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[1] Despite the widespread use of conceptual hydrological models in environmental
research and operations, they remain frequently implemented using numerically unreliable
methods. This paper considers the impact of the time stepping scheme on model analysis
(sensitivity analysis, parameter optimization, and Markov chain Monte Carlo‐based
uncertainty estimation) and prediction. It builds on the companion paper (Clark and Kavetski,
2010), which focused on numerical accuracy, fidelity, and computational efficiency.
Empirical and theoretical analysis of eight distinct time stepping schemes for six different
hydrological models in 13 diverse basins demonstrates several critical conclusions.
(1) Unreliable time stepping schemes, in particular, fixed‐step explicit methods, suffer from
troublesome numerical artifacts that severely deform the objective function of the model.
These deformations are not rare isolated instances but can arise in anymodel structure, in any
catchment, and under common hydroclimatic conditions. (2) Sensitivity analysis can be
severely contaminated by numerical errors, often to the extent that it becomes dominated by
the sensitivity of truncation errors rather than the model equations. (3) Robust time stepping
schemes generally produce “better behaved” objective functions, free of spurious local
optima, and with sufficient numerical continuity to permit parameter optimization using
efficient quasi Newton methods. When implemented within a multistart framework, modern
Newton‐type optimizers are robust even when started far from the optima and provide
valuable diagnostic insights not directly available from evolutionary global optimizers.
(4) Unreliable time stepping schemes lead to inconsistent and biased inferences of the model
parameters and internal states. (5) Even when interactions between hydrological parameters
and numerical errors provide “the right result for the wrong reason” and the calibrated
model performance appears adequate, unreliable time stepping schemes make the model
unnecessarily fragile in predictive mode, undermining validation assessments and
operational use. Erroneous or misleading conclusions of model analysis and prediction
arising from numerical artifacts in hydrological models are intolerable, especially given that
robust numerics are accepted as mainstream in other areas of science and engineering.
We hope that the vivid empirical findings will encourage the conceptual hydrological
community to close its Pandora’s box of numerical problems, paving the way for more
meaningful model application and interpretation.

Citation: Kavetski, D., and M. P. Clark (2010), Ancient numerical daemons of conceptual hydrological modeling: 2. Impact of
time stepping schemes on model analysis and prediction, Water Resour. Res., 46, W10511, doi:10.1029/2009WR008896.

1. Introduction

[2] Hydrological models are routinely used in both scien-
tific and operational contexts. For example, in operational
contexts they are used in flood forecasting, water resource
assessments, and other environmental management, whereas
in scientific studies they can help understand hydrological
processes. Of particular significance in both contexts are

computationally fast conceptual hydrological models, which
may capture key catchment dynamics given only limited
environmental data. The parameters of hydrological models
are determined using a combination of prior knowledge (from
previous studies and/or similar catchments) and calibration to
observed forcing‐response data (typically, rainfall‐runoff). A
priori parameter estimation is challenging for several related
reasons, including (1) soil properties and vegetation char-
acteristics have tremendous spatial variability, both within
and between basins [Miller and White, 1999]; and (2) it is
extremely difficult to relate conceptual model parameters to
the available spatial information on soils and vegetation
[Koren et al., 2003; Duan et al., 2006]. The parameter values
and distributions are therefore usually inferred using inverse
methods (i.e., calibration), which seek to identify parameter
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set(s) that provide the best “fit” to the observed data, quan-
tified using an objective function.
[3] Reliable and efficient calibration of conceptual

hydrological models has been a major research and practical
challenge over the last three decades [e.g., Beven and Binley,
1992; Kavetski et al., 2003a; Vrugt et al., 2008; Renard et al.,
2010, and many others]. Apart from the difficulty in selecting
an appropriate objective function, many difficulties also arise
due to its geometrical complexity. As demonstrated by Duan
et al. [1992], macroscale local optima, in collusion with
macro and micro discontinuities, undermine traditional
locally convergent gradient‐based Newton‐type optimiza-
tion. These problems have influenced several major direc-
tions of hydrological calibration research over the last
decades, including a major focus on algorithms to handle
multimodality and nonsmoothness in objective functions
[e.g., Duan et al., 1992; Thyer et al., 1999; Tolson and
Shoemaker, 2007] and encouraging calibration paradigms
less reliant on optimization and well‐behaved objective
functions [e.g., Beven and Binley, 1992].
[4] Despite recent findings that, in many cases, these

troublesome difficulties are avoidable numerical artifacts
[Kavetski et al., 2003b, 2006a], the numerical implementa-
tion has remained a neglected weakness of hydrological
models. In particular, the companion paper [Clark and
Kavetski, 2010] surveyed the spectrum of conceptual and
physically motivated hydrological models, both lumped,
semidistributed and distributed, and found a prevalence of
fixed‐step explicit time stepping approximations. This is
despite error control being widely recognized as essential for
reliable numerical computing [e.g., Press et al., 1992;
Shampine and Reichelt, 1997] and despite growing indica-
tions in the hydrological literature that poor model numerics
have a detrimental effect on model performance and appli-
cation [e.g., Kavetski et al., 2003b; Kavetski and Kuczera,
2007].
[5] This 2‐part study provides a broad assessment of the

impact of numerical approximation on key aspects of model
development and application. The first paper [Clark and
Kavetski, 2010] evaluated several classes of time stepping
schemes for conceptual hydrological models, with a focus on
numerical accuracy, fidelity in the context of fitting observed
data, and computational efficiency. It vividly showed that, in
many cases, the numerical errors of uncontrolled time step-
ping schemes clearly exceed likely model errors arising from
structural simplifications in the governing equations and data
errors arising from observational uncertainty. Conversely,
numerical error control (adaptive explicit approximations) or
reliance on unconditional stability (fixed‐step implicit solu-
tions) efficiently addresses these concerns. The analysis was
carried out for eight time stepping approximations of six
distinct models of varying degree of complexity, applied to
13 basins with different hydroclimatic and physical condi-
tions, and hence provides strong and broad empirical evi-
dence supporting similar findings in previous work [e.g.,
Kavetski et al., 2003b, 2006a].
[6] In this paper we consider the impact of the time

stepping scheme on the results and conclusions of model
application and predictions, including parameter sensitivity
analysis and optimization, as well as model inference and
validation. The significance of these steps is elaborated below.
[7] Sensitivity analysis yields key insights into model

behavior and helps identify redundant or poorly behaved

parameters and model components (e.g., see Saltelli [2002]
for theory and Wagener et al. [2009] for hydrological appli-
cations). Given the troublesome macroscale numerical arti-
facts in model objective functions reported by Kavetski et al.
[2003b], we investigate the contamination of parameter
sensitivity estimates by numerical errors of the time stepping
schemes. Despite a widespread use of sensitivity analysis in
hydrology [e.g., Pappenberger et al., 2008; van Werkhoven
et al., 2008; Yatheendradas et al., 2008], we are not aware
of any previous assessments of its robustness with respect to
numerical approximation errors in the model equations.
[8] Parameter optimization is critical in model calibration

and application. Numerous optimization methods have been
used in conceptual hydrological modeling, with evolution-
ary‐type methods increasingly dominating research and
practice [e.g.,Duan et al., 1992; Thyer et al., 1999; Vrugt and
Robinson, 2007]. In addition to operational use, calibrated
parameters are frequently used to understand model behavior
and interpret catchment dynamics [Ivanov et al., 2004] and to
estimate regional parameter values, e.g., for prediction in
ungauged basins [e.g., Merz and Blöschl, 2004]. Given
indications that model distortions arising from time stepping
errors affect both the optimal parameters themselves and the
ability to estimate these parameters using optimization
algorithms [Kavetski et al., 2003b, 2006b], this paper eval-
uates and discuses the performance of modern gradient‐based
and evolutionary optimization methods with respect to time
stepping approximations in different model structures applied
over multiple catchments.
[9] Finally, given significant uncertainties in the hydro-

logical data and the structural errors in the current generation
of hydrological models, rigorous uncertainty assessment is
increasingly viewed as essential in hydrological calibration
and prediction (e.g., see Beven [2008] for a thorough dis-
cussion). This paper explores the effects of numerical time
stepping errors on the conclusions reached from uncertainty
analysis, including the inferred distributions of model para-
meters and internal states. The robustness of model predic-
tions, especially in validation mode, is critical for meaningful
model application and is also examined in this study. Since
current practice is progressively dominated by Markov chain
Monte Carlo (MCMC) methods [e.g., Kuczera and Parent,
1998; Vrugt et al., 2009], we also provide some comments
on the effect of time stepping artifacts on the convergence of
MCMC algorithms.
[10] The broader evaluation of the impact of numerical

model errors on sensitivity analysis, parameter optimization,
uncertainty assessment, and model interpretation signifi-
cantly advances previous work in this direction [Kavetski
et al., 2003b, 2006a, 2006b]. Importantly, the inclusion of
several distinct classes of time stepping schemes, a range of
conceptual hydrological models of varying complexity and
multiple basins with diverse physical and hydroclimatic
characteristics provides much stronger and broader evidence
of the generality and pertinence of our conclusions.
[11] The paper is organized as follows. Sections 2 and 3

describe, respectively, the models and numerical time step-
ping schemes used in the empirical evaluation, while section
4 describes the basins and hydrological data. Section 5 pro-
vides details of the methods used for sensitivity analysis,
optimization, and parameter inference and prediction.
Section 6 provides an analysis of objective function surfaces,
while sections 7, 8 and 9 detail, respectively, impacts of
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numerical approximation errors on model sensitivity, opti-
mization, and prediction. Drawing on these results and those
of the companion paper, section 10 provides practical guid-
ance on the selection of time stepping methods for conceptual
hydrological models. Finally, section 11 summarizes the
major findings and discusses the broad implications of this
study for the discipline of hydrology.

2. Hydrological Models

[12] The impact of numerical implementation on model
analysis and interpretation is examined using six models from
the Framework for Understanding Structural Errors (FUSE)
hydrological tool kit [Clark et al., 2008]. The selected mod-
els, FUSE‐070, FUSE‐060, FUSE‐536, FUSE‐550, FUSE‐
092, and FUSE‐330, are broadly representative of the wide
spectrum of conceptual hydrological models used in research
and practice. They include configurations where the unsatu-
rated zone has one or two state variables (e.g., tension and free
storage), models with linear and nonlinear base flow and
models where surface runoff is represented as a function of
either upper or lower layer storages. See the companion paper
[Clark and Kavetski, 2010] for further details.
[13] All FUSE models are formulated in state‐space form

as ordinary differential equations (ODEs),

dS
dt

¼ g Sð Þ; ð1Þ

where S represents storage in the various conceptual com-
partments of the model and g(S) is assembled using the
hypothesized flux formulations and connectivities of the
model stores.
[14] Most hydrological models can be cast as ODE sys-

tems such as equation (1). Since analytical solutions are
unavailable except in highly simplistic cases, numerical
approximations must be employed. The impact of these
approximations on model analysis and application is the key
focus of this paper.

3. Summary of Time Stepping Schemes

[15] This section outlines the time stepping schemes
evaluated in this study. A detailed analysis of the numerical
reliability and computational efficiency of these schemes can
be found in the companion paper. The reader is also referred
to classic texts on numerical ODE methods for further back-
ground material [e.g., Lambert, 1991; Shampine, 1994].

3.1. Explicit Methods

[16] The basic approach that remains prevalent in con-
ceptual hydrological models is the explicit Euler scheme,

Snþ1
EE 1ð Þ ¼ Sn þDt g Snð Þ: ð2Þ

The explicit Euler method is first order accurate: numerical
errors in SEE(1)

n+1 are O(Dt), i.e., linearly proportional to the
time step size Dt.
[17] The effects of increasing the order of accuracy are

examined using the explicit Heun scheme,

Snþ1
EH 2ð Þ ¼ Sn þDt

2
g Snð Þ þ g Snþ1

EE 1ð Þ
� �h i

; ð3Þ

which uses the explicit Euler estimate (2) as an intermediate
stage and yields O(Dt2) accuracy.

3.2. Implicit Methods

[18] The benefits of unconditional stability, as opposed to
higher‐order approximations or adaptive substepping, are
explored using the first order implicit Euler scheme,

Snþ1
IE 1ð Þ ¼ Sn þDt g Snþ1

IE 1ð Þ
� �

: ð4Þ

The implicit Heun (Crank‐Nicholson) method provides
O(Dt2) accuracy [e.g., Wood, 1990],

Snþ1
IH 2ð Þ ¼ Sn þDt

2
g Snð Þ þ g Snþ1

IH 2ð Þ
� �h i

: ð5Þ

While the implicit algorithms (4) and (5) require iterative
solution at every time step and therefore are markedly costlier
per step than their explicit counterparts (2) and (3), in practice
their unconditional stability provides much better reliability
and efficiency than conditionally stable explicit schemes for
large stepsizes and “stiff” equations (e.g., see Shampine
[1994] for a thorough theoretical explanation, and the com-
panion paper for an evaluation in hydrological contexts).

3.3. Semi‐implicit Methods

[19] For many problems, such as weakly nonlinear ODEs,
the semi‐implicit Euler scheme retains most stability benefits
of implicitness, while avoiding expensive multiple iterations
at each time step. It is given by

Snþ1
SIE 1ð Þ ¼ Sn þ I�Dt

@g Snð Þ
@S

� ��1

Dt g Snð Þ; ð6Þ

where I is the identity matrix and ∂g/∂S is the ODE Jacobian
(see Clark and Kavetski [2010] for further details).

3.4. Numerical Error Control and Adaptive
Substepping

[20] Since the quality of a time stepping approximation
depends strongly on the stepsize Dt, error control is univer-
sally recognized as essential in numerical integration [e.g.,
Kahaner et al., 1989]. For example, Shampine and Reichelt
[1997] do not even allow fixed‐step integration in their
Matlab tool kit, even for unconditionally stable algorithms
(because stability merely avoids uncontrolled error growth
and cannot guarantee actual numerical accuracy). Con-
versely, current hydrological practice remains largely domi-
nated by fixed‐step conditionally stable methods (see review
by Clark and Kavetski [2010] for some exceptions).
[21] To provide a thorough and pertinent evaluation of time

stepping schemes in conceptual hydrology, especially in the
applied context of fitting observed data, this paper includes
both conditionally stable explicit and unconditionally stable
implicit schemes in its analysis, both in fixed‐step and
adaptive‐substepping implementations, as detailed in the
companion paper. Given the didactic objectives of this two‐
part paper, we use a basic implementation of the adaptive
error‐controlled methods used in more sophisticated numer-
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ical ODE solvers [e.g., Kahaner et al., 1989], in particular,
estimating the truncation error by comparing two differ-
ent numerical approximations, and subdividing “outer”
data‐resolution steps until each individual substep satisfies
a mixed error test with absolute and relative truncation
error tolerances tA and tR [see Clark and Kavetski, 2010,
Appendix B]. In all cases, daily rainfall‐runoff data is used;
we refer to the companion paper for an investigation of the
impact of the time scale of the numerical reliability and
efficiency of the time stepping schemes. We also envisage
applying more sophisticated variable‐order solvers from
canned numerical ODE packages in a subsequent paper.

4. Hydrological Data

4.1. Mahurangi (MARVEX) Data

[22] A detailed analysis is carried out using the hydrocli-
matic data from the Mahurangi River Variability Experiment
(MARVEX) in Northland, New Zealand [see Woods et al.,
2001; Ibbitt and Woods, 2004]. In this study, we used daily
basin average rainfall estimates obtained from 13 raingauges
[see Woods et al., 2001], potential evapotranspiration esti-
mated from temperature, humidity, and solar radiation [Tait
and Woods, 2007] and daily streamflow gauged at the
Auckland Regional Council station at Mahurangi at College
(drainage area is 46.65 km2). The calibration length for
this study was 1492 days, with the first 297 days used as a
warmup.

4.2. MOPEX Data

[23] A broader but less detailed assessment is carried out
using 12 catchments from the Model Parameter Estima-
tion Experiment (MOPEX) [Duan et al., 2006]. Here, the
FUSE models are forced with combined rain and snowmelt
estimates obtained from the SNOW‐17 model used for the
National Weather Service MOPEX simulations (i.e., using
SNOW‐17 as a pre‐processor of the original MOPEX
precipitation time series) [Clark et al., 2008]. The MOPEX
basins represent diverse hydroclimatic and land surface
conditions, spanning dry to wet regimes, croplands to mixed
forests, and a range of soil types (see Table 3 in the com-
panion paper for further details). Eleven years of data (1980–
1990) were used in calibration (using 1979 for model
warmup), while 20 individual years in the 1960−1979 period
were used in validation. Carrying out the calibration and
validation studies over this diverse range of catchments and
multiple time periods yields both broad and specific insights
and asserts the generality of the conclusions.

5. Methodology

5.1. Examination of Objective Function Surfaces

[24] The objective function used in this work is the root‐
mean‐squared error (RMSE) of streamflow predictions

FRMSE q½ � ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

Nt

XNt

n¼1

qnsim q½ � � qnobs
� �2vuut ; ð7Þ

where qobs
n is the observed streamflow at the nth time step,

qsim
n [q] is the model streamflow produced using parameter

set q, and Nt is the total number of time steps.

[25] The Nash‐Sutcliffe index (NS), commonly used in
hydrology, is related to RMSE (7) via

FNS q½ � ¼ 1� FRMSE q½ �
�obs

	 
2

; ð8Þ

where sobs
2 is the variance of the observations about their

global mean.

5.2. Parameter Sensitivity Analysis

[26] Global parameter sensitivity is assessed using the
Saltelli [2002] implementation of the Sobol’method [Sobol’,
1993]. The Sobol’ method decomposes the total model sen-
sitivity into contributions from individual parameters and
their interactions (see Appendix A for details). While we
restrict numerical experiments to the total global sensitivity
of individual parameters, we also briefly comment on the
implications for sensitivity analysis of their interactions.
[27] The total global sensitivity indices Sj

TOT, based on the
RMSE model performance measure, were calculated using
10,000 parameter sets sampled using quasi‐random Sobol’
sequences [Bratley and Fox, 1988]. The same parameter sets
were used to calculate Sj

TOT for all time stepping schemes,
ensuring that any differences in Sj

TOT are due solely to dif-
ferences in the model implementation.

5.3. Parameter Optimization

[28] This paper considers the impact of the time stepping
scheme on two distinct strategies for parameter optimization:
(1) a multistart quasi‐Newton optimizer with finite difference
derivatives [Dennis and Schnabel, 1996; Nocedal and
Wright, 1999; Kavetski et al., 2007] and (2) the Shuffled
Complex Evolution (SCE) global optimizer [Duan et al.,
1992; Thyer et al., 1999].
5.3.1. Quasi‐Newton Optimization
[29] Quasi‐Newton optimization constructs and updates a

quadratic local approximation to the objective function to
move toward the nearest local optimum [Nocedal andWright,
1999].We used amodern quasi‐Newton code with (1) a trust‐
region method to stabilize convergence to the nearest local
optimum [Dennis and Schnabel, 1996], (2) an active set
method to efficiently handle parameter bounds by sliding
along boundary subspaces [Nocedal and Wright, 1999],
(3) adaptive finite difference gradient approximation, and
(4) multiple independent starts randomly seeded through the
parameter space to improve the probability of locating the
global optimum and gain insights into the large‐scale multi-
modality of the objective function [Kavetski et al., 2007].
[30] The Newton optimizer used 100 random starting

seeds, with scaled convergence tolerances of 10−10 for the
parameters and the objective function and a maximum
objective function evaluation count of 5000 for each local
optimization seed. The same seeds were used for all time
stepping schemes. The convergence tolerance was tight to
avoid premature termination in near‐flat regions of the
objective function. We also note that the empirical analysis in
this paper focuses primarily on the general qualitative per-
formance of the optimizer rather than on a detailed quanti-
tative evaluation of the influence of tolerances, algorithmic
settings, etc.
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5.3.2. Shuffled Complex Evolution (SCE) Search
[31] The SCE optimizer was developed to handle the dis-

continuous multimodal objective functions identified in
hydrological calibration nearly 20 years ago [Duan et al.,
1992]. It evolves a population of function samples in the
feasible parameter space, treating each sample as a vertex of a
simplex [Nelder and Mead, 1965]. In addition to the elon-
gations, reflections, and contractions used in standard sim-
plex methods, the SCE algorithm periodically shuffles the
vertices of different simplexes to exchange information. This
prevents entrapment in local optima and enhances the global
convergence of the algorithm. SCE is one of the most widely
used optimization methods for conceptual models, attesting
to the recognition of its robustness by the hydrological
community.
[32] In line with Duan et al. [1994], the SCE optimizer

used 10 complexes, with 2Nd + 1 points in each complex,
Nd + 1 points in each subcomplex and 2Nd + 1 evolution
steps before shuffling (where Nd is the dimensionality of
the objective function, here equal to the number of model
parameters). The SCE search was set to terminate if the
objective function (here, the RMSE) did not decrease by
more than 0.001 mm/d after nine shuffles, and the total
number of objective function calls was limited to 100,000
(never reached). Since the chief focus of this paper is to
demonstrate the impact of time stepping errors on model
analysis and prediction, detailed effects of convergence and
algorithmic settings are beyond its scope (we refer the
reader to Madsen et al. [2002], Tolson and Shoemaker
[2007], and Behrangi et al. [2008]).

5.4. Inference and Prediction

5.4.1. Background Theory
[33] Optimization of the RMSE criterion (7) is closely

related to least squares regression commonly used in statis-
tical estimation [Box and Tiao, 1992]. The latter corresponds
to the Bayesian posterior distribution p(q∣D) of parameters q
given observed data D and prior information p(q),

p q; �2
y Dj

� �
¼ L D q; �2

y

���� �
p q; �2

y

� �
; ð9Þ

where D = {ex, ey} comprises the observed forcing ex and
responses ey of length Nt, and L(D∣q, sy2) is the likelihood
function. For ordinary least squares regression,

L D q; �2
y

���� �
¼

YNt

n¼1

N eyn � hn q exjð Þ 0; �2
y

���� �
; ð10Þ

i.e., the independent Gaussian probability density function
N(e[q]∣0, sy2) of model residuals e = ey − h(q∣ex) computed
from the observed and modeled responses, ey and h,
respectively, assuming zero mean and an unknown (and
hence inferred) residual variance sy

2 [Box and Tiao, 1992].
[34] When noninformative priors p(q) are used for all

quantities of interest, maximization of the RMSE criterion is
equivalent to determining the most likely Bayesian posterior
estimates of q (not to be confused with the expected posterior
estimates!). This also corresponds to the classical maximum‐
likelihood approach under the assumption of independent
Gaussian residuals, which yields the likelihood function (10)
[Box and Tiao, 1992].

[35] Generally speaking, the inference of parameter dis-
tributions is much more informative than mere optimization:
in addition to estimating the parameter values, it provides
information about their uncertainty, potential multimodality,
etc. This can guide model improvement and data collection
investments to reduce these uncertainties.
[36] While the assumptions underlying least squares

regression are restrictive [e.g., Beven and Binley, 1992;
Kavetski et al., 2003a], this paper focuses on the impact of
numerical time stepping errors on model performance, which
is generally gauged using RMSE‐type measures, and there-
fore, more complicated statistical inferences lie outside its
scope. However, the insights from this work are already
guiding the selection of numerical methods for hydrological
models analyzed using more advanced, but also computa-
tionally costlier, inference approaches such as Bayesian Total
Error Analysis (BATEA) [Kavetski et al., 2006c]. We will
report on the BATEA calibration of FUSE models to the
Mahurangi catchment in a separate paper that exploits the
insights gained in this numerical evaluation to avoid
obscuring its results and conclusions by numerical artifacts.
5.4.2. MCMC Methods
[37] As the nonlinearity of the model h(q) with respect to

its parameters increases, its posterior distribution becomes
progressively non‐Gaussian [Bates and Watts, 1988]. Maxi-
mizing such distributions and, more generally, determining
and reporting their shape and characteristics, even as basic as
mean and variance, is usually impossible using analytical
techniques. Instead, they must be explored numerically, e.g.,
using Markov chain Monte Carlo (MCMC) methods that
are increasingly popular in hydrological practice. MCMC
methods offer considerable flexibility in adapting to the shape
of the distribution they are applied to and, provided care is
taken to monitor their convergence, can approximate proba-
bility distributions that are intractable using alternative
approaches (e.g., see Gelman et al. [2003] for further theory
and Kuczera and Parent [1998], Bates and Campbell [2001],
and Vrugt et al. [2003] for hydrologic applications).
[38] The adaptive MCMC strategy used in this study is

described by Thyer et al. [2009]. Initially, the jump distri-
bution is tuned one‐parameter‐at‐a‐time to achieve adequate
jump ratios (∼25%) over the first 2000 samples. The jump
covariance matrix is then computed from the samples, and
during the next 2000 samples, further tuned using a multi-
plicative factor. Following this, the jump covariance is fixed
(i.e., the jump distribution is no longer adapted) and 35,000
samples are collected. The first 25,000 samples are treated as
a warmup period, and only the final 10,000 “production”
samples are used to construct and examine the parameter
distributions. In the majority of cases, the Gelman‐Rubin
convergence test [Gelman et al., 2003] was close to unity,
suggesting, though not proving, the convergence of the
MCMC chains to the target distribution.

6. Analysis of Objective Function Surfaces

6.1. Two‐Dimensional Contour Plots

[39] Figure 1 shows the Nash‐Sutcliffe contours for a
representative cut through the (b, S1,max) parameter subspace
of FUSE‐536 in the Mahurangi basin. Figure 1 illustrates
three related problems. First, the fixed‐step explicit Euler and
explicit Heun schemes dramatically degrade the model per-
formance over parameter regions that produce good simula-
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tions when the governing model equations are solved accu-
rately (in particular, using adaptive error control). Second, the
objective function surface has substantial macroscale
roughness in the fixed‐step explicit Euler and explicit Heun
schemes, and, to a lesser extent, in the fixed‐step semi‐
implicit scheme. Third, the near‐optimal parameter values of
the hydrological models solved using the fixed‐step explicit
Euler and explicit Heun schemes are different than those
corresponding to the other time stepping schemes.
[40] The problems with macroscale distortions and mac-

roscale roughness in fixed‐step explicit schemes consider-
ably complicate model calibration. Indeed, precisely as a
result of such problems, the hydrological community has
devoted considerable effort to developing calibration algo-
rithms and paradigms that do not rely on well‐behaved
objective functions [Beven and Binley, 1992; Duan et al.,
1992; Tolson and Shoemaker, 2007]. We will return to
these issues in section 8.
[41] The potential to confound parameter inference is

especially worrying. For example, the fixed‐step explicit
Euler scheme performs poorly for low values of the surface
runoff exponent b because this causes significant additional

infiltration and hence rapid filling/drainage of the upper soil
store that cannot be reliably handled using the fixed‐step
explicit scheme. Indeed, the “distortion ridge” along S1,max =
100 mm in the fixed‐step explicit Euler scheme (Figure 1)
arises due to large fractional storage within storm events,
which generates huge interflow and drainage fluxes when
uncontrolled explicit schemes are used (see companion paper
for further discussion). Note that accurate solutions of the
governing model equations (adaptive explicit Heun scheme)
or even just fixed‐step unconditionally stable approximations
(fixed‐step implicit Euler scheme) have well‐behaved Nash‐
Sutcliffe profiles. This implies that the striking differences
between Figures 1a−1f are due entirely to numerical artifacts
of uncontrolled explicit time stepping.
[42] Solely gridding the objective function cannot (by

itself) indicate whether the “best” parameters are consistent
with the process conceptualization. Nevertheless, numeri-
cally induced degradation in model performance over vast
regions of the parameter space, e.g., for low values of expo-
nent b for models implemented using the fixed‐step explicit
Euler scheme, is patently undesirable and can easily thwart
efforts in process‐based parameter analysis [Gupta et al.,

Figure 1. Impact of time stepping schemes on the objective function surface of conceptual hydrological
models. Here, representative 2‐D slices through the (b, S1,max) subspace of the Nash‐Sutcliffe objective
function of FUSE‐536 applied to theMahurangi basin are shown, with all other model parameters held con-
stant at the same values. The numerical artifacts of uncontrolled time stepping are evident: The objective
function of the underlying governing equations is remarkably well behaved, yet the objective functions
of the same equations solved using fixed‐step explicit methods are afflicted by massive macroscale defor-
mations and extensive microscale noise. The semi‐implicit approximation is also visibly deficient.
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2008]. Section 9 further considers the impact of the time
stepping scheme on both the parameter inference and actual
model predictions, including internal states.

6.2. One‐Dimensional Cross Sections

[43] To provide a more detailed inspection of the objective
function, Figure 2 shows cross sections of the Nash‐Sutcliffe
index and its gradient with respect to parameter S1,max. As
expected from Figure 1, widespread macroscale distortions
and macroscale roughness occur when the model equations
are solved using the fixed‐step explicit Euler scheme. More-
over, analysis of the objective function gradient (Figure 2)
also exposes microscale roughness in the adaptive explicit
Heun method that is difficult to detect from an inspection of
the Nash‐Sutcliffe profile itself.
[44] Zooming in on the Nash‐Sutcliffe profile, as illus-

trated in Figure 3, reveals two distinct patterns of microscale
behavior of the adaptive explicit Heun solution: (1) seem-
ingly random high‐frequency microscale noise for low values
of S1,max and (2) more rare episodic (though still “periodic”)
“slips” at higher S1,max values. Both pathologies are caused
by changes in the number of substeps needed to meet the
(fixed) truncation error tolerance when adaptive error control
is enforced (see the authoritative discussion by Gill et al.
[1981] and an earlier illustration by Kavetski et al. [2006a]
using a single‐state Variable Infiltration Capacity (VIC)‐
type model).
[45] As seen in Figure 3, the microscale noise produces

small “pits” (local optima) in the objective function. Such pits

can prevent a gradient‐based optimization scheme from
finding uphill directions and checking for convergence based
on vanishing gradients [Gill et al., 1981]. The more isolated
episodic slips are less problematic, while they will certainly
corrupt finite difference gradient estimates straddling such
discontinuities, they do not appear to create spurious local
optima, and, moreover, appear quite rare. In this work, they
were observed in less than 100 of the 10,000 parameter sets
forming the profile shown in Figure 2, i.e., in less than 1% of
the parameter space. However, in general, their occurrence
and frequency is probably case‐specific and depends on the
mathematical structure of the governing ODEs representing
the model conceptualization, as well as on the forcing data,
model parameters, etc. The impact of macro and microscale
characteristics of the time stepping scheme on the model
optimization is taken up in section 8.

7. Impact on Sensitivity Analysis

[46] Figure 4 shows the total global parameter sensitivity of
all parameters of all FUSE models applied to the Mahurangi
basin, estimated using the Sobol‐Saltelli method (section 5.2).
Several important insights can be drawn.
[47] 1. Models employing adaptive substepping have very

similar sensitivities. This is unsurprising: The imposition of a
1% error tolerance makes numerical approximations effec-
tively indistinguishable from the exact solution, especially in
the context of parameter sensitivity analysis.
[48] 2. The fixed‐step explicit Euler and explicit Heun

schemes (and, to a lesser extent, the fixed‐step implicit Heun

Figure 2. Representative slices through the Nash‐Sutcliffe objective function and its gradient with respect
to parameter S1,max in FUSE‐536 applied to theMahurangi basin, for different time stepping methods (red =
fixed‐step explicit Euler scheme, blue = fixed‐step implicit Euler scheme, and black = adaptive explicit
Heun scheme with tR = 1% and tA = 0.01 mm). The surface runoff exponent b is set to 2.5 for the
fixed‐step explicit Euler and to 0.5 for the fixed‐step implicit Euler and the adaptive explicit Heun; all other
model parameters are held constant at the same representative values as used in Figure 1. The gradient
∂FNS/∂S1,max is estimated using one‐sided finite differences (DS1,max = 0.475 × 10−4 mm). Results show
that while (left) both the fixed‐step implicit and adaptive explicit solutions are free of macroscale
deformations, (right) gradient analysis indicates that only the fixed‐step implicit scheme is also free
from microscale noise (see also Figure 3).
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and semi‐implicit Euler schemes) have very different sensi-
tivities, both from each other and from the adaptive methods.
For example, the interflow rate ki in FUSE‐536 and FUSE‐
550 has a much higher sensitivity in the fixed‐step explicit
Euler and explicit Heun approximations than in the adaptive
solutions. This finding is consistent with the RMSE analysis
in Figures 3 and 4 of the companion paper, where fixed‐step
explicit methods were shown to be infidelious and unreliable.
An erratic solution is likely to have a very different (indeed,
erratic!) sensitivity than the exact solution, and this is pre-
cisely what is seen in Figure 4.
[49] 3. In almost all cases, the implicit Euler approximation

has a similar sensitivity as the adaptive solutions, the main
exception being parameter �tens in FUSE‐330. This is a
consequence of the high fidelity of the implicit Euler scheme
and suggests that its accuracy is adequate for the purposes
of sensitivity analysis (at least for the 6 models and 13
catchments considered in this study).
[50] To gauge the generality of the results in Figure 4,

Figure 5 compares the parameter sensitivity of models
implemented using the fixed‐step explicit and implicit Euler
approximations to the parameter sensitivity of the adaptive
explicit Heun scheme (which is indistinguishable from the
sensitivity of the underlying governing equations), for all
12 MOPEX basins.
[51] The fixed‐step implicit Euler approximation, while

inexact in the strict numerical accuracy sense, faithfully
approximates the parameter sensitivities of the governing
equations. In contrast, the sensitivity estimates for the fixed‐
step explicit Euler scheme are markedly corrupt. Indeed,
Figures 4 and 5 indicate that a large fraction of parameter
sensitivity in the explicit Euler scheme can be attributed to

erratic behavior of this time stepping scheme, to the extent
that, when viewed in conjunction with Figure 1 of the com-
panion paper, the sensitivity analysis is effectively measuring
the sensitivity of truncation errors rather than the sensitivity
of the model itself!
[52] Finally, while this paper focused on the sensitivity of

individual model parameters, similar findings are expect to
apply to joint sensitivity analysis. Indeed, if the sensitivity of
individual parameters is severely corrupted, it would be rather
optimistic to expect their joint sensitivity to be preserved.

8. Impact on Model Optimization

8.1. Multi‐start Quasi‐Newton Method

[53] Macroscale distortions also affect model optimization.
Figure 6 shows the termination points of multiple quasi‐
Newton optimization sequences applied to the RMSE objec-
tive function. It shows that, when the model is implemented
using fixed‐step explicit schemes, the quasi‐Newton method
frequently terminates at objective function values that are
much lower than in the implicit Euler and adaptive schemes.
This is especially true in FUSE‐060, FUSE‐536, and FUSE‐
550. A more detailed analysis indicated that most failures
to reach the global optima were caused by lack of progress
(inability to improve the objective function) rather than
convergence to a “genuine” local optimum (where the
gradient vanishes). These results are unsurprising given the
considerable macroscale and microscale noise in the objec-
tive function that can be introduced by fixed‐step explicit
methods (Figure 1). It is precisely these features that moti-
vated the abandonment of gradient‐based methods in favor of

Figure 3. Representative 1‐D slices through the Nash‐Sutcliffe objective function with respect to param-
eter S1,max in FUSE‐536 applied to the Mahurangi basin, for the fixed‐step implicit Euler (blue) and the
adaptive explicit Heun (black), using the same parameters as in Figure 2. To contrast the microscale
properties of both profiles in the zoomed right frame, a secondary y axis is used for the implicit Euler results.
The microscale noise arising from adaptive substepping is evident, approximately of the order of the
temporal truncation error tolerance tR = 1%. Fixed‐step implicit time stepping provides much smoother
model predictions, with microscale noise of the order of the Newton‐Raphson iteration tolerance tN =
10−9 mm. Note that enforcing tight iteration tolerances tN generally does not require as much additional
computational effort as tight temporal truncation error tolerances tA and tR [e.g., Kavetski et al., 2006a].
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global evolutionary methods [Hendrickson et al., 1988;Duan
et al., 1992].
[54] Figure 6 also suggests that removal of the spurious

distortions and increased smoothness of the objective func-
tions dramatically improves the global convergence of the
multi‐start quasi‐Newton method. The difference in param-
eter optimization of models with respect to the time stepping
scheme was particularly pronounced for FUSE‐060, where
70% of runs converged to near‐global optimum values when
the model was implemented using the fixed‐step implicit
Euler scheme, versus <5% when the same model was solved
using the fixed‐step explicit Euler or Heun schemes.
[55] However, even an accurate solution of the model

equations does not guarantee a unimodal parameter distri-
bution (see section 5.3.1). For example, in FUSE‐060 and
FUSE‐536 solved using the implicit Euler scheme, up to
∼35% (FUSE‐060) and ∼10% (FUSE‐536) of the quasi‐
Newton sequences terminated in local optima. First, this
confirms that a robust numerical implementation eliminates
spurious multimodality but cannot possibly eliminate genu-
ine multimodality that can arise when the governing model
equations are strongly nonlinear with respect to their para-
meters, especially if the calibration data are also highly
inaccurate [e.g., Demidenko, 2000; Kavetski et al., 2006a].

Second, while traditionally viewed as a disadvantage, local
convergence of individual quasi‐Newton sequences to their
nearest optima can be exploited to diagnose genuine multi-
modality. These aspects are examined further in section 8.4.

8.2. Comparison With a Global Optimizer: SCE Search

[56] The removal of spurious multimodality and improved
smoothness of objective functions invites revisiting the com-
parison of reliability, informativeness, and computational
efficiency of gradient‐based algorithms versus evolutionary
searches.
[57] To this end, Figure 6 compares the local optima

reached by the multi‐start quasi‐Newton method with the
global optima identified with SCE search (see section 5.3.2
for methodological details). Several important observations
can be made.
[58] 1. The SCE method converges to similar objective

function values for all the time stepping implementations of
the same model. Algorithmically, this confirms the robust-
ness of the SCE search as a global optimizer. From the point
of view of model analysis, this further confirms that while
fixed‐step explicit schemes introduce gross errors over con-
siderable parameter regions, there remain parameter sets for

Figure 4. Impact of the time stepping scheme on the estimates of total global parameter sensitivity,
obtained from 10,000 quasi‐random Sobol samples, for all FUSE models in the Mahurangi basin. See
Clark and Kavetski [2010] for parameter definitions. The parameter sensitivity analysis of models
implemented using fixed‐step explicit schemes are wildly different from those obtained with adaptive
time stepping, indicating that the sensitivity analysis is dominated by truncation errors of the unreliable
time stepping schemes.
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whichmodels implemented using fixed‐step explicit schemes
are competitive with the exact solution (e.g., see the RMSE
scatterplots in the companion paper). This is examined in
greater depth in section 9.3.
[59] 2. While the quasi‐Newton method frequently termi-

nates at lower objective function values when the hydrolog-
ical models are implemented using the fixed‐step explicit
Euler and explicit Heun schemes, the best optima are never-
theless equivalent to those identified with SCE search. This
shows that models implemented using robust numerical time
stepping schemes, be it unconditionally stable fixed‐step
implicit approximations or adaptive (explicit or implicit)
solutions, can be quite reliably calibrated using Newton‐type
optimizers. Provided the objective function is not exceed-
ingly contaminated by spurious optima and discontinuities,
Newton‐type optimizers are competitive with SCE searches
in reaching global optima.
[60] 3. In some rare cases (e.g., FUSE‐092), the multi‐start

quasi‐Newton method actually identifies parameter sets that
have a slightly higher Nash‐Sutcliffe index than that obtained
by SCE.While not negating the robustness of the SCE search,
this emphasizes the general competitiveness of Newton‐type
methods and is also demonstrative of the general inability of
a single optimization algorithm to guarantee global solutions

or provide the most efficient performance under all circum-
stances (e.g., see the “no free lunch” theorems of optimiza-
tion [Wolpert and Macready, 1997]).
[61] The following sections elaborate on the computational

efficiency and informativeness of multi‐start quasi‐Newton
and SCE searches.

8.3. Speed of Progress Toward Solution

[62] Figure 7 compares the objective function values in the
quasi‐Newton and SCE methods for the first 1000 objective
function evaluations (both the “best‐so‐far” and “current
trial” values are shown). Since quasi‐Newton optimization of
inaccurate and/or exceedingly nonsmooth time stepping
schemes is inadvisable (Figure 6), we show results for the
fixed‐step implicit Euler scheme.
[63] Figure 7 illustrates the advantages of exploiting the

knowledge of uphill directions: The quasi‐Newton sequences
frequently converge to near‐optimal objective function
values within just 5–10 iterations, which, given the multiple
objective function evaluations within each quasi‐Newton
iteration and the finite difference objective function gradient
approximation, translates into ∼200 model runs. The large
“jumps” in the objective function values taken by the quasi‐
Newton method are noteworthy; they occur in near‐quadratic

Figure 5. Broad comparison of the total global parameter sensitivity of models implemented using the
fixed‐step explicit Euler and fixed‐step implicit Euler schemes versus the parameter sensitivity of the under-
lying model equations. The sensitivity of all parameters of all 6 FUSE models in all 12 MOPEX basins is
shown. The analysis is based on 10,000 parameter sets sampled using the quasi‐random Sobol’ method.
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regions of the parameter space, where the Newton equations
can jump almost directly to the exact optimum.
[64] While the nonlinearity of the FUSE models makes

their objective function nonquadratic (see analysis by
Kavetski et al. [2006a]), the fast convergence even when
starting far from the optimum solution suggests that a modern
quasi‐Newton optimizer, necessarily implemented within a
multi‐start framework, can robustly handle parameter cali-
bration in realistic hydrological models. Indeed, it contradicts
some literature [Press et al., 1992] that suggests that the
majority of the computational effort of Newton‐type methods
is spent getting close to the optimum, and once there, con-
vergence is fast. For the problems in this study, we observed a
different convergence behavior, with the quasi‐Newton
schemes quickly reaching near‐optimal regions, followed by
comparatively slow final convergence to the optimum.
[65] The robustness when far away from the optimum is

due to the trust‐regionmethod incorporated intomost modern
Newton‐type codes [Conn et al., 2000], including the Matlab
package [Coleman et al., 2006]. The trust‐region strategy
limits the Newton correction to an adaptively updated region
around the current estimate, where the current quadratic
approximation of the objective function can be “trusted.” In
general, trust regions are more robust than linesearches and
have strong convergence properties [Conn et al., 2000].
[66] The “thrashing around” near the optimum appears to

be caused by the microscale discontinuities in the objective

function arising from adaptive substepping (see Figures 2
and 3). Consider that most optimization algorithms, perhaps
excluding random searchmethods [e.g.,Tolson and Shoemaker,
2007], estimate the optimal search direction from observed
changes in objective function values. However, in near‐
optimal regions, where improvements in the objective func-
tion are necessarily small, discontinuities in the objective
function necessarily interfere with the optimization algo-
rithm: Changes in the objective values become contaminated,
and eventually swamped, by numerical noise rather than
genuine improvements. Quasi‐Newton methods are particu-
larly susceptible to this, since they compute the search
direction from differences in function and gradient values
over successive iterations [Nocedal andWright, 1999]. As the
optimum is approached, these differences become progres-
sively dominated by numerical noise; indeed, differencing
near‐equal numerical values amplifies roundoff and other
errors and is a well‐known computational problem. Note that
the simplex method underlying the SCE search is more robust
but not immune in this respect: It relies on ranking the vertex
function values to select the candidate for replacement. For
any optimization algorithm, numerical noise fundamentally
limits the precision to which the objective function can be
optimized, and this should be reflected in the convergence
tolerances (which in this study were set quite stringently for
demonstration purposes).

Figure 6. Parameter optimization of all FUSEmodels applied to theMahurangi basin. The distributions of
local optima estimated using the multi‐start quasi‐Newton method (colored lines) are compared with the
single global optima estimated using the SCE search (gray bar). Results from 100 quasi‐Newton sequences
are shown. The cumulative distribution of optima identified by local optimization sequences indicates the
fraction of the sequences converging to individual modes and is hence reflective of the probability mass
associated with each distinct near‐optimal parameter region. Pure global optimizers are less suited to this
analysis.
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[67] Finally, Figure 7 also shows that the SCE algorithm,
which relies on much less information to guide its progress
toward the optimum and, moreover, repeatedly shuffles its
complexes for a more thorough exploration of the parameter
space, is slower than a Newton‐type method when applied to
smooth objective functions. The SCE search is still largely
initializing and broadly exploring the parameter space in the
first 200 function evaluations and does not begin to converge
to near‐optimal regions until after close to 1000 function
calls. While altering the algorithm settings could improve
the performance of any optimization method for a specific
problem (e.g., see the exchange between Behrangi et al.
[2008] and Tolson and Shoemaker [2008]), extensive theo-
retical analysis and empirical evidence [e.g.,Gill et al., 1981;

Nocedal and Wright, 1999; Conn et al., 2000] indicate that
knowledge of the gradient and curvature of a smooth function
permits an inherently faster progress toward the optimum
than methods that do not exploit this information. Yet this
only holds if the objective function is sufficiently smooth to
be meaningfully numerically differentiable [Kavetski et al.,
2006a, Appendix A], hence ruling out objective functions
such as those of explicit schemes in Figures 1 and 2. This
explains our general preference for time stepping methods
with good microscale properties. It is also worth noting that
moderate numerical noise in the objective function can be
handled by increasing the perturbation in the finite difference
gradients used by Newton‐type optimizers [Dennis and
Schnabel, 1996], although this necessarily increases the

Figure 7. Representative comparison of the convergence of quasi‐Newton (blue lines) and SCE optimi-
zers (red lines), for several FUSE models implemented using the fixed‐step implicit Euler approximation.
(top) The “best‐so‐far” objective function values within 50 individual optimization sequences; (bottom) the
trial values within a single typical optimization sequence. Each optimization sequence was initiated at a dif-
ferent point in the parameter space (obtained by quasi‐random Sobol sampling). The first 1000 objective
function evaluations within each optimization sequence are shown (note that several quasi‐Newton
sequences converge in fewer than 1000 function evaluations). The local convergence of quasi‐Newton
sequences is particularly evident for FUSE‐060. Drops in function values during quasi‐Newton optimiza-
tion (bottom plot) represent function trials during trust region adaption and finite difference gradient approx-
imation, and such drops are quite rare. Conversely, the SCE search continues to thoroughly explore clearly
suboptimal regions of the search space, even when near‐optimal regions are already found. This makes the
SCE algorithmmore robust but computationally slower. In addition, the use of derivative information by the
quasi‐Newton optimizer allows more rapid progress toward the nearest local optimum.
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truncation error in the gradient approximation and hence has
limited utility for exceedingly noisy functions.

8.4. Analysis of Multimodality

[68] While the benefits of global optimization are evident,
it is worth noting that, somewhat ironically, local optimiza-
tion may yield global insights not readily available from pure
global optimization. In particular, the convergence behavior
of the multi‐start quasi‐Newton method yields useful insights
into the multimodal characteristics of the objective function
that are not available in the SCE method [Kavetski et al.,
2006b; Skahill and Doherty, 2006; Kavetski et al., 2007].
Such information on multimodality can be highly valuable.
For example, consider the multimodal objective function in
Figure 8 of Thyer et al. [1999], where the global mode of the
SFBmodel lies on a parameter bound, indicating some model
degeneracy. Yet the three local optima in the interior of the
parameter space appear associated with much larger high‐
probability regions of the parameter space and hence may
have larger total probability masses, and moreover, may well
correspond to more meaningful model structures. Indeed, in
cases where several local optima yield comparable model
performance, it may be the observation and measurement
errors in the calibration data that ultimately determine which
optimum becomes dominant (global). Consequently, the
multi‐start quasi‐Newton optimizer, which more readily
diagnoses and reports secondary optima, may be more
informative than a purely global optimizer. Importantly, in
our numerical trials, the computational efficiency of each
quasi‐Newton sequence often allowed a complete analysis of
the objective function at a comparable cost as a single global
optimization using the SCE search! These insights could be
used to improve the model structure and to derive more
identifiable models.
[69] In this study, Figure 6 suggests that the objective

functions of FUSE‐070 and FUSE‐060 contain secondary
local optima even when near‐exact solution of the governing
equations is obtained using adaptive substepping with a
moderate tolerance (tR = 1% and tA = 0.01 mm). This con-
firms the earlier caution by Kavetski et al. [2006a] that
numerical artifacts may explain most, but not necessarily all,
multimodality encountered in hydrological calibration. In
particular, sum‐of‐squares surfaces of nonlinear models
cannot be guaranteed to be unimodal except in very restrictive
cases [Demidenko, 2000] (see also discussion by Bates and
Watts [1988]), which are unlikely to be fulfilled by most
practical hydrological models. Hence, we caution the reader
that robust numerical approximations, indeed, even exact
solutions, of most nonlinear hydrological models cannot
guarantee unimodality of their objective functions. How-
ever, they will (virtually) guarantee absence of spurious
multimodality due to numerical artifacts and bring a host of
other benefits as discussed elsewhere in this paper and its
companion.
[70] To more broadly evaluate the impact of the time

stepping scheme on spurious multimodality, Figure 8 shows
the distribution of local optima for different time stepping
solutions of all 6 FUSE models applied to each of the 12
MOPEX basins. Figure 8 confirms that models implemented
using the fixed‐step explicit Euler and explicit Heun schemes
have more local optima at lower objective function values
than the models implemented with the fixed‐step implicit

Euler and adaptive explicit Heun solutions. This result is most
pronounced for models FUSE‐060, FUSE‐536, and FUSE‐
550, which, not coincidentally, also had some of the roughest
objective functions when solved using uncontrolled explicit
approximations. Since most of this multimodality disappears
when more robust time stepping solutions are implemented,
this is indeed spurious multimodality arising from numerical
artifacts of erratic time stepping schemes.

8.5. Verifying Multimodality: Limitations and Pitfalls

[71] We stress that reliable detection of multimodality in
Nd‐dimensional functionsF(q) can be tricky even for lowNd.
For example, if the function contains multiple optima of the
same value (such multiple modes may be jointed or dis-
jointed), convergence of multiple optimization sequences to
the same objective function value does not guarantee that the
same optimum is found. This can be diagnosed by inspect-
ing the parameter sets at which the individual sequences
have terminated. On the other hand, termination at distinct
parameter sets may itself falsely suggest multimodality if the
termination was due to a failure of the optimizer. Hence,
while such failures should be rare for Newton‐type optimi-
zation of smooth functions, it is best to force tight conver-
gence criteria (to avoid false convergence) and directly check
the optimality criteria upon termination: near‐zero gradient
∂F/∂q and positive‐definite Hessian matrix ∂2F/∂q2 (for
minimization in the interior of the parameter space). Analo-
gous criteria hold for optima on parameter constraints and
when maximizing rather than minimizing [Gill et al., 1981].
[72] In addition, as illustrated in Figure 9, visual assess-

ments of multimodality using lower‐dimensional slices
(projections) and marginals must also be approached with
considerable caution, since they can easily lead to misleading
conclusions even for comparatively simple‐shaped objective
functions (parameter distributions) [see also Kavetski et al.,
2006b, p. 192]. For example, depending on the direction of
the slice and the geometry of the objective function, cuts
through the objective function can fail to detect multimodality
or, conversely, falsely indicate it. Figure 9 also depicts similar
problems when trying to establish the multimodality of a joint
probability distribution by examining its marginal densities,
e.g., such as those constructed from MCMC samples.

8.6. Microscale Continuity

[73] In addition to macroscale features, parameter optimi-
zation is also affected by the microscale characteristics of the
objective function [e.g., Gill et al., 1981; Kavetski et al.,
2006a]. In particular, microscale discontinuities introduced
by adaptive substepping (e.g., Figure 2) degrade the repre-
sentativeness of the gradient and Hessian of the objective
function in determining an efficient search direction, which
ultimately delays or even impedes the optimization. The
variable number of Newton‐Raphson iterations in implicit
schemes also introduces nonsmoothness, but this can be
reduced by enforcing a tight Newton‐Raphson convergence
tolerance [Kavetski et al., 2006a].
[74] Interestingly, Figure 8 illustrates that the microscale

roughness caused by adaptive time stepping is not neces-
sarily detrimental: The distributions of Nash‐Sutcliffe
optima obtained using multiple quasi‐Newton sequences
applied to the nonsmooth adaptive solutions are very similar
to those obtained for the smooth fixed‐step implicit Euler
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Figure 8. Distribution of local optima identified using the multi‐start quasi‐Newton method for different
time stepping implementations of the 6 FUSEmodels, for all 12MOPEX basins.Models implemented using
fixed‐step explicit Euler andHeunmethods have considerablymore local optima in their objective functions
than those solved using the fixed‐step implicit Euler and adaptive explicit Heun schemes (less steep cdf’s of
local optima). Note that, regardless of numerical artifacts, the multimodality structure of the objective func-
tion depends on the hydrological model and the calibration data.
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approximation. This is consistent with the studies by
Kavetski et al. [2003b, 2007] and Skahill and Doherty
[2006], where Newton‐type schemes with finite difference
gradients successfully optimized models that, strictly
speaking, are not smooth. However, this is likely case‐
specific and depends on the extent and type of non-
smoothness.
[75] The multibasin multimodel analysis, summarized in

Figure 8, indicates cases where optimization ofmodels solved
using the (nonsmooth) adaptive explicit Heun method ter-
minates at notably lower objective function values than those
based on the (smooth) fixed‐step implicit Euler scheme.Again,
this was particularly pronounced in FUSE‐536 and FUSE‐
550, where runoff is often dominated by interflow [Clark and
Kavetski, 2010] and the gradients contained appreciable
numerical noise (Figure 2). This finding suggests that the

fixed‐step implicit Euler approximation with a tight Newton‐
Raphson tolerance, while less accurate in a strict numerical
sense due to time discretization errors, may nonetheless be
favored in the model optimization context due to its smooth-
ness. We also refer the reader to Gill et al. [1981] for an
authoritative discussion of adjusting model implementation to
avoid harmful numerically induced nonsmoothness.

8.7. Broader Implications for Hydrology

[76] The benefits of multi‐start Newton‐type optimization
suggested in this paper have several significant methodo-
logical implications for hydrological calibration. Recall that
Duan et al. [1992] introduced the SCE method to address
problems typical in the calibration of hydrological models.
These problems include (1) multiple convergence regions
(multiple large‐scale optima or regions of attraction), (2) many

Figure 9. Potential pitfalls in the visual assessment of the multimodality of an objective function (joint
parameter distribution) F(q) (blue contours) using lower‐dimensional slices (dashed red lines and red pro-
files) and marginals (green profiles), illustrated using four hypothetical two‐parameter models. (a and c)
Cross section and the marginal fail to reflect the multimodality of the joint distribution. Multimodality sug-
gested by the cross section and the marginal is not present in the joint distribution. In addition, (b) near‐
optimal values of parameter �3 correspond to a trough in the conditional cross‐section, and (d) the tail
regions of parameter �7 in the joint posterior dominate near‐optimal values when the marginal is considered.
These effects are not “artifacts” but can be counterintuitive and confounding to a modeler; Figures 9a, 9b,
and 9d are likely to be quite common in practice. Although the presentations are based on 1‐D projections
and marginals along the parameter axes of two‐parameter models, the same problems will arise for 2‐D and
other multivariate slices and marginals of higher‐dimensional distributions, nonorthogonal cross sections
and marginals, etc. In general, an Nd‐dimensional function cannot be uniquely summarized solely by anal-
ysis of its lower‐dimensional subspace or marginals. In the context of parameter optimization, the optima
suggested by a numerical optimizer, such as the multi‐start quasi‐Newton algorithm, may therefore need
additional verification (e.g., by inspecting the location, gradient, and Hessian of individual candidate
optima). Such verification is much easier for smooth numerically differentiable functions.
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small “pits” in each region of attraction, (3) rough response
surface with discontinuous derivatives, (4) poor and varying
sensitivity of the response surface in the region of the opti-
mum and nonlinear parameter interactions, and (5) non-
convex response surfaces with long curved ridges [Duan
et al., 1992]. These problems motivated the abandonment
of “fast” derivative‐based optimization in favor of “slow”
global evolutionary searches.
[77] This study provides stronger empirical evidence sup-

porting the claims of Kavetski and Kuczera [2007]: Many of
the calibration problems outlined by Duan et al. [1992] are
caused by poor numerical implementation of hydrological
models and can be largely eliminated by using robust
numerical time stepping schemes and by using modern
quasi‐Newton optimizers with trust‐region (or linesearch)
safeguards to ensure steady progress toward the (nearest)
optimum. The feasibility and competitiveness of Newton‐
type optimization for conceptual hydrological models is also
indicated by recent successful applications of quasi‐Newton
methods to simple versions of TOPMODEL and VIC
[Kavetski et al., 2003b, 2006a] and to the Six Parameter
(SIXPAR) model (but not the Soil and Water Assessment
Tool (SWAT2000)) [Shoemaker et al., 2007; Tolson and
Shoemaker, 2007], as well by successful Gauss‐Newton
optimization of the Hydrologic Simulation Program Fortran
watershed model [Skahill and Doherty, 2006]. As illustrated
and discussed above, the ability to apply powerful gradient‐
based Newton‐type methods opens new avenues to drasti-
cally simplify hydrological model calibration while actually
providing additional insights into the parameter distributions.

8.8. Further Improvements

[78] In this work the objective function gradient needed for
the quasi‐Newton method is approximated using finite dif-
ferences, one‐sided initially and switching to more accurate
(for a smooth function!) central differences near the optimum.
Since these finite differences require, respectively, Nd and
2 Nd objective function calls, the majority of the computa-
tional cost of the quasi‐Newton scheme in this study is actu-
ally gradient approximation! It follows that substantial
increases in efficiency of the quasi‐Newton optimizer are
possible if analytical derivatives are used: (1) it obviates finite
differencing objective function calls and (2) it avoids finite
difference gradient errors and hence allows even faster prog-
ress and more reliable termination of each search sequence.
[79] On the basis of pilot studies with VIC‐type conceptual

models [Kavetski et al., 2007], gains in efficiency by factors of
Nd or more are generally achieved when finite difference
gradients are replaced by exact evaluation. However, while
analytical differentiation is relatively straightforward to derive
and implement for a fixed model structure [e.g., Gupta and
Sorooshian, 1985], it is tedious and considerably more pro-
grammatically difficult to incorporate into a flexible model
software such as FUSE. It is therefore left for future work.
[80] A combination of global searches with gradient‐based

optimization may be beneficial. However, Figure 7 suggests
that standard approaches that apply gradient‐based Newton‐
type optimizers to seeds already evolved using global opti-
mization [e.g., Tolson and Shoemaker, 2007] may not be
advantageous, indeed the opposite approach of mopping up
minor improvements using gradient‐free methods, such as
the simplex algorithm, may be warranted [Gill et al., 1981],

especially for micro‐noisy hydrological models such as those
implemented using adaptive time stepping.
[81] In addition, the Hessian approximation constructed as

part of the quasi‐Newton optimization can be used to ini-
tialize (or update) the covariance matrix of subsequent
MCMC sampling (section 5.4.2) (as discussed, e.g., in the
study byKavetski et al. [2006b], the negative inverse Hessian
provides an estimate of the covariance for near‐Gaussian
probability distributions). Furthermore, the computation of
the objective function gradient elements can be carried out in
parallel. These enhancements are left for the future.
[82] The hybrid strategies above are in line with recent

developments in global optimization, which seek to combine
multiple methods such as genetic algorithms, simulated
annealing, swarms, and ant colonies, etc., for handling com-
plex objective functions [e.g., Vrugt and Robinson, 2007].
However, an overriding message of this paper, exemplified in
Figure 1, is that addressing a root cause of the problem, namely
numerical artifacts, significantly simplifies the hydrological
calibration challenge and, in some cases, may reduce the need
for more complicated calibration procedures.
[83] In special cases, we suggest going even further and

actually modifying the governing equations themselves to
eliminate or replace components known to lead to problem-
atic objective functions. For example, model thresholds can
often be smoothed with minimal, if any, loss of model per-
formance [e.g., Kavetski et al., 2006a; Kavetski and Kuczera,
2007]. Indeed, the evaporation‐storage relations in FUSE are
smoothed (Table 2 of the companion paper). Note that such
genuinemodelmodifications require a sound judgment by the
modeler and must be approached with care.

9. Impacts on Inference and Prediction

9.1. Parameter Inference

[84] To examine the impact of the time stepping scheme on
uncertainty estimation, Figure 10 shows the bivariatemarginal
parameter distribution (estimated using MCMC sampling) for
all 6 FUSE models applied to the Mahurangi basin. For space
limitations, only the parameters common to all six FUSE
models are displayed (others exhibit a similar behavior).
[85] Figure 10 indicates that parameter inference is

extremely sensitive to the numerical time stepping scheme
used to solve the governing equations. The parameter dis-
tributions of models implemented using fixed‐step explicit
methods were almost always very distant from those corre-
sponding to the near‐exact solution (here, indistinguishable
from the adaptive explicit Heun solution). In many cases, the
differences are staggering, e.g., the maximum unsaturated
storage S1,max was estimated at around 50 ± 10 mm in FUSE‐
060 implemented using the fixed‐step explicit Euler approx-
imation, whereas for the near‐exact solution of the samemodel
equations, it was close to 500 ± 50 mm.
[86] Importantly, even generally fideliousmethods, such as

the fixed‐step implicit Euler scheme, can have very different
parameter distributions from the same models solved near‐
exactly (e.g., for FUSE‐550). However, in contrast to
uncontrolled explicit time stepping, the parameter estimates
obtained for models solved using the fixed‐step implicit Euler
approximation were generally close to the values obtained
when adaptive time stepping was used (e.g., for FUSE‐060).
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9.2. Comment on Alternative Sampling Techniques

[87] We stress that similar results would have been ob-
tained using alternative analysis techniques, such as Monte
Carlo Importance sampling [Kuczera and Parent, 1998],
Gibbs sampling [Reichert et al., 2002], Shuffled Complex
Evolution (Metropolis) (SCEM) and Differential Evolution
Adaptive Metropolis (DREAM) algorithms [Vrugt et al.,
2003, 2009], and others. Indeed, given the severe deforma-
tions of the models’ objective functions shown in Figure 1,
any convergent sampling method will necessarily produce
parameter estimates and associated distributions that reflect
these distortions. There is simply no way for a sampling
scheme, regardless of its sophistication, to detect, let
alone correct, numerical errors of the underlying hydro-
logical model implementation.
[88] Moreover, such deformations may delay, or even

prevent, convergence of Monte Carlo samplers, yielding
results that, in addition to being corrupted by truncation
errors of the time stepping approximation, are also subject
to sampling artifacts due to incomplete convergence of the
sampling algorithm. Markov chain sampling could be par-
ticularly vulnerable to getting trapped on macroscale optima
[e.g., Vrugt et al., 2009; Schoups et al., 2010], but importance
samplers will also converge slower for highly irregular
probability distributions, and importantly, these irregularities
would considerably complicate any adaption of the impor-
tance function. Finally, while increasingly powerful MCMC
methods are being developed to handle geometrically com-
plex target distributions [e.g., Vrugt et al., 2009], our current
opinion is that robust solutions for reliably sampling from
multimodal distributions with a priori unknown modes sep-
arated by vast low‐probability spaces are yet to be developed.
Searching for such high‐probability narrow‐support “islands”
is an extremely challenging proposition, cursed by the sheer
volume of high‐dimensional spaces. Moreover, practical
diagnostics will often falsely indicate convergence if a high‐
probability mass regionwas missed by the sampler. It is likely
that successful solution strategies may require some restric-
tions on the nature of the target probability distribution,

independent insights, and a combination of multiple numerical
submethods including optimization and adaptive MCMC.
Hence, while looking forward to such developments, we
emphatically recommend removing at least spurious deforma-
tions of the model’s objective function. Using robust time
stepping schemes is one such essential “artifact‐prevention”
strategy.

9.3. Model Predictions and Internal Dynamics

[89] Ultimately, the operational objective of conceptual
hydrological models is the prediction of streamflow and, in
some cases, insights into the internal catchment dynamics
such as storage (though the interpretation of internal states in
conceptual models is often unclear and requires considerable
caution, seeDuan et al. [2006]). In this section, we inspect the
impact of time stepping on the streamflow predictions, as well
as on the estimates of internal model storages.
[90] As determined in section 8.2, the peak Nash‐Sutcliffe

performance of all models was comparable across all time
stepping schemes, yet section 9.1 indicated massive differ-
ences in the corresponding parameter inference. This leads to
the question: Is it possible that the differences in the inferred
parameters simply reflect strong interdependencies and
compensations, and the optimized models have similar
response and internal dynamics regardless of the time step-
ping implementation?
[91] To address this question, Figure 11 compares the

optimized streamflow time series and corresponding upper
zone storages predicted using four different time stepping
schemes, for each of the six FUSE models calibrated to the
Mahurangi basin. It shows that, for any given FUSE model,
there are only very minor differences between the optimized
streamflow predicted using different time stepping schemes
(Figure 11, left). This is consistent with previous findings
(e.g., Figure 6): There are always some parameter sets that
provide a good fit to the observations, even for time stepping
scheme with poor overall fidelity, and the optimization
method, whether Newton‐type or SCE, is able to reliably find
these parameter sets.

Figure 10. Bivariate marginal parameter distributions for common parameters of the six FUSE models
applied to the Mahurangi basin. The colors denote the fixed‐step explicit Euler (red), fixed‐step explicit
Heun (green), fixed‐step implicit Euler (blue), and adaptive explicit Heun (black) schemes. The impact
of the time stepping scheme on the calibrated parameter values and uncertainty estimates is striking in all
models but especially in FUSE‐550.
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Figure 11. Simulations of (left) runoff and (right) upper zone storage in the Mahurangi basin, for each of
the six FUSE models, using daily rainfall forcing and near‐optimal parameter sets. The colors denote the
fixed‐step explicit Euler (red), fixed‐step explicit Heun (green), fixed‐step implicit Euler (blue), and adap-
tive explicit Heun (black) schemes, whereas the circles denote observations. The optimized runoff time
series are indistinguishable from the fixed‐step explicit estimates due to parameter compensations. Despite
near‐identical streamflow predictions, note the considerable differences in corresponding storage levels,
depending on the time stepping scheme (right plot).
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[92] However, even when the predicted streamflows are
near‐identical, simulations of upper zone storage depend
markedly on the time stepping schemes and associated opti-
mal parameters (Figure 11, right). Characteristically, this
is especially pronounced for fixed‐step explicit schemes in
virtually all FUSE models considered in this study. While
determining the precise reasons for these discrepancies re-
quires detailed and case‐specific truncation error analysis
beyond the scope of this study, we make the following ob-
servations: (1) since truncation errors depend on the model
parameters, optimization of the latter may result in truncation
errors canceling model structural errors for nonbehavioral
parameter sets, and (2) matching the total streamflow does not
imply that the individual constituents, e.g., surface runoff,
interflow, and baseflow, are preserved.
[93] Interestingly, simulations of upper zone storage are

quite similar in the fixed‐step implicit Euler and (near‐exact)
adaptive explicit Heun schemes, even in cases where the
parameter distributions differ markedly. For example, models
FUSE‐536, FUSE‐550, and FUSE‐330 have very different
parameter distributions when implemented using the fixed‐
step implicit Euler versus the adaptive explicit Heun schemes,
yet the simulations of upper zone storage are very similar
(here, suggesting compensatory effects between the maxi-
mum water content and fractional tension storage para-
meters). However, such compensatory behavior is not uni-
versal; for example, the upper zone storage predicted by
FUSE‐092 solved using the fixed‐step implicit Euler scheme
is quite different from that obtained when the same equations
are solved with adaptive error control. These findings rein-
force the fact that unconditional stability does not guarantee
strict numerical accuracy.

9.4. Validation

[94] Figure 11 suggests that, regardless of the inferred
parameter values and internal dynamics, the fitted (optimized)
model streamflows are remarkably similar evenwhen different
time stepping schemes, including the fixed‐step explicit Euler
approximation, are used. Let us put aside, just for a moment,
the (likely) possibility that the numerical errors in the fixed‐
step explicit Euler scheme may cause “behavioral” parameters
to be classified as “nonbehavioral” and vice versa. Let us also
ignore their confounding effects on the interpretation of
internal process dynamics. Let us ask, in the spirit of “black‐
box” modeling, the following question: If the fitted stream-
flows produced using the fixed‐step explicit schemes are just
as accurate, is it really necessary to implement numerically
reliable time stepping methods? Indeed, could it be that opti-
mization has tamed the capricious fixed‐step explicit beast,
making it just as well behaved as unconditionally stable or
adaptive solutions?
[95] To address this question, we first recognize that indeed

streamflow predictions are the primary quantity of interest in
many (though not all) operational applications of hydrolog-
ical models. However, while the performance during the
calibration period is of clear interest to a practitioner, their key
priority is usually performance under different forcing con-
ditions. Indeed, notwithstanding debates regarding whether
models can be validated [Konikow and Bredehoeft, 1992], at
least some kind of split‐sample testing is widely recognized
as necessary, though not necessarily sufficient, if a model is

to have predictive credibility [Klemes, 1986; Kuczera and
Franks, 2002].
[96] Thus, to address the pragmatic black‐box modeler’s

question, we evaluated (“validated”) the performance of
different time stepping schemes over a series of yearly
independent “validation” periods that were not used in the
calibration (section 4.2). We then evaluated the “predictive
fidelity” of the fixed‐step explicit and implicit Euler schemes,
using the adaptive explicit Heun as a surrogate near‐exact
solution of the governing equations (its adequacy was veri-
fied in several tests using tighter truncation error tolerances).
The predictive fidelity is computed using the same equation
as the fidelity measure defined in the companion paper,

8
absð Þ
XX ¼k ey� yXX k � k ey� yexact k; ð11Þ

where yexact and yXX are the exact and numerical solutions of
the model’s governing equations, respectively; and ey is the
observed data. While in the companion paper ey represented
the calibration data, here we apply equation (11) over the
validation period. This gauges the ability of the numerical
scheme to reproduce the exact solution in the context of fit-
ting validation data, which is evidently amore stringent check
than reproducing the calibration data. It is also a more perti-
nent check: It tests the hydrological model for its intended
application, which is predicting unknown streamflow.
[97] Figure 12 compares the predictive fidelity of the fixed‐

step explicit and implicit Euler approximations versus the
predictive fidelity of the near‐exact solution of the model
equations. The analysis includes all 19 years in the validation
period, with all six FUSEmodels applied to the French Broad
and Guadalupe River basins (which are, respectively, the
wettest and driest of the 12 MOPEX basins). Two observa-
tions are immediately apparent.
[98] 1. There is a markedly larger difference in validation

performance between the fixed‐step explicit Euler and
adaptive explicit Heun solutions than between the fixed‐step
implicit Euler and adaptive explicit Heun solutions (compare
Figure 12 (left) and Figure 12 (right)).
[99] 2. In the French Broad River, the fixed‐step explicit

Euler approximation suffers, on average, from an unequivo-
cally larger degradation in performance during the validation
period than the fixed‐step implicit Euler solution (the top left
plot of Figure 12). The results for the Guadalupe are com-
parable, although the differences are smaller, and in some
cases, there is a fortuitous improvement.
[100] To further illustrate the loss of validation perfor-

mance, Figure 13 depicts representative streamflow time
series from the validation experiments. Note that while even
the near‐exact ODE solution is unable to fit the third storm
event, the fixed‐step explicit Euler approximation is mark-
edly worse than the fixed‐step implicit Euler solution. Indeed,
it introduces 5 mm/d errors versus 0.1 mm/d of additional
error. The magnitude, both absolute and relative, of these
additional errors is reminiscent, not coincidentally, to the
fidelity evaluations undertaken in the companion paper.
[101] The markedly worse degradation of the fixed‐step

explicit Euler approximation vis‐à‐vis its implicit counterpart
is not surprising, given the general numerical fragility of
uncontrolled explicit schemes. In any numerical ODEmethod,
the truncation errors, which comprise high‐order derivatives
of the solution, depend on the forcing regime and on the
current model states. However, in methods that are only
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conditionally stable, such as the explicit Euler scheme,
truncation errors depend much more sensitively on these
factors and, moreover, are readily amplified if the scheme
becomes evenmarginally unstable. This can easily happen for
new forcing data regimes that may be encountered in pre-
dictive operational use.

9.5. Implications for Hydrological Modeling

[102] While the similarity of predicted streamflows creates
an illusion of adequacy of the fixed‐step explicit Euler
scheme, several comments can be made.
[103] 1. If fitting the observed streamflow is the sole objec-

tive of the model application, even fixed‐step explicit schemes
appear to provide satisfactory optimal results, although finding
optimal parameters is much harder and more expensive
because the objective function is poorly behaved (Figure 1).
What effectively happens is that numerical truncation error is
added to otherwise poor simulations to give better results. This
also destroys the performance for parameter sets giving good

fits to the data when the model is solved accurately (e.g., see
Figure 1 in the study by Clark and Kavetski [2010]).
[104] 2. If consistency of inferred parameters, and/or

inference of internal dynamics, is of interest, and especially if
interpretation or comparative analysis of these inferences is
desired, numerical errors arising in unreliable time stepping
schemes will preclude the investigator from reaching mean-
ingful conclusions. We suspect that numerical artifacts have
played a major role in confounding model evaluation and
comparison experiments and, if left unattended, will continue
to impede meaningful progress in conceptual hydrological
modeling and engineering.
[105] 3. If predictive credibility of the model is important

(we struggle to imagine when this would not be the case),
fixed‐step explicit schemes tend to perform markedly worse
in validation than fixed‐step implicit or adaptive explicit
solutions. We would be particularly wary of attempting to
extrapolate a model implemented using uncontrolled explicit
time stepping, as it is liable to behave even more erratically
and unpredictably. Conversely, unconditionally stable schemes

Figure 12. Impact of time stepping scheme on model validation and predictive performance: (left) predic-
tive fidelity of the fixed‐step explicit Euler and (right) fixed‐step implicit Euler approximations versus the
predictive fidelity of the near‐exact FUSE solution. Results are shown for all 19 individual year‐long val-
idation periods (1961–1979) and each of the six FUSE models, applied to the (top) French Broad and (bot-
tom) Guadalupe. Fidelity is computed using equation (11). The implicit Euler scheme has a noticeably
higher predictive fidelity than the explicit Euler scheme, especially in the French Broad basin, and in
general, faithfully approximates the underlying model equations. Conversely, uncontrolled explicit time
stepping suffers larger losses of predictive performance under different forcing conditions encountered in
operational use and is clearly unsafe.
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(implicit Euler), or schemes based on direct error control
(e.g., adaptive explicit Heun), are much less fragile in this
respect, and their discrepancy with the observations generally
reflects genuine structural errors of the model’s governing
equations and/or errors in the model forcing data.

9.6. Generality of Results

[106] To evaluate the generality of the results presented in
Figures 10 and 11, Figure 14 presents bivariate marginal
distributions for the parameters of the FUSE‐070 model
applied in all 12 MOPEX basins. In general, the fixed‐step
explicit Euler and explicit Heun methods yield very different
parameter distributions than the fixed‐step implicit Euler and
adaptive explicit Heun methods. This is expected given the
macroscale distortions in the objective function surfaces
occurring in fixed‐step explicit implementations. The param-
eter distributions for the fixed‐step implicit Euler and
adaptive explicit Heun methods are generally quite similar
(Figure 14), but in some cases, there are notable differences,
especially in the San Marcos (SAN), English (ENG), Rap-
pahannock (RAP), and South Branch Potomac (POT) basins.
The multibasin analysis confirms that the choice of time
stepping scheme can considerably affect parameter inference,
especially for unreliable fixed‐step explicit methods, but,
notably, also even for unconditionally stable implicit schemes
when error control is not implemented.

10. Practical Selection of Time Stepping Schemes
for Conceptual Hydrological Models

10.1. General Considerations

[107] Practical assessment of adaptive time stepping
schemes depends on trade‐offs between numerical reliability

and computational cost. While adaptive time stepping
methods may match the exact solution if the truncation tol-
erance is sufficiently tight, the resulting computational cost
can be prohibitive, especially for low‐order methods. For
example, the near‐exact adaptive Heun solution obtained by
setting the truncation tolerance close to machine precision
required thousands of flux evaluations per time step [Clark
and Kavetski, 2010]. This is infeasible and, moreover,
unnecessary in most practical hydrological applications.
Slacker tolerances, e.g., constraining truncation errors below
1%, drastically cut the cost while maintaining numerical
errors well below those likely to arise due to model structure
and uncertainty in forcing data such as rainfall. We stress that
the opposite is true in uncontrolled explicit methods, where
numerical errors frequently dwarf structural and forcing errors,
even under common hydrological conditions [Clark and
Kavetski, 2010].

10.2. Fixed‐Step Implicit Euler Versus Adaptive
Explicit Heun Methods

[108] This paper indicates that the fixed‐step implicit Euler
method may represent a reasonable practical alternative to
adaptive time steppingmethods. Yet, given the clear accuracy
and efficiency advantages of the adaptive explicit Heun
method with a moderate truncation tolerance (Figure 5),
we revisit the earlier question: Is there a place for fixed‐
step methods in conceptual hydrological models? Table 1
compares the adaptive explicit Heun scheme with several
fixed‐step methods.
10.2.1. Accuracy and Fidelity
[109] Like the adaptive explicit Heun method, the fixed‐

step implicit Euler method provides a faithful approximation
of the exact solution, in particular, free of macroscale dis-

Figure 13. Representative validation streamflow time series for FUSE‐092 applied over the 1973 period
in the French Broad River basin. Predictions obtained using the fixed‐step explicit Euler (red), fixed‐step
implicit Euler (blue), and adaptive explicit Heun (black) schemes are compared to observed flows (circles).
The fixed‐step implicit approximation is very similar to the near‐exact adaptive solution, and both have
markedly better predictive performance for the large storm event at the end of May than the fixed‐step
explicit Euler approximation. Particularly strong deterioration of predictive performance for the fixed‐step
explicit Euler scheme is common, as seen in Figure 11.
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Figure 14. Bivariate marginal distributions of FUSE‐070 parameters (x axis) versus S1,max (y axis), for all
MOPEX basins, estimated using MCMC sampling. The colors denote the fixed‐step explicit Euler (red),
fixed‐step explicit Heun (green), fixed‐step implicit Euler (blue), and adaptive explicit Heun (black)
schemes. The impact of time stepping errors is evident, with the parameter distributions depending unpre-
dictably on the time stepping scheme. MCMC convergence artifacts are also likely for geometrically com-
plex distributions such as those arising as a result of fixed‐step explicit approximations. The distributions
arising from fixed‐step explicit schemes are particularly inconsistent with the near‐exact adaptive Heun
solution, with the fixed‐step implicit Euler approximation also exhibiting some discrepancies.
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tortions. In the application of six different model con-
ceptualizations to 12 diverse basins, the fixed‐step implicit
Euler scheme incurred numerical errors generally below 1%
of the total error, thus providing adequate accuracy for
most hydrological applications [Clark and Kavetski, 2010].
Nonetheless, adaptive error control does provide a closer
approximation to the exact ODE solution [Clark and Kavetski,
2010], and, importantly, its numerical accuracy is directly
controlled by a user‐specified error tolerance.
10.2.2. Smoothness
[110] Unlike the fixed‐step implicit Euler method, the

objective functions of models implemented using the adaptive
explicit Heun scheme are contaminated by microscale dis-
continuities (e.g., Figure 3; see also Figure 2 and Appendix A
in the study by Kavetski et al. [2006a]). While this numerical
noise can degrade the efficiency and robustness of model
optimization [e.g.,Gill et al., 1981], the empirical assessment
in Figures 6 and 8 suggests this may not be fatal, at least when
(1) the discontinuities are localized rather than contaminate
the entire surface and (2) the gradient is approximated using
suitable finite difference intervals.
10.2.3. Solution Constraints
[111] Another relevant practical issue is the handling of

solution constraints [Clark and Kavetski, 2010]. Provided
intermediate iterations are safeguarded, the implicit Euler
solutions automatically satisfy all state constraints. On the
other hand, virtually all other schemes, in particular, the
adaptive explicit Heun method, require external modifica-
tions to handle solution constraints. This can be complicated
and somewhat subjective in coupled multistate models. For-
tunately, adaptive substepping ensures that the mass balance
associated with these ad hoc flux corrections is small and
is controlled by the truncation error tolerance. While the
imposition of “external” constraints, such as nonnegativity of
solution, can degrade the efficiency of the error control in
identifying a suitable step size [Shampine et al., 2005], this
was not observed in our empirical tests.
10.2.4. Computational Cost
[112] Finally, the computational cost must be considered.

In the 12‐basin analysis reported in the companion paper, the
fixed‐step implicit Euler scheme was, on average, costlier
than the adaptive explicit Heun method with moderate error
tolerances (relative errors below 1% or absolute errors below
0.01 mm). While the implicit Euler scheme can be accel-
erated using linesearches and Jacobian refreshment strate-
gies [Clark and Kavetski, 2010], the adaptive explicit Heun

method is generally enviably fast, and this is an important
practical consideration for many applications.
[113] On the other hand, the companion paper also shows

that the (fixed‐step) implicit Euler scheme is more compu-
tationally robust, i.e., has a less variable computational cost
than the (adaptive) explicit Heun scheme. More generally, in
all models considered in our experiments, we encountered
parameter sets where the adaptive explicit Heun algorithm
was much more expensive than the implicit Euler scheme.
Since this may be indicative of “stiff” ODE behavior [Clark
and Kavetski, 2010, Appendix A], dynamic switches from
explicit to implicit approximations when stiffness is sus-
pected could be beneficial in terms of constraining worse‐
case runtimes.
10.2.5. Overall Comparison
[114] Choosing between the adaptive explicit Heun solu-

tion and the fixed‐step implicit Euler approximation is
largely a question of judgment and perspective (see Table 1).
From a classical numerical ODE analysis perspective, the
adaptive scheme is clearly preferred, because it generally
provides controllably closer agreement with the exact solution.
However, the fixed‐step implicit Euler has more favorable
microscale smoothness characteristics (Figure 2), which is
advantageous in gradient‐based model parameter optimi-
zation. Moreover, its unconditional stability makes it very
robust (as listed in section 3.3 of the companion paper,
explaining its widespread use in engineering software,
including “industry‐standard” groundwater and multiphase
flow simulators).
[115] Interestingly, the broad empirical assessments in this

paper suggest that the lower numerical accuracy of the
implicit Euler method and the microscale discontinuities in
the adaptive explicit Heun method do not materially corrupt
model analyses such as parameter sensitivity and optimiza-
tion, although numerical errors of the implicit scheme can
affect the inferred posterior distributions of the model para-
meters and internal model states under some scenarios. Given
that in some cases one method can be vastly preferable to the
other, the option of adaptive switching warrants further
attention, in particular, switching to an adaptive implicit
scheme when stiffness is suspected to be causing gross
computational inefficiencies in adaptive explicit integration.

10.3. Benefits of Numerical Enhancements

[116] Hydrological practitioners may not fully appreciate
how subtle modifications of numerical approximations can

Table 1. Qualitative Comparison of the Adaptive Explicit Heun Solution to Fixed‐Step Approximations

Methodological Considerations
Fixed‐Step

Explicit Euler
Fixed‐Step

Explicit Heun
Fixed‐Step

Implicit Euler
Fixed‐Step

Implicit Heun
Fixed‐Step

Semi‐implicit
Adaptive

Explicit Heuna

Free of macroscale distortions ✗ ✗ B B ✗ B
Free of microscale discontinuities ✗ ✗ Bb Bb ✗c ✗d

Automatically satisfies solution constraints ✗ ✗ B ✗ ✗ ✗d

Average flux calls per time step 1 2 ∼10e ∼10e 1 + Ns
f 3–5g

aFor the problems in this study, adaptive implicit Euler and implicit Heun solutions have similar numerical properties but higher average computational cost
[Clark and Kavetski, 2010, Figure 5].

bProvided a sufficiently tight Newton‐Raphson tolerance is satisfied.
cBecause of finite difference Jacobian approximation effects and externally‐imposed bound constraints.
dMinor impact, directly controlled by the truncation error tolerance.
eAverage of 6 FUSE models over 12 MOPEX basins but depends on Newton‐Raphson tolerances (here constraining Dz(m) and r(z(m)) below 10−9 mm).
fDepends on the number of state variables Ns, due to finite difference Jacobian approximation.
gAverage of the 6 models over the 12 MOPEX basins but depends on truncation error tolerance (here tR = 1% and tA = 0.01 mm).
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have spectacular impacts on model performance. For exam-
ple, the original FUSE software [Clark et al., 2008] used an
adaptive implicit Euler scheme with truncation error esti-
mated by step‐halving (with fixed error tolerances tR = 10−4

and tA = 10−4 mm) and solved the implicit system using
the classic Newton‐Raphson scheme that recomputes the
Jacobian at each iteration. In retrospect, the original FUSE
implementation was spectacularly inefficient: The step‐
halving method required 33% more steps than embedded
error control, and the truncation error settings were unnec-
essarily stringent. Implementing the adaptive explicit Heun
method (with moderate error tolerances), or the fixed‐step
implicit Euler method (with Jacobian refreshment strategies),
decimated the average computational cost by several orders
of magnitude. Given the utility of tool kits such as FUSE in
elucidating structural errors in process representations, which
necessarily requires massive number of models runs, as well
as confidence that the results are not rendered meaning-
less by numerical artifacts, the case for expediently moving
away from unreliable numerical implementations cannot
be overstated.

11. Conclusions

[117] This paper compared the performance of different
numerical time stepping algorithms in the context of model
application and prediction, including sensitivity analysis,
optimization, and statistical inference of model parameters,
as well as prediction of streamflow and internal storage
states. To ensure the broad pertinence and generality of our
conclusions, we carried out a thorough assessment using
8 distinct time stepping schemes, 6 hydrological models of
varying range of complexity, and 13 catchments with diverse
physical and hydroclimatic attributes.
[118] Several important conclusions were reached as

follows:
[119] 1. When a hydrological model is implemented using

unreliable time stepping schemes, in particular, fixed‐step
explicit methods, its objective function will generally be
severely deformed by numerical artifacts. The extensive
analysis in this paper indicates that these deformations are not
rare isolated instances but affect virtually any model struc-
ture, in any catchment, and under common hydroclimatic
conditions. Such artifacts may well explain many reported
difficulties that historically complicated parameter optimi-
zation and have led to entire calibration paradigms not reliant
on well‐behaved parameter distributions. While fidelious
time stepping schemes cannot guarantee unimodality, they do
produce “better‐behaved” objective functions that are free of
spurious local optima and are numerically differentiable.
[120] 2. Sensitivity analyses of models implemented using

unreliable numerical schemes reflect the combined sensitivity
of the model equations and the numerical approximation
errors. In many common cases, the sensitivity estimate is
actually measuring the sensitivity of truncation errors to the
model parameter values. In contrast, sensitivity analyses of
models implemented using the fixed‐step implicit Euler and
adaptive (explicit) methods describe, as intended, the sensi-
tivities of the governing model equations and are free of
numerical artifacts.
[121] 3. Numerical implementation using reliable time

stepping schemes, such as unconditionally stable implicit or
adaptive explicit algorithms, immediately enable fast and

informative gradient‐based Newton‐type parameter optimi-
zation. When applied to accurately implemented models with
minimal spurious multimodality and sufficient numerical
smoothness, the quasi‐Newton sequences converge very fast
to near‐optimal parameter values and, when implemented
within a multi‐start framework, yield useful insights into the
multimodality structure of the model’s parameter distribu-
tions. Conversely, while global optimization methods such as
the SCE search are robust, they are generally slower than
multi‐start Newton‐type optimization because (1) global
convergence necessarily requires a broader and hence more
expensive exploration of the search space and (2) they typi-
cally use much less information regarding the shape of the
objective function behavior than, e.g., gradient‐based trust‐
region Newton‐type methods.
[122] 4. Erratic time stepping schemes lead to inconsistent

inference of model parameters and internal states, even if the
streamflow predictions appear reasonable. Somewhat dis-
turbingly, parameters in models implemented using inaccu-
rate time stepping schemes can compensate for numerical
approximation errors. Given that numerical errors of fixed‐
step explicit schemes routinely dwarf structural errors even
under common hydrological scenarios, the compensation of
these errors by altered parameter values during calibration
drastically affects the conclusions of parameter uncertainty
assessment and prevents meaningful parameter interpretation
and regionalization.
[123] 5. Evenwhen parameter interactions allow getting the

“right result for the wrong reasons,” the estimated internal
dynamics are markedly dependent on the time stepping
scheme. More important, the model’s performance in vali-
dation mode is markedly lower for the fixed‐step explicit
schemes, which is readily attributable to their conditional
stability, uncontrolled accuracy, and consequent general
numerical fragility. Hence, getting the right results for the
wrong reasons is just as wrong in numerical computation as
elsewhere in hydrology and science [e.g., Kirchner, 2006].
Indeed, such “right results” deteriorate for even moderate
departures from the calibrated conditions—they are yet
another gift from Pandora’s box of numerical artifacts in
hydrology.
[124] More generally, this paper demonstrates that time

stepping schemes prevalent in current conceptual hydrolog-
ical models are numerically unreliable. They easily lead to
erroneous conclusions regarding model sensitivity and, more
seriously, inconsistent inferences of model parameters, their
distributions, and internal model dynamics. This obscures the
comparison and interpretation of model parameters (for
example, in regionalization studies) and complicates mean-
ingful improvement of the model structure and parameteri-
zation. It also confounds the identification of both dominant
and nondominant hydrological processes, and their behavior,
in a given catchment.
[125] In our opinion, the difficulties in handling highly

irregular multimodal objective functions and probability
distributions make the elimination of objective function
complexity a key design priority. This may include not only
removing spurious numerical artifacts but also, whenever
appropriate, modifications of the model governing equations
to avoid poorly behaved components. These issues will
become increasingly important in high‐dimensional infer-
ence problems, such as those arising in spatially distributed
physical models and in hierarchical Bayesian estimation,
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where the reduction of the computational burden becomes a
key practical consideration.
[126] The traditional prevalence of fixed‐step explicit time

stepping in conceptual hydrological models, which con-
tinues to date without implementing numerical error control
recognized as essential for scientific computing in other
branches of science and engineering, is a major embarrass-
ment for the hydrological community. Indeed, the findings
in this study suggest that many published conclusions on
parameter sensitivity, calibrated values and associated
uncertainty, and, more disconcertingly, the interpretation of
hydrologic models to gain insights into internal catchment
dynamics, including the relative significance and behavior of
different processes, may be questionable due to numerical
artifacts introduced by unreliable time stepping schemes. The
computational savings bought by omitting numerical quality
control are dubious and cannot be justified, especially given
that a multitude of robust and efficient time stepping schemes
are mature, quite easy to implement, and widely available
through numerical tool kits. We hope that the vivid empir-
ical findings of this study, backed by decades of solid
and uncontroversial applied mathematics, will motivate the
hydrological community to address its numerical problems.

Appendix A: Sobol‐Saltelli Sensitivity Analysis

[127] The global parameter sensitivity is computed using
the Saltelli [2002] implementation of the Sobol’ method
[Sobol’, 1993].
[128] Consider the following vectors of model performance

indices for NTGS parameter sets,

Y ¼ Y q1ð Þ;Y q2ð Þ; . . .Y qNTGSð Þ½ � ðA1Þ

Y�j ¼ Y q�j
1

� �
;Y q�j

2

� �
; . . .Y q�j

NTGS

� �h i
; ðA2Þ

whereY(q) andY(q−j) denote themodel performance indices
for unperturbed and perturbed parameter sets, q and q−j,
respectively. Note that the subscripts on q1, q2, and qNTGS

in
(A1)–(A2) are used to index the parameter sets rather than
individual parameters within a given set.
[129] In equations (A1)–(A2), the perturbed and unper-

turbed values are defined, for the rth parameter set, as

qr ¼ �r;1; �r;2; . . . �r;k
�  ðA3Þ

q�j
r ¼ �r;1; �r;2; . . . ; �r; j�1ð Þ; � 0

r; j; �r; jþ1ð Þ; . . . �r;k
h i

; ðA4Þ
where the prime indicates which parameter is perturbed, e.g.,
�r,j′ indicates that the jth parameter of the rth set is perturbed.
[130] The total sensitivity of the model to its jth parameter,

Sj
TOT, is then defined as

bS TOT
j ¼ 1�

bU�j � bE2 Yð ÞbV Yð Þ ; ðA5Þ

where bE2 and bU−j are, respectively, a “squared mean” and a
“perturbed” variance of a selected index of model behavior
(here, the RMSE (7)), computed from NTGS perturbed and
unperturbed parameter sets, and bV is the total variance. These
quantities are defined below:

bU�j Yð Þ ¼ 1

NTGS � 1

XNTGS

r¼1

Yr � Y�j
r ðA6Þ

bE2 Yð Þ ¼ 1

NTGS

XNTGS

r¼1

Y2
r ; ðA7Þ

bV Yð Þ ¼ 1

NTGS

XNTGS

r¼1

Y2
r �

1

NTGS

XNTGS

r¼1

Yr

" #
; ðA8Þ

where the subscript r denotes an individual parameter set.
[131] In this work the total global sensitivity indices Sj

TOT

were calculated using NTGS = 10,000 parameter sets, sampled
using the quasi‐random Sobol’ sequence [Bratley and Fox,
1988]. The same parameter samples were used to calculate
Sj
TOT for all time stepping schemes, ensuring that any dif-

ferences in Sj
TOT are caused solely by differences in the

numerical model implementation.
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