
On a Control Lyapunov Function based
Anytime Algorithm for Control of

Nonlinear Processes ?

Vijay Gupta ∗ Daniel E. Quevedo ∗∗

∗Department of Electrical Engineering, University of Notre Dame,
Notre Dame, USA. vgupta2@nd.edu

∗∗ School of Electrical Engineering & Computer Science, The
University of Newcastle, NSW 2308, Australia. dquevedo@ieee.org

Abstract: We present an algorithm to calculate control inputs when available processing
resources are time-varying. The basic idea is to calculate the control input to decrease a
Lyapunov function value as compared to as many time steps in the past as allowed by the
system to be controlled and the available processing resources. We analyze the stability of
the resulting closed loop system using stochastic Lyapunov functions and indicate, through
numerical simulations, that the performance gains obtained can be significant.

Keywords: Anytime control, Cyberphysical systems, Stochastic Lyapunov analysis

1. INTRODUCTION

A lot of attention has recently been focused on networked
and embedded control (see, e.g., the special issue Antsaklis
and Baillieul (2007) and the references therein). One
key issue which makes networked control system design
challenging is the presence of non-ideal communication
links. Another aspect, which has been studied less, but
plays an important role especially in embedded systems
is that of time-varying and limited processing power. As
more and more objects are equipped with micro-processors
that are responsible for multiple functions such as control,
communication, data fusion, system maintenance and so
on, the implicit assumption traditionally made in control
about the processor being able to execute the desired
control algorithm at any time will break down. Similarly,
if a remote controller controls many devices, multiple
control tasks will compete for shared processor resources,
leading to constrained availability of processing resources
for any particular control loop. It is, thus, of interest to
study control in the presence of limited and time-varying
availability of processing power.

Owing to its importance, there are a growing number of
works in this area. The impact of finite computational
power has been looked at most closely for techniques such
as receding horizon control (RHC). McGovern and Feron
(1998, 1999) presented bounds on computational time for
achieving stability for specific optimization algorithms, if
the processor has constant, but limited, computational re-
sources. Henriksson and Akesson (2004); Henriksson et al.
(2002) studied the effect of not updating the control input
in continuous time systems for the duration of the compu-
? The research was supported in part by the National Science
Foundation under the grants NSF:0834771 and NSF:0846631 for
the first author and under Australian Research Council’s Discovery
Projects funding scheme (project number DP0988601) for the second
author.

tational delay for optimization algorithms based on active
set methods. Also related are works on event-triggered and
self-triggered control systems (Tabuada (2007); Wang and
Lemmon (2009)) as also online sampling (Cervin et al.
(2010)), where a control input is calculated aperiodically,
but on demand, depending on the process state. Finally,
we would like to mention the related work in scheduling of
control tasks (Caccamo et al. (2002); Cervin et al. (2002);
Seto et al. (1996)) that looks at the problem of processor
queue scheduling, when control calculation is merely one
of the tasks in the queue.

One approach popular in real-time systems to tolerate the
presence of time-varying processing resources is to develop
anytime algorithms that provide a solution even with
limited processing resources, and refine the solution as
more resources become available (see, e.g., Horvitz (1990);
Huang and Cheng (1995); Millan-Lopez et al. (1994);
Yoshomito et al. (1992); Zilberstein (1996) for applications
in some representative areas). In control, however, there
are very few methods available for developing anytime con-
trollers. A notable work is that of Bhattacharya and Balas
(2004) who focused on linear processes and controllers,
and presented a controller that updated a different number
of states depending on the available computational time.
However, the available computational time was required
to be known to the controller a priori. Another impor-
tant work is that of Greco et al. (2007), who proposed
switching among an existing set of controllers that may
require different execution times. In Gupta (2009, 2010),
an anytime algorithm for systems with multiple inputs was
presented, that was based on calculating the components
of the control vector sequentially, and refining the process
model as more processing time becomes available.

In this paper, we develop an anytime control algorithm
that provides better performance as more processing time
is available. The basic idea is to utilize the extra processing

time to refine the control input to decrease the Lyapunov
function as compared to the value at as many time steps in
the past as possible. Thus, the effect of not being able to
compute an input at a previous time step can be mitigated.
For general nonlinear processes, we analyze stochastic
stability of the closed loop system and indicate through
numerical simulations that the increase in performance
through the proposed algorithm can be significant.

Although similar in some respects to our work in Gupta
and Quevedo (2010), this work differs in many important
ways. The algorithm in Gupta and Quevedo (2010) is
based on utilizing the extra processing time to calculate
possible control inputs in the future, similar to a control
trajectory in RHC. The effect of the varying processing
time appeared as the number of time steps into the
future that the control inputs were calculated for. These
inputs were stored and used at those time steps where the
processing availability was so low that no control input
could be calculated. In the present work, however, only
one control input is calculated at every time step. The
control input is assigned the value 0 to begin with, and the
input is refined as more processing time becomes available
to ensure that the Lyapunov function value when that
input is used decreases as compared to the value further
into the past. Thus, the increase in the Lyapunov function
value due to the non-calculation of a control input at any
time step can be mitigated in the future. Even though
the analysis techniques based on stochastic stability are
similar in the two works, the fundamental algorithms are,
thus, quite different.

The paper is organized as follows: We begin in Section 2 by
formulating the problem, and stating the assumptions. In
Section 3, we present the proposed algorithm, and analyze
the stochastic stability for general nonlinear processes in
Section 4. We numerically illustrate the improvement in
performance using the proposed algorithm in Section 5.

2. PROBLEM FORMULATION

Process Model: We consider discrete-time nonlinear
MIMO processes with state x(k) ∈ Rn and input u(k) ∈
Rp, evolving as

x(k + 1) = f(x(k), u(k)), k ≥ 0 (1)
where f(0, 0) = 0 and the initial state x(0) = x0

is arbitrarily distributed. The state and control input
may additionally have to satisfy constraints of the form
h(x(k), u(k)) ∈ S for some set S. For pedagogical ease, we
assume full state feedback at the controller.

We assume the existence of a Lyapunov function V (x(k)) ≥
|x(k)| for the process (1) such that if sufficient compu-
tational resources were available, a baseline control law
exists that yields the control input κ(x(k)) that satisfies
h(x(k), κ(x(k))) ∈ S and ensures that

V (x(k + 1)) < εV (x(k)),
where x(k + 1) = f(x(k), κ(x(k))) and 0 < ε < 1 is given.
We assume V (0) = 0. For future notational ease we define

Vk , V (x(k)).
Remark 1. In the absence of model inaccuracies and dis-
turbances, off-line state predictions would also have zero
error. Presence of such inaccuracies, however, will neces-
sitate feedback. The algorithms that we propose will use

feedback whenever permitted by the available computa-
tional resources. As a first step, in this work, we concen-
trate on the nominal model described by (1) to analyze
the stability of the system. We will analyze the impact of
disturbances and model inaccuracies in future work.

Processing Time Availability: In the classical formula-
tion, it is assumed that the processing resources available
to the controller are sufficiently large so that the controller
can generate the control input by essentially discounting
any processing resource constraint. However, as discussed
earlier, in networked and embedded systems, the computa-
tion resources available at every time step for calculating
the control input may vary. For simplicity, and without
loss of generality, we map the availability of processing
resources at time step k to availability of execution time
that is available for the control calculation at time k. We
make the following assumptions:

(1) The execution time τ(k) available at any time k is
an independent and identically distributed sequence,
with a well-defined probability mass function. While
stochastic models for either the availability of the
execution time, or the time requirement for execu-
tion of a task, are less common than deterministic
models, we note that this framework also has a long
history (e.g., Liu et al. (2005); Zhou et al. (1999)).
One reason to consider this framework is that if some
tasks have stochastic execution time requirements,
the availability of the processor for other tasks can
be modeled by a probabilistic function. In any case,
similar ideas as developed in this paper can be applied
to deterministic models as well.

(2) The controller does not have a priori knowledge of the
value of τ(k). This is a realistic assumption in shared
systems where the controller task can be preempted
by other computational tasks.

Problem Description: The first concern for a control
system design is stability. Since the execution time avail-
ability is time-varying in a stochastic manner, the control
input is random, and thus the system (1) evolves stochasti-
cally. Various stability notions for stochastic systems have
been studied in the literature (e.g., Ji et al. (1991); Kush-
ner (1971)). We are interested in the following definitions:
About the equilibrium point x = 0, the system (1) is

• stochastically stable, if the conditional expectation

E

[∞∑
k=0

xT (k)x(k)|x(0)

]
< ∞,

where the expectation is taken with respect to the
random process {τ(k)}.

• mean square stable, if the conditional expectation
lim

k→∞
E

[
xT (k)x(k)|x(0)

]
< ∞,

where the expectation is taken with respect to {τ(k)}.
Even with a controller that implements the baseline con-
trol law κ(x(k)) that stabilizes the process if sufficient exe-
cution time is available, sporadic control input calculation
due to time-varying execution time availability may lead
to performance degradation, or even stability loss.

Two streams of work have been proposed to minimize the
performance degradation:

(1) The first approach (e.g., Tabuada (2007); Wang and
Lemmon (2009)) is to utilize event triggered or time
triggered approaches to schedule the calculation of
control inputs at the minimal frequency required
to maintain stability / performance guarantees. The
available execution time at the times when the control
input is not calculated may be ‘stored’ for future use.
Alternatively, this approach can be viewed as assum-
ing that the scheduling algorithm at the processor
provides sufficient amount of time to calculate the
control input, if the input is calculated at a sufficiently
low frequency.

(2) The second approach (e.g., Greco et al. (2007); Gupta
(2009)) is to design anytime control algorithms. Any-
time algorithms are algorithms that progressively re-
fine the solution as more time becomes available.
Thus, depending on the execution time available, a
different ‘quality’ of control input is generated. As
more execution time becomes available, the control
input is refined leading to better performance.

In this paper, we are interested in the second approach.
We will propose and analyze an anytime control algorithm
that utilizes any extra execution time available to enhance
stability and performance of the closed loop system.
Assumption 2. As part of the problem formulation, it is
also important to specify the value of the control input,
which is used if the controller is unable to calculate a new
control input u(k) at time k. Several choices can be made,
including applying zero control, the control input u(k−1),
and so on. As Schenato (2009) has pointed out, different
choices may be optimal for different plant parameter
values. For sake of concreteness, we shall assume that if
the new control input cannot be calculated, zero control
input (u(k) = 0) is applied. Our approach can be easily
generalized for other choices of the control inputs, e.g., if
the previous control input u(k − 1) is held.

3. ALGORITHM DESCRIPTION

The algorithm is based on the following basic idea:
The control input aims at decreasing a Lyapunov function
of the closed loop system. At some instances, the execution
time may be insufficient to calculate such a control input
and the Lyapunov function value may increase. The algo-
rithm aims at countering the effect of such increases at the
time steps where enough time is available so that a con-
trol value can be calculated that decreases the Lyapunov
function value as compared to n time steps ago, where n
increases as more execution time becomes available. Thus,
while a control input is available at any level of execution
time, the quality of the control input, as measured by
the decrease in the Lyapunov function value it achieves,
increases as more execution time becomes available.

More formally, we define at every time k, a number Nk

such that the control uk is calculated to ensure that
Vk+1 < εVk+1−Nk

(while satisfying the other constraints).

The algorithm proceeds as follows:

Algorithm A1 At every time k, do

(1) Set Nk = 1. Also set ūk = 0.

(2) Check if
Vk+1 < εVk+1−Nk

,

where 0 < ε < 1 is given, using uk = ūk. If so, go
to Step 3, else calculate uk to a value that ensures
Vk+1 < εVk+1−Nk

, and set ūk to this value.
(3) If more execution time is available, set Nk = Nk + 1

and go to Step 2, else set k = k + 1 and go to Step 1.

Thus, at the time steps when more processor time is
available, a control input that decreases the Lyapunov
function compared to more time steps in the past is
calculated. Thus, the effect of not being able to calculate a
control input at an intermediate step can be counteracted.
Remark 3. In the presentation above, there is no bound
assumed on Nk. If such bounds exists (e.g., due to memory
constraints), they can be readily imposed. The analysis
presented in Section 4 can also be extended to this case in
a straight-forward manner.
Remark 4. The algorithm is anytime in the sense that
a control input value is available at any execution time
availability. As more execution time becomes available, the
quality of the input is refined. However, note that each of
the steps in the algorithm is assumed to be an atomic
operation. If any of these steps is interrupted, the last
calculated value of ūk is used as the control input.
Remark 5. The algorithm calculates a control input that
guarantees a decrease of the Lyapunov function as com-
pared to past time steps. Alternatively, one could also
conceive an algorithm in which a control input trajectory
of varying length that reduces the Lyapunov function at
future time steps (Gupta and Quevedo (2010)).
Remark 6. The algorithm does not require knowledge of
the probability distribution of the processor time availabil-
ity. Such descriptions are even allowed to be time varying.
However, in the analysis of the algorithm, see Section 4,
we will require the execution time τ(k) to be independent
and identically distributed with a given probability mass
function.
Remark 7. The algorithm implicitly assumes that a con-
trol input exists that reduces the Lyapnuov function value
as compared to its value Nk time steps ago. In other words,
the algorithm assumes that the Lyapunov function along
with the system dynamics equation provides a control
Lyapunov function. For Nk = 1, the control Lyapunov
function is V (f(x(k), u(k))). If the control inputs applied
from time j = k−Nk +1 to j = k− 1 be denoted by ū(j),
then the control Lyapunov function is V (f(f(· · · f(x(k −
Nk+1), ū(k−Nk+1)) · · · , ū(k−1)), u(k))). Thus, the algo-
rithm requires the existence of a common control Lyapunov
function going back Nk time steps. This requirement may
also impose an upper bound on the possible values of Nk.

4. STABILITY ANALYSIS

We will next identify conditions under which the baseline
algorithm and the proposed algorithm stabilize the system.
We begin with the baseline algorithm. Under the baseline
algorithm, the control u(k) = κ(x(k)) is calculated if
sufficient processor time is available at step k; otherwise
no control is calculated. In keeping with Assumption 2,
if no new control input can be calculated, a zero control
input (u(k) = 0) is applied. (The arguments can be easily

generalized for other choices of the control inputs, e.g.,
holding the previous control input u(k − 1).) Thus, if p0

denotes the probability that the controller is unable to
calculate any control input, then the process evolution is
similar to that of a networked control system in which
the controller is able to communicate with the actuator
with a probability 1 − p0 at any time step. Stability
conditions for such systems have been derived both for
linear systems (Gupta and Martins (2010); Ishii (2009))
and nonlinear systems (Quevedo and Nešić (2010)). Our
subsequent analysis follows these works closely.

In the sequel, we make the following assumption:
Assumption 8. There exists 1 ≤ α < 1/p0 such that

V (f(x, 0)) ≤ αV (x), ∀ valid state values x. (2)

Remark 9. This assumption bounds the rate of increase of
the Lyapunov function when no control input is calculated
and applied. As an instance, for a scalar linear process with
parameter a, the assumption implies pa2 < 1, which has
been shown to be necessary and sufficient for stabilizability
in Gupta and Martins (2010).
Theorem 10. Consider the baseline control policy κ(x(k)),
the above problem formulation, and suppose that Assump-
tion 8 holds. The process is stable (in both stochastic and
mean square sense) if

p0α + (1− p0)ε < 1. (3)

Proof. First we note that x(k) is a Markov process. If we
denote the event that a control input is calculated at time
k by ∆k = 1 and the event that the input is not calculated
by ∆k = 0, we can calculate

E[Vk+1 − Vk|Vk] = p0E[Vk+1 − Vk|Vk,∆k = 0]
+ (1− p0)E[Vk+1 − Vk|Vk,∆k = 1]

≤ p0(α− 1)Vk + (1− p0)(ε− 1)Vk

= (p0α + (1− p0)ε− 1)Vk.

Thus, if (3) holds, (Kushner, 1971, Chapter 8.4.2, Theorem
2) implies mean square and stochastic stability.

For the proposed algorithm A1, the stability analysis is
more subtle, bearing similarities to that of randomly sam-
pled systems (Kushner and Tobias (1969); Xie and Xie
(2009)). Define the time steps at which a control input is
calculated by the sequence {ki} for i ∈ {0, 1, 2, · · · }, or,
equivalently, the set K. Furthermore, denote the time be-
tween two successive instances of calculation of the control
input by ∆i, thus ∆i = ki+1 − ki. For ease of exposition,
we will assume k0 = 0 1 . Denote the probability that the
highest value of Nk for which the controller calculates a
control input is j by pj for j ≥ 0. Since the processor time
availability is i.i.d., the probabilities pj are independent
of the specific time k at which the inputs are calculated.
Thus, as before, p0 denotes the probability of no control
being calculated. We begin with the following lemma:
Lemma 11. Consider the algorithmA1, the above problem
formulation, and suppose that Assumption 8 holds. Then

E[Vki+1|x(ki)] =
∞∑

m=1

pmΩmVki−1+1,

1 The more general case when k0 > 0 can be treated similarly and
without much technical difficulty.

where

Ωm = (1− p0)ε
(

1
1− p0

+ α
pm−1
0

1− p0α

)
≥ 0.

Proof. Since the processor time availability is i.i.d., ∆i is
distributed geometrically as

Prob(∆i = j) = (1− p0)p
j−1
0 , j ∈ {1, 2, 3, · · · }.

To calculate E[Vki+1|x(ki)], we use the total probability
formula twice. First, we condition on the maximum value
N of Nki

for which the controller calculates a control input
at time ki. Thus,

E[Vki+1|x(ki)] = E[E[Vki+1|x(ki), N]]

=
∞∑

m=1

pmE[Vki+1|x(ki), N = m]. (4)

The quantity E[Vki+1|x(ki), N = m] can be calculated by
conditioning further on ∆i−1. This gives

E[Vki+1|x(ki), N = m] = E[E[Vki+1|x(ki), N = m,∆i−1]]

=
∞∑

j=1

(1− p0)p
j−1
0 E[Vki+1|x(ki), N = m,∆i−1 = j].

Using Assumption 8 and Step 2 of algorithm A1, we obtain

E[Vki+1|x(ki), N = m,∆i−1 = j]

=
{

εVki−1+1 j ≤ m

αj−mεVki−1+1 j > m.

Thus,

E[Vki+1|x(ki), N = m] = (1− p0)
(m∑

j=1

pj−1
0 ε

+
∞∑

j=m+1

pj−1
0 αj−mε

)
Vki−1+1 = ΩmVki−1+1.

Substitution into (4) yields the result. 2

Having established Lemma 11, we can analyze the stability
conditions when algorithm A1 is used.
Theorem 12. Consider the algorithm A1 and suppose that
Assumption 8 holds. If

Ω ,
∞∑

m=1

pmΩm < 1,

where the terms Ωm have been defined in Lemma 11, then
the closed loop system is stochastically stable and mean
square stable.

Proof. From Lemma 11, if Ω < 1, then Vki+1 is a
stochastic Lyapunov function for the closed loop function
at the time instants {ki}. Moreover, since {x(ki)} is a
Markov chain, (Kushner, 1971, Chapter 8.4.2, Theorem
2) implies exponential stability at ki ∈ K:

E[Vki+1|x(k0)] ≤ ΩiVk0+1, i = {1, 2, · · · }. (5)

For the time instants k /∈ K, i.e., at those time steps when
no control input is calculated, we can proceed as follows:

First note that, as in the proof of Lemma 11,

E[
ki+1∑

l=ki+1

Vl+1|x(ki)] =

(1− p0)
∞∑

j=1

pj−1
0 E[

ki+1∑
l=ki+1

Vl+1|x(ki),∆i = j].

Since ε < 1 < α, we bound

E[
ki+1∑

l=ki+1

Vl+1|x(ki),∆i = j] ≤
j−1∑
l=1

αlE[Vki+1|x(ki)]

=
α(αj − 1)

α− 1
E[Vki+1|x(ki)].

Thus,

E[
ki+1∑

l=ki+1

Vl+1|x(ki)]

≤
∞∑

j=1

α(1− p0)p
j−1
0 (αj−1 − 1)

α− 1
E[Vki+1|x(ki)]

= βE[Vki+!|x(ki)],

where β , αp0/(1− p0α). Using (5), we then obtain

E[
km+1∑

l=k0+1

Vl+1|x(k0)] ≤ βE[
m∑

i=0

ΩiVk0+1|x(k0)].

Since 0 < Ω < 1, the right hand side converges as m →∞,
and E[

∑∞
l=k0+1 Vl+1|x(k0)] < ∞.

On the other hand, by assumption, we have that V (x(k)) ≥
|x(k)|. This implies stochastic stability (and thus mean
square stability) at all time instants.

5. NUMERICAL EXAMPLES

We next illustrate that the performance gains by using the
proposed algorithm can be significant. We first consider
the following process, taken from Nešić et al. (1999):

x(k + 1) = x(k) + 0.2(x3(k) + u(k)). (6)
The associated baseline control law is given by

κ(x(k)) = −x3(k)− x(k)
with Lyapunov function Vk = x2(k).

To evaluate performance, we consider the quadratic cost

J = E

[∞∑
k=0

(
10x2(k) + u2(k)

)]
, (7)

where the expectation is with respect to the availability of
execution time as described below.

We assume that the execution time available is uniformly
distributed in the interval [0, 1]. The execution time can
also be viewed as the fraction of the maximum possible
processor time that is available at any time step. Figure 1
shows the percentage improvement in cost achieved as a
function of the time taken to calculate one control input
for the proposed algorithmA1, as compared to the baseline
algorithm. A Monte Carlo simulation with a total of 500
simulations, each of them lasting 100 time steps, was used
to generate the data. The figure shows that a significant
improvement in performance can be achieved by using the
proposed algorithm.

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2
1.9

2

2.1

2.2

2.3

2.4

2.5

Time to Calculate one Control Input

C
os

t A
ch

ie
ve

d

Baseline algorithm
Proposed algorithm

Fig. 1. Cost achieved as a function of execution time
required to calculate one control input for (6).

1 1.05 1.1 1.15 1.2 1.25 1.3 1.35 1.4 1.45
0

2

4

6

8

10

12

14

16

18

20

Spectral radius of process

C
os

t a
ch

ie
ve

d

Baseline algorithm
Proposed algorithm

Fig. 2. Cost (7) as a function of the spectral radius of (8).

As the system to be controlled becomes more unstable,
the proposed algorithm can be expected to achieve better
performance compared to the baseline algorithm. Figure 2
illustrates this intuitive effect for the linear process

x(k + 1) = αx(k) + u(k), (8)
with the same cost as in (7) as the scalar α is varied. The
execution time availability is the same as in the previous
example. The time required for calculation of one control
input is assumed to be 0.2. We note that even the stability
region can be seen to improve with the proposed algorithm

6. CONCLUSIONS AND FUTURE DIRECTIONS

We proposed an anytime control algorithm based on
calculating the control input to decrease the Lyapunov
function value as compared to as many time steps in the
past as allowed by the available processing resources at
every time step. Thus, the effect of not being able to
calculate the control input at some time steps can be
mitigated. We analyzed the stability of the resulting closed
loop system using stochastic Lyapunov functions. Simple

numerical examples illustrated the performance gain with
the proposed algorithm.

This is but a first step towards a more complete theory
of anytime control algorithms. We have not yet obtained
analytic expressions for performance for general non-linear
systems, or considered the effect of model imperfections.
Finally, a joint design of the anytime algorithm and a
processor scheduler can also be considered.

REFERENCES

Antsaklis, P. and Baillieul, J. (2007). Special issue on
networked control systems. Proceedings of the IEEE,
95(1), 9–28.

Bhattacharya, R. and Balas, G.J. (2004). Anytime control
algorithms: Model reduction approach. AIAA Journal
of Guidance, Control and Dynamics, 27(5), 767–776.

Caccamo, M., Buttazzo, G., and Sha, L. (2002). Handling
execution overruns in hard real-time control systems.
IEEE Transactions on Computers, 51(7), 835–849.

Cervin, A., Eker, J., Bernhardsson, B., and Arzen, K.E.
(2002). Feedback-feedforward scheduling of control
tasks. Real-Time Systems, 23(1-2), 25–53.

Cervin, A., Velasco, M., Mart, P., and Camacho, A.
(2010). Optimal on-line sampling period assignment:
Theory and experiments. IEEE Transactions on Control
Systems Technology. To appear.

Greco, L., Fontanelli, D., and Bicchi, A. (2007). Al-
most sure stability of anytime controllers via stochastic
scheduling. In Proceedings of the IEEE Int. Conf. on
Decision and Control, 5640–5645.

Gupta, V. (2009). On an anytime algorithm for control.
In Proceedings of the IEEE Int. Conf. on Decision and
Control.

Gupta, V. (2010). On a control algorithm for time-
varying processor availability. In Proceedings of the
Hybrid Systems, Control and Computation Conference
(HSCC).

Gupta, V. and Martins, N.C. (2010). On stability in the
presence of analog erasure channels between controller
and actuator. IEEE Transactions on Automatic Con-
trol, 55(1), 17–179.

Gupta, V. and Quevedo, D.E. (2010). On anytime control
of nonlinear processes through calculation of control se-
quences. In IEEE Conference on Decision and Control.
Submitted.

Henriksson, D. and Akesson, J. (2004). Flexible implemen-
tation of model predictive control using sub-optimal so-
lutions. Technical Report TFRT-7610-SE, Department
of Automatic Control, Lund University.

Henriksson, D., Cervin, A., Akesson, J., and Arzen, K.E.
(2002). On dynamic real-time scheduling of model
predictive controllers. In Proceedings of the 41st IEEE
Conference on Decision and Control.

Horvitz, E.J. (1990). Computation and Action under
Bounded Resources. Ph.D. thesis, Department of Com-
puter Science and Medicine, Stanford University.

Huang, X. and Cheng, A.M.K. (1995). Applying imprecise
algorithms to real-time image and video transmission. In
Proceedings of the International Conference on Parallel
and Distributed Systems, 96–101.

Ishii, H. (2009). Limitations in remote stabilization over
unreliable channels without acknowledgements. Auto-
matica, 45, 2278–2285.

Ji, Y., Chizeck, H.J., Feng, X., and Loparo, K.A. (1991).
Stability and control of discrete-time jump linear sys-
tems. Control Theory Advanced Technology, 7(2), 247–
270.

Kushner, H.J. (1971). Introduction to Stochastic Control.
Holt, Rinehart and Winston Inc.

Kushner, H.J. and Tobias, L. (1969). On the stability
of randomly sampled systems. IEEE Transactions on
Automatic Control, AC-14(4), 319324.

Liu, D., Hu, X., Lemmon, M., and Ling, Q. (2005).
Scheduling tasks with markov-chain constraints. In
Proceedings of the 17th Euromicro Conference on Real-
time Systems.

McGovern, L.K. and Feron, E. (1998). Requirements and
hard computational bounds for real-time optimization
in safety critical control systems. In Proceedings of the
IEEE Conference on Decision and Control.

McGovern, L.K. and Feron, E. (1999). Closed-loop stabil-
ity of systems driven by real-time dynamic optimization
algorithms. In Proceedings of the IEEE Conference on
Decision and Control.

Millan-Lopez, V., Feng, W., and Liu, J.W.S. (1994). Using
the imprecise computation technique for congestion con-
trol on a real-time traffic switching element. In Proc. of
the International Conference on Parallel and Distributed
Systems, 202–208.

Nešić, D., Teel, A.R., and Kokotović, P.V. (1999). Suffi-
cient conditions for stabilization of sampled-data nonlin-
ear systems via discrete-time approximations. Systems
and Control Letters, 38(4-5), 259–270.

Quevedo, D.E. and Nešić, D. (2010). On stochastic stabil-
ity of packetized predictive control of non-linear systems
over erasure channels. In Proc. IFAC Symposium on
Nonlinear Control Systems (NOLCOS 2010).

Schenato, L. (2009). To hold or to zero control inputs with
lossy links? IEEE Transactions on Automatic Control,
54(5), 1093–1099.

Seto, D., Lehoczky, J., Sha, L., and Shin, K. (1996). On
task schedulability in real-time control system. In Proc.
IEEE Real-Time Systems Symp.

Tabuada, P. (2007). Event-triggered real-time scheduling
of stabilizing control tasks. IEEE Transactions on
Automatic Control, 52(9), 1680–1685.

Wang, X. and Lemmon, M.D. (2009). Self-triggered
feedback control systems with finite-gain l2 stability.
IEEE Transactions on Automatic Control, 45(3).

Xie, L. and Xie, L. (2009). Stability analysis of networked
sampled-data linear systems with markovian packet
losses. IEEE Transactions on Automatic Control, 54(6),
13751381.

Yoshomito, H., Arita, D., and Taniguchi, R. (1992). Real-
time communication for distributed vision processing
based on imprecise computation model. In Proceed-
ings of International Parallel and Distributed Processing
Symposium, 128–133.

Zhou, T., Hu, X., and Sha, E.M. (1999). A probabilistic
performance metric for real-time system design. In
Proc. of the 7th International Workshop on Hardware-
Software Codesign (CODES) (ACM/IEEE), 90–94.

Zilberstein, S. (1996). Using anytime algorithms in intel-
ligent systems. Artificial Intelligence Magazine, 17(3),
73–83.

