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Abstract 
 

The Reflux Classifier is an industrial technology that separates particles on the basis of 

size and / or density. It consists of a conventional vertical fluidised bed with a section of 

parallel inclined channels positioned above. The research described in this thesis is an 

examination of the effects of using “narrow” inclined channels (with widths as fine as 

1.77 mm) on the performance of a Reflux Classifier.  

 

The finest channels studied prior to this work were nominally 7 mm wide. The 

understanding of particle elutriation from these relatively wide inclined channels was 

developed by Laskovski et al. (2006). They noted that there was an increased 

preferential re-suspension of low density particles as the channel spacing narrowed. 

However, this re-suspension phenomenon was not fully investigated, thus, the 

mechanisms for this re-suspension were not fully understood or accounted for in their 

generalised correlation. 

Experiments were performed in laboratory-scale vessels, with 1 m long channels, 

inclined at 70° to the horizontal. Channel widths from 18 mm down to 1.77 mm were 

investigated. Batch experiments were performed using well-defined feeds with particles 

of a single density (PVC, glass ballotini and ilmenite) and also using an industrial coal 

sample. It was found that: 1) relatively narrow channels produced a previously 

unobserved size suppression effect; and 2) the maximum particle size to channel width 

ratio for optimum performance was determined to be 0.33. A theoretical model, with no 

adjustable parameters, was developed which successfully predicted and explained the 

observed results. The main cause of the suppression of size effects is that when laminar 



 

 

xx

flow occurs in narrow channels, the effective fluid velocity experienced by the particles 

lying on the channel wall is proportional to their size. 

 

Further experiments were performed in continuous mode with simultaneous feed 

addition, and underflow and overflow removal.  A number of different industrial coal 

feeds were used. Comparing these results against those from the more traditional wider 

channelled Reflux Classifiers, it was demonstrated that the size suppression effect 

observed in batch narrow channel operations also occurred in continuous operations. 

The new narrow 5.5 mm channel Reflux Classifier was capable of processing an 

extended size range of - 2.0 mm + 0.25 mm while achieving a separation density of 

1560 kg/m
3
 and Ep of 0.062. Where Ep is a measure of how accurately the separation 

device performed, with an Ep of “0” being a perfect splitting of a stream over a point 

and an Ep of “1” showing that there was no preferential segregation in the splitting of 

the stream. The traditional wide 30 mm or 120 mm channel Reflux Classifier could only 

achieve for a similar separation density and feed size range of - 2.0 mm + 0.25 mm 

could only typically produce an Ep of 0.15 (55). While the narrow channels operate best 

at a capacity of 20 t/(m
2
h), allowing significant separation down to 0.075 mm, 

increasing the processing rate of the classifier is possible, though at a diminished 

capacity. At 30 t/(m
2
h) the narrow channel Reflux Classifier will competently process 

particles as fine as 0.125 mm and at throughputs of ~ 40 t/(m
2
h) the channel Reflux 

Classifier would only be able to process a feed range of - 2 mm + 0.25 mm which is 

comparable to the maximum capacity of the more traditional wide channel Reflux 

Classifier.  

 



 

 

xxi

A final set of continuous experiments were undertaken to investigate the performance of 

a two-stage operation in which a narrow 5.5 mm channel gravity Reflux Classifier 

performed an initial gravity separation and a second wider 12 mm channel Reflux 

Classifier performed a de-sliming step to remove the high ash content fines. It was 

concluded for the de-sliming vessel that a separation of less than 0.05 mm with a very 

low Ep (0.009), accounting for a variance of less than 0.02 mm between 25th and 75th 

pentiles of the curve, is achievable. It was discovered that: 1) the presence of a dense 

autogenuous bed seems to be detrimental to the operations of the de-sliming vessel; 2) 

without a bed present the superficial channel velocity is the primary controlling factor in 

particle elutriation; and 3) the processing area of the de-sliming vessel probably needs 

to be at least double that of its preceding continuous gravity Reflux Classifier. 

 



 

 

xxii

Publications 
 

Journal Articles: 

• Zhou, J., Walton, K., Laskovski, D., Duncan, P., Galvin K.P. (2006). "Enhanced 

separation of mineral sand using the Reflux Classifier", Minerals Engineering 19 

(15), 1573-1579. 

• Galvin, K. P., Walton, K., Zhou, J. (2009). "How to elutriate particles according to 

their density", Chemical Engineering Science 64, 2003 - 2010. 

•  Galvin, K. P., Zhou, J., Walton, K. (2010). " Application of closely spaced inclined 

channels in gravity separation of fine particles", Minerals Engineering 23 (4), 326 -

338. 

• Walton, K., Zhou, J., Galvin, K. P. (2010). "Processing of fine particles using 

closely spaced channels", Advanced Powder Technology 21 (4), 386 - 391. 

 

Conference Papers: 

• Macpherson, S., Moghtaderi, B., Walton, K., Galvin, K. P. (2007) "Dry processing 

using an air-Magnetite dense medium in a Reflux Classifier", 37th Annual 

Australian Chemical Engineering Conference, CHEMECA 2007, Melbourne, 

Australia. 

• Macpherson, S., Callen, A., Walton, K., Galvin, K. P. (2008), "Dry processing of 

coal in air-sand Reflux Classifier with vibration",12th Australian Coal Preparation 

Society Conference 2008, Sydney, Australia. 



 

 

xxiii

• Walton, K., Zhou, J., Galvin, K. P. (2008). "Processing of fine particles using 

closely spaced inclined channels", 12th Australian Coal Preparation Society 

Conference 2008, Sydney, Australia. 

• Walton, K., Zhou, J., Galvin, K. P. (2008). "Processing of fine particles using 

closely spaced inclined channels"39th Annual Australian Chemical Engineering 

Conference, CHEMECA 2009, Perth, Australia 

• Galvin, K. P., Walton, K., Zhou, J. (2010). "Gravity separation and classification of 

fine coal using the hydrodynamics of inclined channels", Thirteenth Australia Coal 

Preparation Conference, Mackay Convention & exhibition Centre - Mackay. 

• Galvin, K. P., Walton, K., Zhou, J. (2010). "Fine gravity separation in the Reflux 

Classifier, exploiting a high shear rate, laminar flow mechanism", XXV 

International Mineral Processing Congress, Brisbane, Australia. 

• Galvin, K. P., Callen, A., Spear, S., Walton, K., Zhou, J. (2010). "Gravity separation 

of coal in the Reflux Classifier - new mechanisms for suppressing effects of particle 

size", XVI International Coal Preparation Congress, Lexington, Kentucky. 

 



 

 

xxiv

Nomenclature 
 

Symbol Description       Units  

 

B  Depth of channel or vessel     m 

C  Constant       m
2
.s

-2
 

CD  Coefficient of drag      - 

CDNS  Non-spherical Coefficient of drag    - 

d  Diameter of a particle      m 

dsph  Diameter of a spherical particle    m 

d*  Non-spherical diameter     m 

D  Dispersion Coefficient     - 

Dh  The hydraulic width of channel, pipe or vessel  m 

F  Throughput Advantage     - 

FG  Particles gravitational force     m.s
2
 

FB  Particles buoyancy force     m.s
2
 

FD  Particles drag force      m.s
2
 

Ff  Frictional force      m.s
2
 

g  Gravitational force      m.s
2
 

gx  Gravitational force in the “x” direction   m.s
2
 

gy  Gravitational force in the “y” direction   m.s
2
 

gz  Gravitational force in the “z” direction   m.s
2
 

L  Length of the incline      m 

Lf  Lift Force       N 

n  Richard and Zaki constant     - 



 

 

xxv

P  Pressure       N.m
-2

 

PA  Particles acceleration      m.s
2
 

Re  Fluids Reynolds number     - 

ReP  Particles Reynolds number     - 

ReS  Shear Reynolds number     - 

ReSed  Sedimentary Reynolds number    - 

ReSph  Spherical Particle Reynolds number    - 

ReT  Particles velocity at terminal free settling Reynolds number - 

UCP  Critical particle velocity     m.s
-1

 

UC  Inclined channel velocity     m.s
-1

 

UP  Particles velocity      m.s
-1

 

U'P  Particles velocity in the inclined channel   m.s
-1

 

UHS  Hindered settling particle velocity    m.s
-1

 

Useg  Particle segregation velocity     m.s
-1

 

UT  Particles velocity at terminal free settling   m.s
-1

 

U'T  Particles terminal velocity in the inclined channel  m.s
-1

 

U*  Non-spherical particle velocity    m.s
-1

 

U  Fluid velocity       m.s
-1

 

U'  Average Fluid Velocity     m.s
-1

 

UI  Interstitial fluid velocity     m.s
-1

 

US  Fluid slip velocity      m.s
-1

 

Ux  Fluid velocity in the “x” direction    m.s
-1

 

Uy  Fluid velocity in the “y” direction    m.s
-1

 

Uz  Fluid velocity in the “z” direction    m.s
-1

  

  



 

 

xxvi

V  Average fluid velocity     m.s
-1

 

x  Distance in the “x” direction m 

y  Distance in the “y” direction m 

z  Distance in the “z” direction m 

z'  Perpendicular distance between inclined channels  m 

 

Greek Letters 

 

Symbol Description       Units    

 

∆  Change/difference      - 

φ  Solids concentration      - 

φsph  Sphericity of a particle     - 

γ  Fluid shear rate      s
-1 

η  Segregation Efficiency     - 

µ  Viscosity       N.s.m
-2

 

µS  Suspension viscosity       N.s.m
-2 

π  Pi        - 

ρF  Fluid density       kg.m
-3

  

ρm  Fluidised medium density     kg.m
-3

 

ρP  Particle density      kg.m
-3

 

ρs  Suspension density      kg.m
-3

 

 

∂  Partial differential operator     -  


