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Abstract. We consider how the languages of G-automata compare
with other formal language classes. We prove that if the word prob-
lem of G is accepted by a machine in the class M then the language of
any G-automaton is in the class M. It follows that the so called counter

languages (languages of Z
n-automata) are context-sensitive, and further

that counter languages are indexed if and only if the word problem for
Z

n is indexed.

1. Introduction

In this article we compare the languages of G-automata, which include
the set of counter languages, with the formal language classes of context-
sensitive, indexed, context-free and regular. We prove in Theorem 5 that if
the word problem of G is accepted by a machine in the class M then the
language of any G-automaton is in the class M. It follows that the counter
languages are context-sensitive. Moreover it follows that counter languages
are indexed if and only if the word problem for Z

n is indexed.
The article is organized as follows. In Section 2 we define G-automata,

linear-bounded automata, nested-stack, stack, and pushdown automata, and
the word problem for a finitely generated group. In Section 3 we prove the
main theorem, and give the corollary that counter languages are indexed if
and only if the word problem for Z

n is indexed for all n.

2. Definitions

If G is a group with generating set G, we say two words u, v are equal in
the group, or u =G v, if they represent the same group element. We say
u and v are identical if the are equal in the free monoid, that is, they are
equal in G∗.

Definition 1 (Word problem). The word problem of a group G with respect
to a finite generating set G is the set of words {w | w =G 1}. Note that
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the word problem for a finitely generated group is a language over a finite
alphabet.

Definition 2 (G-automaton). Let G be a group and Σ a finite set. A
(non-deterministic) G-automaton AG over Σ is a finite directed graph with
a distinguished start vertex q0, some distinguished accept vertices, and with
edges labeled by (Σ±1 ∪{ǫ})×G. If p is a path in AG, the element of (Σ±1)
which is the first component of the label of p is denoted by w(p), and the
element of G which is the second component of the label of p is denoted
g(p). If p is the empty path, g(p) is the identity element of G and w(p)
is the empty word. AG is said to accept a word w ∈ (Σ±1) if there is a
path p from the start vertex to some accept vertex such that w(p) = w and
g(p) =G 1.

Definition 3 (Counter language). A language is k-counter if it is accepted
by some Z

k-automaton. We call the (standard) generators of Z
k counters.

A language is counter if it is k-counter for some k ≥ 1.

These definitions are due to Mitrana and Striebe [9]. Note that in these
counter automata, the values of the counters is not accessible until the final
accept/fail state. For this reason they are sometimes called blind. Elston and
Ostheimer [1] proved that the word problem of G is deterministic counter
with an extra ”inverse” property if and only if G is virtually abelian. Re-
cently Kambites [8] has shown that the inverse property restriction can be
removed from this theorem.

It is easy to see that the word problem for G is accepted by a G-automaton.

Lemma 4. The word problem for a finitely generated group G is accepted
by a deterministic G-automaton.

Proof : Construct a G-automaton with one state and a directed loop
labeled by (g, g) for each generator g. The state is both start and accept.
A word in the generators is accepted by this automaton if and only if it
represents the identity, by definition. �

Recall the definitions of the formal language classes of recursively enumer-
able, decidable, context-sensitive, indexed, stack, context-free, and regular.
Each of these can be defined as the languages of some type of restricted
Turing machine as follows.

Consider a machine consisting of finite alphabet Σ, a finite tape alphabet Γ,
a finite state control and an infinite work tape, which operates as follows. The
finite state control is a finite graph with a specified start node, some specified
accept nodes, and edges labeled by an alphabet letter and an instruction for
the work tape. The instructions in general are are the form read, write,

move left, move right and one reads/writes letters from Γ on the tape.
The tape starts out blank.

One inputs a finite string in Σ∗ one letter at a time, read from left to right.
For each letter x ∈ Σ, the finite state control performs some instructions
on the work tape corresponding to an edge who label is (x, instructions),
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and moves to the target node of the edge. One starts at the start node, and
accepts the string if there is some path from the start node to an accept node
labeled by the letters of the string. The language of a machine is the set of
strings in Σ∗ which the machine accepts. If the finite state control includes
edges of the form (ǫ, instructions) then one can work on the work tape
without reading input, and if a machine has such edges, or two edges with
the same letter in the first coordinate of the edge label, then such machines
(and their languages) are called non-deterministic.

If we allow no further restrictions on how this machine operates, then we
have a Turing machine. By placing increasingly strict restrictions on the
machine, we obtain a hierarchy of languages corresponding to the machines.
If the Turing machine halts on accepted strings then the language is recur-
sively enumerable or r.e., and if it halts both accepted and rejected strings
the language is decidable. If we restrict the number of squares of tape that
can be used to be a constant multiple of the length of the input string, then
we obtain a linear bounded automaton, and the languages of these are called
context-sensitive. If we make the tape act as a nested stack (see [4]) then
the language of such a machine is called indexed.

If the tape is a stack (first in last out) where the pointer may read but not
write on any square, then the machine and its languages are called stack.
If the tape is a stack such that the pointer can only read the top square,
we have a pushdown automaton, the languages of which are context-free.
Finally, if we remove the tape altogether we are left with just the finite
state control, which we call a finite state automaton, languages of which are
regular.

For more precise definitions see [4] for nested stack automata, [5] for
stack, [12] for regular and context-free and [7] for these plus linear bounded
automata. Two good survey articles are [11] and [3].

3. Main theorem

Theorem 5. Let M be a formal language class: (regular, context-free, stack,
indexed, context-sensitive, decidable, r.e.) and let G be a finitely generated
group. The word problem for G is in M if and only if the language of every
G-automaton is in M.

Proof : By Lemma 4 the word problem of G is accepted by a G-automaton,
so one direction is done.

Let L be a language over an alphabet Σ accepted by a G-automaton P .
Fix a finite generating set G for G which includes all elements of G that are
the second coordinate of an edge label in P . Let N be an M-automaton
which accepts the word problem for G with respect to this generating set.

Construct a machine M from the class M to accept L as follows. The
states of M are of the form (pi, qj) where pi is a state of P and qi is a
state of N . The start state is (pS , qS), and accept states are (pA, qA) where
pS, pA, qS , qA are start and accept states in P and N .
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The transitions are defined as follows. For each edge (x, g) in P from p to
p′, and for each edge (g, instruction) in N from q to q′, add an edge from
(p, q) to (p′, q′) in M labeled (x, instruction).

Then M accepts a string in Σ∗ if there is a path in M corresponding to
paths in P from the start state to an accept state such that the labels of the
second coordinate of the edges give a word w in G∗, and a path in N from
a start state to an accept state labeled by w which evaluates to the identity
of G and respects the tape instructions.

Note that M is deterministic if both N and P are deterministic and no
state in P has two outgoing edges with the same group element in the first
coordinate of the edge labels. �

It is easy to see that if G is a finite group, then the construction describes
a finite state automaton (we don’t need any tape). Herbst [6] showed that
the word problem for a group is regular if and only if the group is finite. If
G is virtually free then Muller and Schupp [10] proved that G has a context-
free word problem, so the language of every G-automaton for G virtually
free is context-free.

Since the word problem for G virtually abelian is context-sensitive, we
get the following corollary.

Corollary 6. Counter languages are context-sensitive.

More generally, Gersten, Holt and Riley [2, Corollary B.2] have shown that
finitely generated nilpotent groups of class c have context-sensitive word
problems, so the language of every G-automaton for G finitely generated
nilpotent is context-sensitive.

Figure 1 shows how counter languages fit into the hierarchy.
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Figure 1. How counter languages fit into the hierarchy

Corollary 7. The word problem for Z
n is indexed for all n ≥ 1 if and only

if every counter language is indexed.

Proof: By Theorem 5 if the word problem for Z
n is indexed then the

language of every Z
n-automaton is indexed, proving one direction.
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Since the word problem of Z
n is an n-counter language then if it is not

indexed then not every counter language is indexed. �

By Gilman and Shapiro, if the word problem of G is accepted by a nested
stack automaton with some extra restrictions, then it is virtually free. We
still do not know whether word problem of Z

n is accepted by a nested stack
automaton without extra restrictions.

Conjecture 8. The word problem for Z
2 is not indexed.

To motivate this conjecture and suggest a possible proof strategy, define
Ln(y, z) to be the set of words in {y, z}∗ with n ys and n zs, and consider
the language L = {xnwn | n ∈ N, wn ∈ Ln(y, z)}. This language is the word
problem Z

2 with respect to the generators a, b, a−1, b−1, intersected with the
regular language {(ab)nwn | wn ∈ Ln(a−1, b−1)}. So if one could prove L is
not indexed then one would prove the conjecture.
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