Shallow Groundwater Quality and Transport of Contaminants from a Domestic Wastewater System

Dongxin Su BSc

March, 2012

A thesis submitted to the School of Environmental and Life Sciences, The University of Newcastle, in fulfilment of the requirements of the Degree of Master of Philosophy

DECLARATION

This thesis contains no material which has been accepted for the award of any other degree or diploma in any university or other tertiary institution and, to the best of my knowledge and belief, contains no material previously published or written by another person, except where due reference has been made in the text. I give consent to this copy of my thesis, when deposited in the University Library**, being made available for loan and photocopying subject to the provisions of the Copyright Act 1968.

I hereby certify that the work embodied in this thesis has been done in collaboration with other researchers, or carried out in other institutions. I have included as part of the thesis a statement clearly outlining the extent of collaboration, with whom and under what auspices.

Signed

ACKNOWLEDGEMENTS

After a prolonged struggle, the study is finally accomplished. During the journey, I had more than thanks to say to those kind-hearted people who helped and supported me along the way. Here, I would like to take this opportunity to acknowledge these life-long teachers, friends and families with gratitude.

Firstly, this thesis would not have been done without all the assistance my supervisor Associate Professor Phillip Geary has given to me thoroughly. It has been fortunate to have the chance to study under your guidance. I have more to thank you for than I can begin to acknowledge here. Those precious learning opportunities you have provided in the conferences and workshops have made my long-held dreams come true. More than that, you are always there when I had academic questions and looked for help. The supportive and instructive encouragement has carried me through the hard times. Your patience and understanding are gratefully acknowledged.

Secondly, I would like to thank Dr Steven Lucas, who has acted as an unofficial supervisor and helped me through the project. Your contribution in original ideas, field/lab work and editing paper is greatly thanked. You have displayed faith in me when I was down. The optimistic encouragements are priceless treasure you have given to me. Your kindness, selflessness and enthusiasm are gratefully recognized. The same thanks go to Chris Dever, who has helped with the field work.

Thirdly, Kim from the Learning Development Centre has always been my benefactress when my poor writing needed to be improved. I must give special thanks for squeezing your time whenever I asked for help. Your attitude of giving is moving to me and it is memorable to talk with you.

I also would like to acknowledge the householders Mr and Mrs Milliner for their hospitality and allowing me to do all the field work in their backyard.

With respect to my dear friends Pema, Justin, Ross and Dennis, you are all indispensable in my days in Australia. Life would be dull without every single one of you. This thesis would be very different if you were not here at my side. I thank you all sincerely.

Last but not least, I won't forget the infinite sacrifice my parents have made, especially my mother has supported me spiritually and financially, far more than I deserve. Their unconditional love is the most precious thing I ever have and I would give out anything to gain my warm family back. To my dearly loved mother, I dedicate this thesis. May She Rest in Peace.

TABLE OF CONTENTS

DECLARATION	I
ACKNOWLEDGEMENTS	II
TABLE OF CONTENTS	III
LIST OF FIGURES	VI
LIST OF TABLES	VIII
LIST OF ABBREVIATIONS	
ABSTRACT	
PUBLICATIONS AND CONFERENCE PRESENTATIONS	
CHAPTER 1 INTRODUCTION	1
1.1 Wastewater Collection, Treatment and Disposal	1
1.2 Onsite Wastewater Disposal	2
1.2.1 Types of OWTS	3
1.2.2 Alternative Performance Enhancers	4
1.3 Shallow Groundwater Dynamics and Pollutant Transport	5
1.4 OWTS Related Contamination Cases	7
1.5 Regulations in NSW Regarding to OWTS Management	8
1.6 Aims and Objectives	
CHAPTER 2 SEPTIC TANK AND SOIL ABSORPTION SYSTEMS	511
2.1 Domestic Wastewater	12
2.1.1 Household Water Usage and Grey Water Reuse	12
2.1.2 Characteristics of Domestic Wastewater Quality	14
2.2 Domestic Wastewater Treatment Systems	23
2.2.1 Components of Septic Tank-SAS	
2.2.2 Main Constituents of Concern in Effluent	
Summary	32
CHAPTER 3 DESCRIPTION OF THE STUDY AREA	
3.1 Taylor's Beach, Port Stephens	33
2111	22

3.1.2 Regional Geology	34
3.1.3 Climate	35
3.1.4 Hydrology	37
3.1.5 Community	38
3.2 Water and Wastewater Survey of the Study Site	40
3.2.1 General Information of the Household	40
3.2.2 Water Supply and Wastewater Treatment of the Household	41
CHAPTER 4 METHODOLOGY	43
4.1 Site Setup	43
4.2 Rainfall Measurement	45
4.3 Household Water Use Contributing to the Septic Tank-SAS	45
4.4 Groundwater Monitoring	
4.5 Soil Sampling and Analysis	
4.6 Tidal Influence Impacting on Shallow Groundwater Transport	
4.7 Water Quality	
4.7.1 Field Analysis	
4.7.2 Water Analysis in the Laboratory	
CHAPTER 5 RESULTS	51
5.1 Rainfall data	51
5.2 Household Water Use	52
5.3 Groundwater Levels	55
5.4 Tidal Variation	58
5.5 Soil Characteristics	60
5.5.1 Particle Size Distribution	60
5.5.2 Soil Water pH & EC	61
5.5.3 P Sorption Capability	61
5.6 Effluent and Groundwater Quality	62
5.6.1 Septic Tank	62
5.6.2 Groundwater	62
CHAPTER 6 DISCUSSION	
6.1 Rainfall Data Analysis	73

6.2 Variation in Water Use and Design Loading Rate (DLR)	74
6.3 Soil Characteristics	76
6.4 Groundwater Levels	77
6.5 Seawater Intrusion	79
6.6 Multiple Influences on the Shallow Groundwater Quality	84
6.7 Potential Contamination to the Estuary in Future	87
CHAPTER 7 CONCLUSIONS AND RECOMMENDATIONS	88
7.1 Conclusions	88
7.2 Recommendations	89
REFERENCES	91
APPENDIX A WATER QUALITY	99
APPENDIX B SITE SURVEY DATA	103
APPENDIX C EXAMPLE OF TRIANGULATION	105
APPENDIX D ASSESSMENT OF SOIL TEXTURE (FIELD)	107

LIST OF FIGURES

Figure 2-1 Average Annual Domestic Water Use, 1987-2003	13
Figure 2-2 Segregation of Domestic Wastewater	14
Figure 2-3 Site Evaluation and Engineering Design of Septic Tank-SAS	24
Figure 2-4 Diagram of Conventional Septic Tank-SAS	25
Figure 2-5 Transformation of Nitrogen Species in Septic Tank-SAS	27
Figure 3-1 Location of the Study Area	33
Figure 3-2 Newcastle Bight Deposits	34
Figure 3-3 Annual Rainfall in Taylor's Beach	35
Figure 3-4 Daily Rainfall in 2000, 2004 and 2007	37
Figure 3-5 Taylor's Beach Community Plan	38
Figure 3-6 Types of OWTS at Taylor's Beach	39
Figure 3-7 Satellite Image of the Site	40
Figure 3-8 Site Plan Approved by Port Stephens Council	42
Figure 4-1 Site Photographs	43
Figure 4-2 Site Plan and Sampler Locations	44
Figure 4-3 Depths and Elevation of the Samplers (m AHD)	44
Figure 4-4 Rain Gauge & Logger	45
Figure 4-5 Suction Lysimeter and Piezometer	46
Figure 4-6 Manual Vacuum and Lysimeter	46
Figure 4-7 Water Level Meter	47
Figure 4-8 Location of Control Piezometer	47
Figure 4-9 pH Meters and Probes	49
Figure 5-1 Daily Rainfall at Taylor's Beach from 16/12/09 to 29/06/10	52
Figure 5-2 Daily Household Water Use from (a) 02/03/10 to 24/04/10 a	ind (b)
09/06/10 to 26/08/10	53
Figure 5-3 Examples of Household Diurnal Water Use Patterns (a-d)	54
Figure 5-4 Six-Minute Rainfall Record in March to June, 2010 at Taylor's Be	each 56
Figure 5-5 Groundwater Level at Midnight (16/12/09-15/09/10)	57

Figure 5-6 General Direction of Groundwater Flow at the Household	58
Figure 5-7 Tidal Curves at Mallabula (01/01/10 -31/12/10)	59
Figure 5-8 Soil Texture Triangle	60
Figure 5-9 P-Isotherm Graphs	62
Figure 5-10 Sampling Dates and Daily Temperature (°C) at Williamtown	63
Figure 5-11 Average Concentration of DO in Shallow Groundwater	64
Figure 5-12 Average EC in Monitoring Bores	66
Figure 6-1 Accumulated Diurnal Pattern of the Water Use at the Study Hou	sehold
from 02/03/10 to 16/07/10	76
Figure 6-2 Groundwater Levels and Rainfall from 17/02/10 to 28/06/10	78
Figure 6-3 Groundwater Levels and Rainfall from 01/03/10 to 20/03/10	78
Figure 6-4 Groundwater Levels and Rainfall from 10/06/10 to 14/06/10	79
Figure 6-5 Variation of EC in Monitoring Bores (μS/cm)	80
Figure 6-6 Hypothetical Fresh/Seawater Interface Based on EC $(\mu S/cm)$	81
Figure 6-7 Seawater Levels versus Groundwater Levels in August 2010	82
Figure 6-8 Seawater and Groundwater Levels on Sampling Days	84
Figure 6-9 Rainfall, Groundwater Level and Sampling Dates	86

LIST OF TABLES

Table 2-1 Odours in Wastewater Treatment Plant
Table 2-2 Infectious Agents Potentially Present in Untreated Domestic Wastewater
21
Table 2-3 Microorganism Numbers Found in Septic Tank Effluent and Untreated
Wastewater and the Corresponding Infectious Dose
Table 4-1 HACH Kits Used in Analysis
Table 5-1 Rainfall Statistics from 16/12/09 to 29/06/10
Table 5-2 Household Water Use Statistics
Table 5-3 P Sorption Test Results for Soil Sample
Table 5-4 Septic Effluent Quality
Table 5-5 pH Values in Shallow Groundwater
Table 5-6 DO Concentrations in Shallow Groundwater
Table 5-7 EC Values in Shallow Groundwater
Table 5-8 Turbidity in Shallow Groundwater
Table 5-9 NH ₄ ⁺ Concentrations in Shallow Groundwater
Table 5-10 Nitrate Concentrations in Shallow Groundwater
Table 5-11 Phosphate Concentration in Shallow Groundwater
Table 5-12 Total Coliform Counts in Shallow Groundwater
Table 5-13 E.Coli Counts in Shallow Groundwater
Table 5-14 Deep Groundwater Quality
Table 6-1 Recommended DLR for Trenches and Beds Receiving Primary Treated
Effluent 75

LIST OF ABBREVIATIONS

AWTS Aerated Wastewater Treatment Systems

APHA American Public Health Association

ANZECC Australian and New Zealand Environment Conservation Council

BOD Biochemical Oxygen Demand

DO Dissolved Oxygen

EC Electrical Conductivity

E.Coli Escherichia Coli

FWS Free Water Surface

HRT Hydraulic Retention Time

NHMRC National Health and Medical Research Council

NRMMC Natural Resource Management Ministerial Council

OWTS Onsite Wastewater Treatment System

SAS Soil Absorption System

SSF Subsurface Flow

TDS Total Dissolved Solids

TKN Total Kjeldhal Nitrogen

TN Total Nitrogen

TON Total Oxidized Nitrogen

TP Total Phosphorus

TSS Total Suspended Solids

USEPA United States Environmental Protection Agency

WSAA Water Services Association of Australia

WHO World Health Organization

ABSTRACT

The performance of septic tanks and soil absorption systems (SAS) has been the focus of research for decades. The treatment efficiency of on-site systems can be highly variable, and depends on the specific hydraulic dynamics of the site. An evaluation of these transport dynamics can provide an insight into the efficiency of treatment in soil-absorption-systems and the potential for off-site export.

This thesis involves an examination of the performance of an individual domestic wastewater treatment system and the processes associated with the subsurface transport of effluent in shallow groundwater at Taylor's Beach, near Port Stephens, NSW. The area is adjacent to Tilligerry Creek and has a shallow groundwater table (< 1.5 m) and fast-draining sandy soil (infiltration rate > 1000 mm/day). At the property monitored, the septic tank received blackwater and kitchen water from the household, while the majority of the laundry water was discharged to a separate trench. Nine monitoring bores were installed at different distances from the land application area to assist in delineating the plume of effluent in the groundwater. Groundwater samples were taken each month and analysed for pH, electrical conductivity (EC), nutrients (nitrogen and phosphorus) and bacteria (total coliform and *E.Coli*). The monitoring data and performance of the SAS and land application area have been examined along with the effluent transport dynamics in the shallow groundwater.

It was found that the anaerobic processes in the septic tank successfully reduced the concentrations of a number of pollutants in the domestic wastewater. The concentrations of the pollutants in effluent sampled adjacent to the SAS were diluted to background levels within metres beyond the boundary of the property. Even though concentrations were substantially reduced, it is inappropriate to construct SAS at sites where there is groundwater close to the surface. The results from the study are important given that further unsewered urban development is planned for the area and that there is uncertainty due to rising sea level associated with climate change.

PUBLICATIONS AND CONFERENCE

PRESENTATIONS

1. Journal Papers

Su, D. X., Geary, P. M., & Lucas, S. A. (2013). *The Influence of Coastal Site Conditions on Subsurface Effluent Transport in Groundwater*. International Journal of Civil Engineering and Building Materials, 3(1), 10-18.

2. Conference Presentations

International Conference on Integrated Water Management 2011, Perth, West Australia.

International Conference on Civil Engineering and Building Materials 2011, Kunming, China.