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ABSTRACT 

This thesis explores the first meiotic division in mouse oocytes, using imaging of 

fluorescent chimeras by confocal and epifluorescence microscopy in real time and of 

fixed specimens following immunocytochemistry. The activities of the spindle assembly 

checkpoint (SAC) and the anaphase promoting complex (APC) are examined with 

respect to the timing of germinal vesicle breakdown, spindle formation, chromosome 

alignment, and polar body extrusion. The activation of the APC, an event that in mitosis 

is prevented until proper attachment of all chromosomes is achieved, is shown not to 

be strictly coupled to bivalent alignment in prometaphase I. Instead the metaphase to 

anaphase transition is begun following the attachment of the majority of kinetochores 

and is characterised by sub-optimal activity of the APC. It is shown that this uncoupling 

of the SAC and chromosome alignment has the potential to generate aneuploidy. 

These findings have implications for the high aneuploidy rates deriving from the first 

meiotic division, which are often responsible for miscarriage in humans. 
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