polymerase reaction RNA purification and preparation Oocyte fixation General techniques Fixing for kinetochore counting Fixing to preserve stable microtubules Immunofluorescence General principles	50 52 52 54 54 54 54 54 54 54
Linearisation and DNA preparation RNA polymerase reaction RNA purification and preparation Oocyte fixation General techniques Fixing for kinetochore counting Fixing to preserve stable microtubules Immunofluorescence General principles Antibodies used in this thesis	50 52 52 54 54 54 54 54 54 54 55
Linearisation and DNA preparation RNA polymerase reaction RNA purification and preparation Oocyte fixation General techniques Fixing for kinetochore counting Fixing to preserve stable microtubules Immunofluorescence General principles Antibodies used in this thesis Microinjection	50 52 52 54 54 54 54 54 54 55 55
Linearisation and DNA preparation RNA polymerase reaction RNA purification and preparation Oocyte fixation General techniques Fixing for kinetochore counting Fixing to preserve stable microtubules Immunofluorescence General principles Antibodies used in this thesis Microinjection Injection pipette preparation	50 52 52 54 54 54 54 54 54 54 55 56 56
Linearisation and DNA preparation RNA polymerase reaction RNA purification and preparation Oocyte fixation General techniques Fixing for kinetochore counting Fixing to preserve stable microtubules Immunofluorescence General principles Antibodies used in this thesis Microinjection Injection pipette preparation Loading pipette preparation	50 52 52 54 54 54 54 54 54 55 56 56 56
	Oocyte cultureM2 mediaMEM mediaPreparation and addition of drugs to culture mediaMilrinone and oocyte synchronizationWestern BlotSample preparationGel loading and protein separationProtein transferImmunolabelling and chemiluminescenceCloningPlasmid design and cloning strategyGene amplificationRestirction digestLigationTransformation of competent cellsPCR screeningPlasmid preparation

	2.10.1	General principles	61
	2.10.2	Fluorchromes and light sources	61
	2.10.3	Dichroic mirrors and optics	64
	2.10.4	Objectives	64
	2.10.5	Cameras/detectors	64
	2.11	Oocyte imaging	65
	2.11.1	Imaging of fixed samples	65
	2.11.2		65
	2.11.3	Confocal microscopy	65
	2.12	Image analysis and figure preparation	66
	2.12.1		66
	2.12.2	,	67
	2.12.3		67
	2.12.4	Calculating spindle dimensions	68
	2.12.5		68
	2.12.6	Cyclin B1-GFP analysis	68
3		The SAC in meiosis I	71
	3.1	Introduction	71
	3.2	Progression of meiosis I in mouse oocytes	72
	3.2.1	Development of the MI spindle.	72
	3.2.2	Bivalent arrangement during maturation	73
	3.2.3	Formation of kinetochore and non-kinetochore microtubule fibres during	
	prome	taphase I.	76
	3.2.4	Destruction of endogenous cyclin B1 and securin in prometaphase I.	84
	3.2.5	Destruction of exogenous cyclin B1-GFP in prometaphase I.	84
	3.2.6	Loss of exogenous Mad2 from chromosomes during prometaphase I	87
	3.2.7	Timing of loss of endogenous Mad2 from kinetochores and APC activation.	87
	3.3	Movie Figure legends	92
	3.4	Discussion	92
	3.4.1	Initial spindle formation and bivalent organisation	92
	3.4.2	Spindle polarisation and bivalent alignment, orientation and stretching.	93
	3.4.3	The timing of k-fibre formation, SAC satisfaction and APC activation in meio	osis I. 94
	3.4.4	Cyclin B1 destruction and exit from meiosis I	96
	3.4.5	Comparing relative timings	97
	3.4.6	Summary	97
4		Non-aligned bivalents in meiosis I	100
	4.1	Introduction	100
	4.2	Results	101
		F	Page 7

	4.2.1	Non-aligned chromosomes are a common feature of metaphase I.	101
	4.2.2	Non-aligned chromosomes are bivalents	101
	4.2.3	Non-aligned bivalents recruit Mad2	103
	4.2.4	Non-aligned bivalents have microtubule attachments	108
	4.2.5	Live imaging of non-aligned bivalents	112
	4.2.6	Non-aligned bivalents do not inhibit the APC.	113
	4.2.7	The fate of non-aligned bivalents	116
	4.3	Movie Figure Legends	118
	4.4	Discussion	120
	4.4.1	Non alignment is a common phenomenon in oocytes, but not somatic cells	120
	4.4.2	Non-aligned bivalents, Mad2, tension, inter-kinetochore distance and microtu	bule
	attach	ment	121
	4.4.3	A model for chromosome alignment	122
	4.4.4	Non-alignment, APC activity and aneuploidy	122
	4.4.5	Non-alignment as a relevant mechanism for generating aneuploidy	125
	4.4.6	Summary	126
5		The effects of the pan-Aurora inhibitor ZM447439 on meiosis I	127
	5.1	Introduction	127
	5.2	The effects of ZM447439 on oocyte meiosis I	129
	5.2.1	Dose determination for the use of ZM447439 and nocodazole	129
	5.2.2	ZM447439 addition in prophase does not block GVBD	129
	5.2.3	ZM447439 addition from GVBD onward caused an aborted polar body extrusion	on
			131
	5.2.4	Prometaphase addition of ZM447439 accelerates PBE	135
	5.2.5	Incubation with ZM447439 prevents formation of a metaphase II spindle.	139
	5.2.6	ZM447439 effect depends on timing of addition	139
	5.2.7	ZM447439 can overcome nocodazole induced arrest in MI oocytes.	142
	5.2.8	Addition of ZM447439 reverses nocodazole inhibition of the APC.	145
	5.2.9	ZM447439 treatment causes an increase in aneuploidy	148
	5.3	Discussion	151
	5.3.1	Auroras are not required for GVBD but are required for maturation.	151
	5.3.2	Inhibition of Auroras throughout prometaphase blocks oocyte maturation.	151
	5.3.3	Auroras have temporally distinct roles during maturation.	152
	5.3.4	Aurora Kinase inhibition in early prometaphase shortens meiosis I.	153
	5.3.5	Aurora Kinases are required to correct kinetochore microtubule attachments	154
	5.3.6	Aurora Kinases reduce aneuploidy	155
	5.3.7	Is Aurora SAC function direct or indirect?	156
	5.3.8	Summary	156
6		Control of anaphase timing and exit from meiosis I	158

6.1	Introduction	158
6.2 6.2.1 6.2.2 6.2.3		159 159 159 161
6.3 6.3.1 6.3.2	APC activity and exit from meiosis I CDK activity prevents maximal APC activity Aurora Kinase activity prevents maximal APC activity	165 165 167
$\begin{array}{c} 6.4 \\ 6.4.1 \\ 6.4.2 \\ 6.4.3 \\ 6.4.4 \\ 6.4.5 \\ 6.4.6 \\ 6.4.7 \end{array}$	Could cyclin B1 levels determine the timing of anaphase? The mitotic exit network The APC is not maximally active following SAC satisfaction in MI	169 170 171 171 173 174 174 175
7	General discussion	176
7.1	Summary	176
7.2 7.2.1 7.2.2	Discussion Aneuploidy in oocytes APC activity	176 176 177
8	Appendix	180
8.1 Apper 8.2	Published works contained in this thesis ndix I. Declaration of Authorship Buffers and solutions	180 180 181
Apper Apper Apper Apper Apper Apper 8.3	ndix II. PMSG ndix III. M2 Media ndix IV. MEM Media ndix V. General Buffering solutions ndix VI. Western Blotting solutions ndix VII. Fixation solutions ndix VIII. Immunofluorescence Solutions ndix IX. Microinjection Solutions Imaging and fluorochrome information ndix X. Spectral information for common Fluorochromes	181 181 182 182 182 183 184 185 185 185 185
0.4	Image J macros	103

Appendix XI.	Mad2 / CREST measurment macro	185
Appendix XII.	Bivalent measurement macro	188
Bibliography		193

ABSTRACT

This thesis explores the first meiotic division in mouse oocytes, using imaging of fluorescent chimeras by confocal and epifluorescence microscopy in real time and of fixed specimens following immunocytochemistry. The activities of the spindle assembly checkpoint (SAC) and the anaphase promoting complex (APC) are examined with respect to the timing of germinal vesicle breakdown, spindle formation, chromosome alignment, and polar body extrusion. The activation of the APC, an event that in mitosis is prevented until proper attachment of all chromosomes is achieved, is shown not to be strictly coupled to bivalent alignment in prometaphase I. Instead the metaphase to anaphase transition is begun following the attachment of the majority of kinetochores and is characterised by sub-optimal activity of the APC. It is shown that this uncoupling of the SAC and chromosome alignment has the potential to generate aneuploidy. These findings have implications for the high aneuploidy rates deriving from the first meiotic division, which are often responsible for miscarriage in humans.

TABLE OF FIGURES

Figure 1.1 The role of the APC in controlling anaphase onset18
Figure 1.2 - Overview of progression from prophase arrest through to metaphase II arrest23
Figure 1.3 - Chromosome attachment and segregation in meiosis I and II24
Figure 1.4 - Formation of crossovers during prophase of meiosis I27
Figure 2.1 - Timing of GVBD after release from milrinone arrest43
Figure 2.2 - Map of the pMDL vector47
Figure 2.3 - Inverted microscope customized for microinjection57
Figure 2.4 - Microinjection of mouse oocytes60
Figure 2.5 - Light path through an inverted microscope with an excitation filter and a dichroic mirror
pair for imaging GFP62
Figure 2.6 - Analysis of fluorescent protein intensity during meiosis I
Figure 3.1 - The formation of the MI spindle74
Figure 3.2 Bivalent behaviour during meiosis I77
Figure 3.3 - Spindle formation occurs early in prometaphase but stable k-fibres do not form until 4-5 h.
79
Figure 3.4 - Kinetochores are not connected by microtubule fibres at 4 h81
Figure 3.5 - Kinetochores are connected by microtubule fibres at 5 h
Figure 3.6 - The majority of kinetochores acquire microtubule attachment 4-5 h83
Figure 3.7 - Degradation of endogenous cyclin B1 and securin during prometaphase I85
Figure 3.8 - Degradation of cyclin B1-GFP during meiosis I86
Figure 3.9 - Loss of Mad2-YFP from chromosomes during prometaphase I
Figure 3.10 - Loss of endogenous Mad2 from kinetochores is coincident with APC activation89
Figure 3.11 - Overview of the timing of events in meiosis I98
Figure 4.1 - Non aligned chromosomes can be observed following APC activation102
Figure 4.2 - Non-aligned chromosomes are identified as bivalents104
Figure 4.3 - Non-aligned bivalents recruit more Mad2 than aligned bivalents106
Figure 4.4 - Non-aligned bivalents form microtubule attachments110
Figure 4.5 - Live imaging of a non-aligned bivalent using CenpC-EGFP to visualise kinetochores114
Figure 4.6 - Non-aligned bivalents do not delay anaphase115
Figure 4.7 - Non-aligned bivalents can persist until anaphase and result in non-disjunction
Figure 4.8 - Possible mechanism by which non-aligned bivalents achieve alignment and orientation.
Figure 5.1 - Percentage PBE following addition of 3-30μM ZM447439130
Figure 5.2 - ZM447439 addition at the time of GVBD results in a block to PBE

Figure 5.3 - ZM447439 addition from GVBD disrupts chromosome congression and segregation134
Figure 5.4 - Percentage of PBE after addition of ZM447439 between 0-4 h136
Figure 5.5 - ZM447439 addition at 2 h causes resorption of polar bodies137
Figure 5.6 - Aurora Kinase inhibition in early prometaphase quickens meiosis I
Figure 5.7 - Aurora Kinase inhibition increases non-alignment and lagging chromosomes140
Figure 5.8 - Oocytes treated with ZM447439 from 4 h fail to assemble a normal metaphase II spindle.
Figure 5.9 - Effect of ZM447439 addition for the first two h of maturation or after 6 h of maturation on
PBE timing143
Figure 5.10 - Aurora Kinase inhibition can overcome the SAC144
Figure 5.11 - Effects of ZM447439 and nocodazole on spindle formation146
Figure 5.12 - ZM447439 addition initiates cyclin B1 degradation in nocodazole arrested oocytes147
Figure 5.13 - The effect of monastrol treatment on a mouse oocyte spindles
Figure 5.14 - ZM447439 addition increases aneuploidy in mouse oocytes
Figure 6.1 - The effect of various doses of roscovitine on GVBD160
Figure 6.2 - The effect of roscovitine addition to oocytes at various times during Meiosis I
Figure 6.3 - Anaphase in oocytes with high levels of cyclin B1-GFP following roscovitine addition163
Figure 6.4 - The effect of roscovitine on APC activity166
Figure 6.5 - The effect of ZM447439 on APC activity168
Figure 7.1 - Possible effect of aging on chromosome cohesion and microtubule attachment

LIST OF COMMONLY USED ABREVIATIONS

- APC Anaphase Promoting Complex
- CDK Cyclin Dependent Kinase
- CPC Chromosomal Passenger Complex
- GVBD Germinal Vesicle Breakdown
- ICC Immunocytochemistry
- MCC Mitotic Checkpoint Complex
- MI Meiosis I
- MII Meiosis II
- PBE Polar Body Extrusion
- PGC Primordial Germ Cell
- SAC Spindle Assembly Checkpoint
- SC Synaptonemal Complex