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Understanding predictive uncertainty in hydrologic modeling:
The challenge of identifying input and structural errors
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[1] Meaningful quantification of data and structural uncertainties in conceptual rainfall‐
runoff modeling is a major scientific and engineering challenge. This paper focuses on the
total predictive uncertainty and its decomposition into input and structural components
under different inference scenarios. Several Bayesian inference schemes are investigated,
differing in the treatment of rainfall and structural uncertainties, and in the precision of
the priors describing rainfall uncertainty. Compared with traditional lumped additive
error approaches, the quantification of the total predictive uncertainty in the runoff is
improved when rainfall and/or structural errors are characterized explicitly. However, the
decomposition of the total uncertainty into individual sources is more challenging. In
particular, poor identifiability may arise when the inference scheme represents rainfall and
structural errors using separate probabilistic models. The inference becomes ill‐posed unless
sufficiently precise prior knowledge of data uncertainty is supplied; this ill‐posedness
can often be detected from the behavior of the Monte Carlo sampling algorithm. Moreover,
the priors on the data quality must also be sufficiently accurate if the inference is to be
reliable and support meaningful uncertainty decomposition. Our findings highlight the
inherent limitations of inferring inaccurate hydrologic models using rainfall‐runoff data with
large unknown errors. Bayesian total error analysis can overcome these problems using
independent prior information. The need for deriving independent descriptions of the
uncertainties in the input and output data is clearly demonstrated.
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1. Introduction

1.1. Confronting Uncertainty in Hydrologic Modeling

[2] In any modeling endeavor, reducing the total predictive
uncertainty requires a robust quantitative understanding of
each of its sources. In hydrology, robust characterization of
the uncertainties affecting rainfall‐runoff models remains a
major scientific and operational challenge. Generally speak-
ing, hydrologic modeling is affected by four main sources of
uncertainty: (1) input uncertainty, e.g., sampling and mea-
surement errors in catchment rainfall estimates; (2) output
uncertainty, e.g., rating curve errors affecting runoff esti-
mates; (3) structural uncertainty (sometimes referred to as
“model uncertainty”), arising from lumped and simplified
representation of hydrological processes in hydrologic mod-
els; and (4) parametric uncertainty, reflecting the inability to
specify exact values of model parameters due to finite length
and uncertainties in the calibration data, imperfect process
understanding, model approximations, etc.

[3] Numerous approaches for quantifying the uncertainty
in hydrologic predictions have been proposed, including
the Generalized Likelihood Uncertainty Estimation (GLUE)
[Beven and Binley, 1992], frequentist approaches [Montanari
and Brath, 2004], standard Bayesian approaches [Feyen
et al., 2007; Krzysztofowicz, 2002; Kuczera and Parent,
1998], Bayesian Recursive Estimation [Thiemann et al.,
2001], Bayesian hierarchical models [Huard and Mailhot,
2008; Kavetski et al., 2006a; Kuczera et al., 2006],
instrumental‐variable methods [Young, 1998], Bayesian
model averaging [Duan et al., 2007; Marshall et al., 2007]
and others.
[4] The Bayesian total error analysis (BATEA) framework

[Kavetski et al., 2002; Kavetski et al., 2006a; Kuczera et al.,
2006] was developed to explicitly represent each source of
uncertainty affecting calibration and prediction of hydrolog-
ical models. Several studies have shown that, especially in the
presence of large rainfall errors, BATEA offers significant
improvements over traditional approaches that lump all
uncertainties into a single error term and yields: (1) reduced
bias and more consistent parameter estimates; and (2) more
reliable estimates of predictive uncertainty [Kavetski et al.,
2006a; Renard et al., 2009a; Thyer et al., 2009].
[5] Unlike data uncertainty, which can be estimated by

analyzing sampling and measurement designs [Refsgaard
et al., 2006], structural error is much harder to characterize.
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Several approaches have been investigated in the context of
conceptual rainfall‐runoff (CRR) models, ranging from tra-
ditional additive Gaussian noise representation [e.g., Huard
and Mailhot, 2008] to Kalman filters [e.g., Moradkhani
et al., 2005] and stochastic perturbations of model states
[Bras and Rodriguez‐Iturbe, 1985] and parameters [e.g.,
Kuczera et al., 2006; Young, 1998]. None of the current
approaches appears entirely satisfactory; the optimal meth-
odology and implementation for handling structural errors
remains to be established.
[6] Recent work has aimed at quantifying the individual

contributions of input, output and structural uncertainties to
the total predictive uncertainty [Huard and Mailhot, 2008;
Kuczera et al., 2006; Moradkhani et al., 2005]. This can be
used for: (1) diagnosing the main causes of uncertainty,
suggesting avenues for improving the predictive precision of
CRR models; (2) identifying CRR model deficiencies, indi-
cating opportunities for model improvement; and (3) com-
paring CRR models without obscuring the comparison
by input/output data errors. However, significant challenges
remain in the development of statistical techniques for
achieving this decomposition, and in the adequate specifi-
cation of error models and prior knowledge necessary for
a meaningful and well‐posed inference.
[7] There is a broad recognition of the limitations of

rainfall‐runoff data in supporting a well‐posed inference of
complicated CRRmodels [e.g., Beven, 2006]. The inability to
infer some or all quantities of interest from the available data
is often referred to as “nonidentifiability” [e.g., Wagener
et al., 2001]; unless prior knowledge is available, non-
identifiability leads to an “ill‐posed” inference (more formal
definitions are given in sections 3.1 and 3.3).
[8] While this work focuses on lumped conceptual

hydrological models, similar concerns hold for more complex
physically based distributed models. Indeed, since these
models have increased data requirements to support the
identification and resolution of additional catchment pro-
cesses, the issue of data reliability and informativeness is
likely even more critical.
[9] This study presents a quantitative analysis of the

identifiability of input and structural errors using a repre-
sentative set of probabilistic calibration methods, several data
knowledge scenarios and two distinct treatments of structural
error. It makes a step toward a deeper understanding of the
different sources of uncertainty and their effect on model
calibration, and opens avenues for improving the predictive
capability of environmental models. The implications of our
findings on the estimation of physically based spatially dis-
tributed models are also briefly discussed.

1.2. Objectives

[10] This study investigates the ability of statistical esti-
mation, given uncertain rainfall‐runoff data and an approxi-
mate hydrological model, to (1) infer reliable and precise
predictive distributions of the runoff; and (2) decompose
the total predictive uncertainty, in particular, identify its
input and structural components (and, moreover, iden-
tify individual input errors). Objective (1) is necessary to
achieve objective (2). We compare the ability of several
distinct calibration schemes to achieve objectives (1) and
(2), and evaluate the impact of independent (prior) knowl-
edge of the uncertainties in the calibration data.

[11] It is stressed that this paper explores the properties
of the predictive distributions of runoff and rainfall and does
not attempt to investigate biases and identifiability issues
in CRR models and their parameters. In particular, predic-
tive distributions of runoff correspond to integrating over
CRR parameter distributions and are the ultimate long‐term
objective of the majority of practical applications, especially
given the growing emphasis on probabilistic risk analysis.
Consequently, we limit the scope of this paper to predictive
distributions and defer CRR parameter analysis to a separate
study.

1.3. Outline of the Presentation

[12] The paper in organized as follows. Section 2 discusses
data and structural uncertainties in further detail, while
section 3 defines and illustrates the key concepts of iden-
tifiability and well posedness. Section 4 describes the data
and CRR models, section 5 details the Bayesian inference
framework used for the analysis and section 6 outlines the
methodology. Three experiments are carried out next:
Experiment A uses synthetic data and focuses solely on
data errors (section 7), Experiment B considers the effects
of structural errors using synthetic data (section 8), while
Experiment C uses real data to assess the relevance of the
synthetic analysis (section 9). The results are discussed in
section 10 and the conclusions are summarized in section 11.

2. Data and Structural Uncertainties
in Hydrology

[13] This section surveys distinctions between data and
structural uncertainties and broadly classifies methods for
treating structural errors.

2.1. Nature of Data and Structural Uncertainties

[14] There is a fundamental difference between the
uncertainty in the data and the structural uncertainty in the
CRR model itself.
[15] 1. Data uncertainty stems from sampling, measure-

ment and interpretation errors in the observed input/output
data. Since these errors arise independently from the CRR
model, their properties (e.g., means and variances of rainfall
and runoff errors) can, at least in principle, be estimated prior
to the calibration by analysis of the data acquisition instru-
ments and procedures. However, current practice seldom
reports statistical measures of accuracy and precision of
hydrological data (but see Di Baldassarre and Montanari
[2009] and Dottori et al. [2009] for recent exceptions). This
paper investigates the impact of this deficiency on the pre-
dictive capabilities of hydrological models and the decom-
position of input and structural errors.
[16] 2. Structural uncertainty is an inherent feature of the

CRR model: it is a consequence of the simplifying assump-
tions made in approximating the actual environmental system
with a mathematical hypothesis. In general, the structural
error of a CRRmodel depends on themodel formulation (e.g.,
number and connectivity of stores, choice of constitutive
functions, etc), on the specific catchment, and on the spatial
and temporal scale of the analysis. Moreover it may vary from
storm to storm, or on some other time scale. Since this
uncertainty is poorly understood, specifying a meaningful
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prior for structural uncertainty, indeed, even formulating it
mathematically, is problematic.
[17] In practice, uncertainties in the calibration data and its

finite length necessarily translate into uncertainties in the
estimated CRR parameters and other inferred quantities (in a
Bayesian context, “posterior parameter uncertainty”). This
would occur even for an exact model, but can be particularly
pronouncedwhen themodel is approximate. In Bayesian (and
frequentist) inferences, this “derived” parametric uncertainty
declines as more data is included in the calibration. How-
ever, if the likelihood and/or priors are misspecified (which,
as discussed in this paper, can be detected using posterior
diagnostics), the posterior will be in error [also seeMantovan
and Todini, 2006; Beven et al., 2008]. Despite its asymptotic
behavior, parametric uncertainty should not be ignored
because it may contribute significantly to the total predictive
uncertainty.

2.2. Characterizing Structural Uncertainty

[18] This section outlines two broad classes of probabilistic
approaches used in this paper for characterizing structural
error. We also briefly survey alternative approaches.
[19] Traditional approaches treat the CRR model as deter-

ministic and represent structural error using an exogenous
term, usually additive. Several options are possible.
[20] A1. Lump output and structural errors into a single

“residual” error term, defined as the difference between
simulated and observed outputs, possibly after a transfor-
mation. This approach can be implemented both within
schemes that ignore input errors (e.g., the standard least
squares calibration), and within input error sensitive meth-
odologies [e.g., Kavetski et al., 2006a].
[21] A2. Represent output and structural errors using two

separate terms, e.g., such that the difference between simu-
lated and true outputs is structural error, while the difference
between true and observed outputs is output error [e.g.,
Huard and Mailhot, 2008]. Though this allows using more
specialized error models and priors, e.g., estimating stream-
flow uncertainty from independent gauge data, specifying a
meaningful prior for structural errors remains problematic
(see section 2.1).
[22] More recent approaches abandon the notion that CRR

models are deterministic. This is motivated by the stochastic
nature of errors arising from spatial and temporal averaging
of distributed and heterogeneous model inputs and internal
fluxes, which are unavoidable in lumped models. Several
related approaches have been proposed.
[23] B1. Stochastic perturbations of the internal model

states. This approach has been used in state space approaches,
such as the Ensemble Kalman Filter (EnKf) [e.g.,Moradkhani
et al., 2005].
[24] B2. Stochastic variation of one or more CRR param-

eters through time. This approach can be used with transfer
functionmodels estimated using instrumental variables [Young,
1998], or with general CRR models within BATEA [Kuczera
et al., 2006].
[25] B3. Formulate the CRR model itself as a joint prob-

ability density function [Bulygina and Gupta, 2009].
[26] In approaches A1–A2, the CRRmodel is deterministic

in the sense that, given fixed inputs, parameters and initial
conditions, it generates the same output. Conversely, in
approaches B1–B3, the CRRmodel is viewed as stochastic: it

generates a random output even for fixed inputs, parameters
and initial conditions. More specifically, output randomness
arises due to random variations of internal states (B1) or
stochastic parameters (B2), or, more generally, due to prob-
abilistic formulation of the model structure (B3).
[27] As a result, in approaches A1–A2, as posterior CRR

parameter uncertainty declines, the CRR model predictions
quickly become deterministic and the total predictive uncer-
tainty is dominated by the exogenous error term. Conversely,
in approaches B1–B3, the CRR predictions are inherently
stochastic even if the posterior uncertainty in its parameters is
negligible.
[28] Also note that approaches B1–B3 can be used to

(implicitly or explicitly) reflect all sources of uncertainty,
rather than just inadequacies of the model structure. Indeed,
even when intended solely for structural errors, they may also
capture at least some effects of data errors. This interaction is
a key focus of our study.
[29] The list above is not exhaustive. Assuming that

structural uncertainty is epistemic rather than strictly sto-
chastic, some authors have abandoned the formal probabi-
listic framework, e.g., GLUE [Beven and Binley, 1992] and
possibilistic methods [Jacquin and Shamseldin, 2007]. Yet
even when structural errors are epistemic, i.e., arise as a
consequence of lack of knowledge of catchment dynamics,
they may still behave stochastically and be characterized
using standard probability theory, in particular, Bayesian
methods.
[30] Alternatively, Bayesian Model Averaging (BMA)

approaches [e.g., Duan et al., 2007; Marshall et al., 2007]
attempt to quantify structural uncertainty by combining the
predictions of multiple CRR models. However, BMA’s key
assumption that the supplied set of models is complete is
difficult to achieve and scrutinize in practice; it is unclear
what the posterior predictive uncertainty actually represents
when this assumption is not met.
[31] Consequently, the calibration methods investigated in

this paper are based on the hypothesis that structural uncer-
tainty, whatever its cause, can be described by an explicit
probabilistic model that is then subjected to direct scrutiny.

2.3. Prior Specification of Data and Structural
Uncertainties

[32] A critical aspect of uncertainty quantification is the
specification of the parameters of the data and structural error
models (e.g., variances of rainfall and runoff errors, variance
of structural errors).
[33] Early applications of BATEA [Kavetski et al., 2006a]

used fixed rainfall error parameters, whileHuard andMailhot
[2008] used fixed input/output/structural error parameters. In
Bayesian theory, this corresponds to the strongest possible
prior (parameters known exactly) and would be appropriate if
the statistical properties of the errors were well understood.
Since this remains a challenge in hydrology, a more general
formulation of BATEA treats the error model parameters
as unknown quantities that are inferred along with CRR
parameters and other quantities of interest [Kuczera et al.,
2006]. This corresponds to weaker (more vague) priors.
[34] A major practical question considered in this paper

is the accuracy and precision of prior information needed for
(1) meaningful estimation of the total predictive uncertainty
and (2) accurate attribution of the predictive uncertainty to
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individual sources. The influence of the priors on the reli-
ability of the inference is of critical practical significance
because it motivates the development of accurate and precise
independent prior knowledge, e.g., based on densely gauged
experimental basins, etc.

3. Identifiability and Well Posedness

[35] This section defines and contrasts the concepts of
“identifiability” and “well posedness.” While these concepts
are necessarily technical and must be defined and used very
carefully, they are central to this study and for the broader
topic of statistical model identification. A simple yet infor-
mative example is used for illustration.

3.1. Identifiability

[36] The notion of identifiability in Bayesian inference can
be formalized as follows. Let p(q) and p(q∣y) denote the prior
and posterior distributions of a parameter vector q given
data y. At least one component of q is nonidentifiable if there
exists a one‐to‐one reparameterization from q space into y
space such that

pðy2 j y1; yÞ ¼ pðy2 j y1Þ ð1Þ

for some partitioning of y into subsets y1and y2.
[37] Equation (1) states that parameters y2 are non-

identifiable if the data y do not provide any information on
the conditional posterior distribution ofy2 giveny1 [see also
Gelfand and Sahu, 1999].
[38] Definition (1) is more intuitive when cast in terms

of the likelihood function. Applying Bayes’ theorem to the
LHS of equation (1) yields

pðy j y2;y1Þpðy2 j y1Þ=pðy j y1Þ ¼ pðy2 j y1Þ ()
pðy j y1;y2Þ ¼ pðy j y1Þ

ð2Þ

Equation (2) states that y2 is nonidentifiable when the like-
lihood does not depend on y2.
[39] The simplest scenario for nonidentifiability is when

q = y and equation (2) holds for at least one component of q.
This occurs when the model contains redundant parameters,
or, more commonly, if a parameter q2 controls a specific
model regime (e.g., extremely high flows) but the data does
not force the model into this regime.
[40] More generally, parameters q can be nonidentifi-

able even if the likelihood function varies with respect to
all inferred quantities in the original q parameterization.
This occurs when parameters appear in groups that cannot
be resolved into individual components (see example in
section 3.2).
[41] Nonidentifiability has a strong connection to the

properties of the parameter covariance matrix. For linear
models, the covariance matrix of nonidentifiable parameters
is singular (i.e., has zero eigenvalues), which can be detected
using standard linear algebraic methods. For nonlinear
models, near‐zero eigenvalues remain indicative (though
not conclusively) of nonidentifiability, but much more com-
plex degeneracies can develop. Kavetski et al. [2006b] and
Tonkin et al. [2007] further discuss the significance of the

covariance/Hessian matrix and its eigenvalues for the esti-
mation of nonlinear models.
[42] In practice, the onset of nonidentifiability is gradual.

For example, likelihoods where

pðy j y1;y2Þ � pðy j y1Þ ð3Þ

do not strictly satisfy (2), but provide virtually no information
about y2.

3.2. A Simple Illustration of Nonidentifiability

[43] Consider the simple yet instructive example of non-
identifiability [Eberly and Carlin, 2000]:

yi � Nð�1 þ �2; 1
2Þ; i ¼ 1; . . . ; n ð4Þ

For illustrative purposes, �1 and �2 could be viewed as anal-
ogous to the parameters describing input and structural errors
that we are trying to disaggregate in this study.
[44] Assuming the yi’s are independent, the likelihood of

observing the data y is:

pðy j �1; �2Þ ¼
Yn
i¼1

Nðyi j �1 þ �2; 1
2Þ ð5Þ

Although this likelihood depends on both �1 and �2, there is
no information in the data to discriminate between (�1, �2)
pairs that add up to the same value.
[45] More formally, the one‐to‐one reparameterization

from (�1,�2) to (y1,y2)
(1) = (h,�2), where h = �1 + �2, yields

pðy j �; �2Þ ¼
Yn
i¼1

Nðyi j �; 12Þ ð6Þ

Since the reparameterized likelihood (6) is independent
from �2, it satisfies the definition (2) and therefore �2 is
not identifiable. Similarly, reparameterization from (�1,�2) to
(y1,y2)

(2) = (h,�1) shows that �1 is not identifiable either.
On the other hand, the group h is identifiable – even though its
individual components �1 and �2 are not!

3.3. Well Posedness

[46] It is stressed that, given definitions (1) and (2), non-
identifiability is a property solely of the likelihood function,
and is completely independent of the prior distribution.
[47] While the concept of identifiability is sufficient in

maximum likelihood estimation, Bayesian inference requires
an analogous measure of informativeness of the posterior
distribution. For this purpose, we adapt the distinction between
“well‐posed” and “ill‐posed” problems, which is central in
mathematics and physics [Hadamard, 1902].
[48] We term a Bayesian inference well posed if the asso-

ciated posterior has the following properties: (1) it integrates
to unity; (2) it is “informative”; and (3) it depends reasonably
continuously on the inference data. These characteristics
mimic Hadamard’s criteria, originally developed in the con-
text of mathematical models of physical phenomena (see also
Tarantola [2005], for a discussion in the context of inverse
problems).
[49] Criterion (b) can be formulated in direct analogy to

condition (2): a posterior p(q∣y) is non‐informative with respect
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to at least one element of q if it can be re‐parameterized such
that

pðy1;y2 j yÞ ¼ pðy1 j yÞ ð7Þ

Equation (7) effectively defines an ill‐posed posterior as the
product of a nonidentifiable likelihood with a noninformative
prior.
[50] An ill‐posed posterior does not yield a useful inference

of y2. In many cases, especially in the absence of prior
bounds, a posterior that satisfies (7) does not integrate to a
constant.
[51] Finally, in practice it is common to see posteriors

where

pðy1;y2 j yÞ � pðy1 j yÞ ð8Þ

These are effectively ill‐posed and yield very little useful
inference. The sensitivity of the posterior to y2 before the
inference is judged ill‐posed is problem dependent and con-
text dependent.

3.4. Use of Prior Information

[52] Since Bayesian analysis incorporates additional
(prior) information into the analysis, it can obtain well‐posed
inferences from the posterior even if the likelihood function
alone does not. Indeed, the ability to bring in such informa-
tion is a key strength of the Bayesian paradigm. Yet this does
not imply that a Bayesian modeler can disregard whether it is
the prior or the likelihood that controls the well posedness of a
specific inference application.
[53] In hydrology, independent (prior) information about

data uncertainty can be obtained, e.g., from geostatistical
analysis of spatial rainfall data [Kuczera and Williams, 1992]
and rating curve analysis [Thyer et al., 2009]. On the other
hand, since meaningful characterization of structural errors
remains a major challenge, it is unclear how to develop
informative priors for structural errors (see section 2.1).
[54] Section 3.4 illustrates how prior knowledge can be

used to produce a well‐posed posterior inference. We simu-
late n = 100 data from model (4), with true parameter values
�
^

1 ¼ �1 and �
^

2 ¼ 1. �1 and �2 are then inferred using
standard Bayesian analysis. Two distinct prior knowledge
scenarios are investigated.

[55] 1. The prior p1 represents some prior knowledge of �1
and no prior knowledge of �2:

�1ð�1; �2Þ ¼ pð�1Þpð�2Þ; with

pð�1Þ ¼ Nð�1; 0:12Þ and pð�2Þ / 1
ð9Þ

[56] 2. The prior p2 corresponds to no prior knowledge of
�1 and �2:

�2ð�1; �2Þ ¼ pð�1Þpð�2Þ; with

pð�1Þ / 1 and pð�2Þ / 1
ð10Þ

Inference using the (informative) prior p1 (Figure 1a) yields a
posterior that is approximately Gaussian. The non-
identifiability of �1 and �2 does not induce statistical pro-
blems; we refer to this situation as a “well‐posed inference.”
[57] In contrast, the inference using the (noninformative)

prior p2 is ill posed (Figure 1b). In particular, the posterior is
constant along infinite‐size subspaces �1 + �2 = h. This pos-
terior does not yield any useful information on (�1, �2).
However, the inference on h = �1 + �2 is well posed
(Figure 1c).
[58] It is critical to note that, as discussed in section 3.2,

(�1, �2) are nonidentifiable from the data regardless of the
prior distribution (identifiability as defined in equation (2) is
strictly a property of the likelihood function). However, h is
identifiable (and its inference well posed) for both priors.

3.5. Practical Diagnosis of Well Posedness
and Identifiability

[59] The instructive example (4) shows that parameter
identifiability cannot be assessed by simply checking that the
likelihood is sensitive to a change in individual parameter
values. Furthermore, the parameter grouping fulfilling con-
dition (2) was obvious in the preceding example, but might be
very difficult to uncover for more complicated hydrological
models. Consequently, in practice nonidentifiability and ill
posedness are more likely to be detected through their
empirical symptoms, rather than through formal mathemati-
cal analysis.
[60] In general, the posterior distributions of nonlinear

hydrological models are too complicated to be described
analytically and therefore are usually explored using Markov

Figure 1. Posterior distributions for the didactic example of section 3.4. (a) With prior p1; (b) with prior
p2; (c) posterior distribution of �1 + �2 with prior p2.

RENARD ET AL.: IDENTIFIABILITY OF INPUT AND STRUCTURAL ERRORS W05521W05521

5 of 22



Chain Monte Carlo (MCMC) methods [e.g., Kuczera and
Parent, 1998]. Since well posedness is a key characteristic
of the posterior, it controls the convergence of MCMC
methods. Consequently, the behavior of the latter, in con-
junction with an evaluation of prior knowledge, can be used
to indirectly detect nonidentifiability.
[61] Consider MCMC sampling from the posteriors in

Figure 1. Figure 2 shows the evolution of two parallel
Metropolis chains for parameters �1, �2 and h = �1 + �2. The
top three panels refer to the posterior obtained with prior p1:
the two chains mix and converge quickly for all inferred
quantities. However, the behavior in the case of the prior p2
(Figure 2 (bottom)) is totally different: the chains for �1 and �2
diverge (note the wide scale of the y axis). Moreover, the
posterior correlation between �1 and �2 is almost −1, sug-
gesting complete interaction between these parameters. Yet
convergence is almost immediate for parameter h: despite its
individual components �1 and �2 being noninferable, the
inference of h is perfectly well posed.
[62] The poor convergence and near‐perfect cross corre-

lation of MCMC samples from the ill‐posed posterior is
emphasized, since a qualitatively similar behavior will be
observed in the case studies using conceptual hydrological
models (sections 8 and 9).

3.6. Nonidentifiability, Ill Posedness and Predictive
Ability

[63] While nonidentifiability is generally undesirable, its
practical consequences depend on the objective of the anal-
ysis. If parameter estimation is the chief objective, non-
identifiability is a serious impediment, especially with weak
prior knowledge. Yet in some cases, nonidentifiability does

not prevent reliable predictions. For example, prediction of y
using the model (4) is straightforward because the (sufficient)
parameter h = �1 + �2 is perfectly identifiable. However, if �1
and/or �2 are used to predict quantities other than y, using the
ill‐posed inference can result in very poor predictions. In
hydrology, this corresponds to using the model to predict
environmental variables that the model has not been cali-
brated to. Similar problems develop when attempting to
extrapolate ill‐inferred models beyond the range of calibra-
tion data.

4. Experimental Setup

4.1. Validity of Synthetic Experiments

[64] Recent literature debates the value of synthetic ex-
periments [e.g., Beven, 2006; Montanari, 2007]. Our view is
that synthetic tests are a necessary step to ensure the internal
consistency of a statistical method and identify its strengths
and weaknesses. However, synthetic tests using exact models
say little about the robustness of the method in the common
case when the CRR model is inaccurate.
[65] The strategy used in this study to partially overcome

the latter limitation is to generate the “true” data using model
M0 and calibrate another model, M1, to this data, possibly
corrupting the latter with synthetic “observation” errors. The
advantages of this approach are (1) all quantities are known,
so that exact and estimated values can be compared, and
(2) by using different models M0 and M1, the calibration
scheme can be tested in cases where the notion of “true
parameter values” is not applicable (since in general there is
no M1 parameter set leading to the M0‐generated data, even
if the true input/output is used).

Figure 2. Evolution of two parallel MCMC chains for parameters (left) �1, (middle) �2 and (right) �1 + �2
for the didactic problem of section 3.4. (top) Prior p1 and (bottom) prior p2.
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[66] Since it remains to be seen whether the discrepancies
between two hydrological models are representative of the
discrepancies between a hydrological model and actual
physical processes, a real‐data study is used to check whether
qualitatively similar results are obtained as in the synthetic
analysis. Agreement in this respect suggests, though does not
conclusively prove, that the same conclusions hold.

4.2. Calibration Data and Models

[67] This paper uses two synthetic and one real data set.
The synthetic set D0 is generated using the logSPM model
(with parameters summarized in Table 1 and model equations
detailed in Appendix A) and is corrupted with input/output
errors. This data set is used for basic analysis in the absence of
structural error (Experiment A). The synthetic set D1 is
generated using the GR4J model [Perrin et al., 2003] and is
also corrupted with data errors. Calibrating logSPM to D1
(Experiment B) tests the ability of the calibration methodol-
ogy to handle structural errors (see section 4.1).
[68] Five years of daily rainfall and potential evapotrans-

piration (PET) from the Abercrombie catchment (2770 km2,
New South Wales, Australia) are treated as the true inputs
(r and pet) and used to generate synthetic runoffs.
[69] The observed rainfall (~r) is generated by corrupting the

true rainfall as follows:

~rt ¼ rt= expðmtÞ ð11aÞ

mt � Nð�0:2; 0:22Þ ð11bÞ

The lognormal distribution used to generate rainfall errors in
equation (11b) leads to a systematic over prediction of about
20% and a standard error of about 20%.
[70] Since the sensitivity of CRR models to PET errors is

low [e.g.,Oudin et al., 2006], we assume the PET data is error
free, i.e., fpet = pet.
[71] The “true” outputs q are generated using logSPM (data

set D0) and GR4J (data set D1) and are corrupted to produce
observed outputs ~q:

~q ¼ qt þ et ð12aÞ

et � N 0; ð0:1qtÞ2
� �

ð12bÞ

The real‐data study (Experiment C) uses the observed
rainfall, PET and runoff for the calibration and validation
periods.
[72] In all three experiments, the calibration period

includes days 529–1083 (1.5 years) and is preceded by a

warm‐up period of 100 days. Days 1084–1827 (2 years) are
used for validation.

5. Bayesian Inference Framework

[73] The calibration schemes investigated in this study
differ in their treatment of each source of uncertainty. They
can be obtained from the general Bayesian Total Error
Analysis (BATEA) framework by supplying specific error
models and priors. Following an outline of the overall
framework in sections 5.1–5.8, the calibration schemes are
summarized in section 5.9.

5.1. Basic Notation

[74] LetR = (rt)t = 1,…,T denote the true areal rainfall at day t
and ~R ¼ ð~rtÞt = 1,…,T be the corresponding observed rainfall.
Similarly, let Q = (qt)t = 1,…,T and ~Q ¼ ð~qtÞt = 1,…,T denote
the true and observed runoffs.
[75] In general, a CRR model M() predicts the runoff

Q̂ ¼ ðq̂tÞt = 1,…,T given rainfall, PET, parameters and initial
conditions:

q̂t ¼ MðR1:t;PET1:t; q; S0Þ ð13Þ

where R1:t and PET1:t are the inputs for time indices 1 to t, q
are the deterministic CRR parameters and S0 is the vector of
initial store values. The initial conditions S0 are not inferred
because their influence is minimized using a warm up.

5.2. Input Errors

[76] Traditional calibration methods, e.g., standard least
squares (SLS), assume all observed inputs are error free, in
particular, R = ~R. With this assumption, the only quantities
requiring inference in equation (13) are the CRR param-
eters. However, ignoring input uncertainty can significantly
degrade the inference [Kavetski et al., 2002]. One possibility,
used in BATEA, is to treat input uncertainty using a hierar-
chical formalism, where each rainfall error is represented
using a latent variable. The full posterior then yields a joint
inference of the true inputs and the CRR parameters given the
model and the observed input/output data [Kavetski et al.,
2006a].
[77] In this study, rainfall errors at each wet day are rep-

resented using rainfall multipliers sampled from an uncor-
related lognormal distribution. More formally, we assume
Gaussian log‐multipliers F = (�t)t = 1,…,Nwet

as follows:

rt ¼ ~rt expð��ðtÞÞ ð14aÞ

��ðtÞ � Nð�r; �
2
r Þ ð14bÞ

�r � Nð�0:2; 1=v2Þ ð14cÞ

�2
r � Inv	2ðv; 0:2Þ ð14dÞ

where t(t) is the index of the log multiplier affecting time
step t, N(a,b2) is the Gaussian distribution with mean a and
variance b2 and invc2(a,b) is the inverse‐c2 distribution with
degrees of freedom a and scale b.

Table 1. Description of LogSPM Parameters and Their Prior
Distributions

Parameter Description Prior

rgeMax Groundwater recharge at full saturation log(rgeMax) ∼ N(3,32)
kEt Evapotranspiration (ET) coefficient log(kEt) ∼ N(0,42)
kS Saturated area function parameter log(kS) ∼ N(−2,42)
kGw Base flow coefficient log(kGw) ∼ N(−6,62)
kDp Percolation coefficient log(kDp) ∼ N(0,52)
kStream Stream coefficient log(kStream) ∼ N(−1,22)
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[78] Equation (14b) is the hyperdistribution of latent
variables (Gaussian distribution), with hyperparameters
mr(“hypermean”) andsr (“hyper‐standard‐deviation,” “hyper‐
SD” hereafter).
[79] Equation (14c) represents the prior distribution of the

hypermean. The prior mean is set to −0.2, which, given
equation (14a), centers the prior on the actual mean of
the rainfall errors. The precision parameter n controls the
sharpness of the prior distribution. Three values of n are
investigated: (1) n = 103, high prior precision, hypermean can
be considered as virtually known; (2) n = 102, medium prior
precision, appreciable prior information; (3) n = 10, low prior
precision, little prior knowledge.
[80] Similarly, equation (14d) represents the prior on the

hyper‐SD. The scale parameter is set to 0.2, so that the prior
encompasses the true value of sr

2 and becomes progressively
more concentrated around it as the prior precision n increases.
The three values of n described above are also used when
specifying the precision of this prior.

5.3. Structural Errors via Stochastic CRR Parameters

[81] Structural uncertainty can be represented hierarchi-
cally using stochastic variations of some CRR parameters
(section 2.2). Following Kuczera et al. [2006], the parameter
kS of logSPM is allowed to vary across storm epochs
delimited by rainfall events exceeding 2 mm/d. Since kS > 0,
we assumed a lognormal hyperdistribution at each epoch w:

logðkS!Þ ¼ 
! ð15aÞ


! � Nð�kS ; �
2
kS
Þ ð15bÞ

�kS � Nð�2; 42Þ ð15cÞ

�2
kS
� Inv	2ð1; 0:5Þ ð15dÞ

Similarly to rainfall log multipliers F, the values
(lw)w = 1,…,Nepochs

=L are unknown and are therefore treated as
latent variables. Since specifying meaningful informative
priors for the hyperparameters of structural errors is prob-
lematic, the priors in equations (15c) and (15d) correspond to
vague knowledge of the stochastic parameter.

5.4. Output Errors

[82] The uncertainty in the observed runoff is due mainly
to rating curve errors. Previous studies suggested that these
errors are heteroscedastic [Huard and Mailhot, 2008; Thyer
et al., 2009], e.g.,

~qt ¼ qt þ �t ð16aÞ

�t � N 0; ð�~qtÞ2
� �

ð16bÞ

Here we assume a relative standard error z = 0.1, though in
general it should be determined from rating curve analysis
[Thyer et al., 2009] or added to the inference itself. However,
since this study focuses on input and structural uncertainties,
the output error model (16) is fully specified prior to cali-
bration. Note a minor inconsistency between equation (16)

above and equation (12): the synthetic data was corrupted
using observation errors proportional to the true flows,whereas
in BATEA we assumed observation errors proportional to
the observed flows. Empirical checks suggested the effect of
this inconsistency is minor. Importantly, Experiment A (see
section 7) suggests that it does not introduce any bias into
the analysis.
[83] Note that while operational interest is usually in the

actual runoff, both calibration and validation are necessarily
limited to comparison to observed values. This requires a
meaningful consideration of the uncertainty in observed
streamflows, e.g., as described in equation (16). In addition,
the predictive uncertainty communicated to decision makers
must clearly state whether it includes output observation
uncertainty.

5.5. Remnant Errors

[84] The output error model (16) links the observed runoff
with the true runoff. Since the latter is unknown, an additional
model linking the true runoff with the simulated runoff must
be specified. Here, we use an additive Gaussian error model
with unknown variance s2,

qt ¼ q̂t þ "t ð17aÞ

"t � Nð0; �2Þ ð17bÞ

�2 � Inv	2ð1; 0:2Þ ð17cÞ

In this paper, errors "t are termed “remnant” because their
interpretation depends on the error sources remaining due to
omission of sources of uncertainty in the calibration scheme
or due to imperfect representation of these sources (see
section 5.9 for further discussion). This makes them subtly
different from the notions of “model inadequacy” and “dis-
crepancy” introduced elsewhere when discussing model
structural errors [Goldstein and Rougier, 2009; Kennedy and
O’Hagan, 2001]. Note that the remnant error variance s2 is
expected to decrease as improved input/output/structural
error models are specified (see section 10.2.3).
[85] If runoff measurement errors gt and remnant errors "t

are independent, the distribution of observed runoff condi-
tioned on simulated runoff is

~qt ¼ qt þ �t ¼ q̂t þ "t þ �t ¼ q̂t þ �t ð18aÞ

�t � N 0; ð�~qtÞ2 þ �2
� �

ð18bÞ

~qt � N q̂t; ð�~qtÞ2 þ �2
� �

ð18cÞ

This equation is used to evaluate the likelihood of observed
runoff.

5.6. Improving Error Models: An Open Frontier

[86] The BATEA framework described in sections 5.1–5.5
integrates probabilistic error models describing individual
sources of uncertainty. Its reliability evidently depends on the
adequacy of these error models. While this study focuses
on fundamental aspects of identifiability and therefore uses
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synthetic data, significant further work is needed to derive and
evaluate realistic models of uncertainties in hydrological data.
In particular, the following limitations need to be addressed.
[87] 1. The multiplicative treatment of input errors in

equation (14) does not handle the situation where a rainfall
event or time step is missed by the rain gauge network.
[88] 2. The characterization of structural errors using sto-

chastic variations of CRR parameter (equation (15)) is a
hypothesis that needs empirical scrutiny. This assessment
requires the disaggregation of input and structural errors; the
feasibility of this disaggregation is precisely the aim of this
paper.
[89] 3. Improved treatment of rating curve errors

(equation (16)) is needed. Recent literature [e.g.,
Di Baldassarre and Montanari, 2009; Dottori et al., 2009;
Moyeed and Clarke, 2005; Neppel et al., 2010; Reitan
and Petersen‐Overleir, 2009] suggests promising avenues,
including treatment of stochastic uncertainty (e.g., in the
height‐discharge measurements used to establish the rating
curve) and systematic errors (e.g., in the extrapolation nec-
essary when measuring high and low flows).
[90] 4. The treatment of remnant errors (equation (17)) is

arguably the most challenging tusk, because their inter-
pretation depends on the treatment of other error sources
(input, output, structural). Moreover, their dependence on the
catchment dynamics and on the temporal and spatial resolu-
tion of the analysis is poorly understood. The remnant error
model (17) used in this paper is quite simple, in particular, it
does not account for autocorrelation. An interesting approach
that represents remnant errors as (discrete) realizations from
a continuous‐time stochastic process [e.g., Reichert and
Mieleitner, 2009; Yang et al., 2007] will be evaluated in
future work.
[91] As shown in this paper, the adequacy of the entire

likelihood function, as well as its individual components
representing remnant errors, input errors, etc., can and should
be directly scrutinized using stringent diagnostics such as QQ
plots, autocorrelation measures, etc. While disappointingly
rare in most hydrological applications to date, such posterior
scrutiny is an essential part of Bayesian analysis and aids
model improvement (see Thyer et al. [2009] for a recent
illustration).

5.7. Posterior Distribution

[92] The posterior distribution of all inferred quantities is
given by Bayes’ theorem as follows (see Kavetski et al.
[2006a], Kuczera et al. [2006], and Thyer et al. [2009] for
details):

pðq;F; �r; �r;L; �kS ; �kS ; � j ~Q; ~RÞ /
pð~Q j q;F;L; �; ~RÞpðF j �r; �rÞpðL j �kS ; �kS Þ

� pðq; �r; �r; �kS ; �kS ; �Þ ð19Þ

The full posterior (19) comprises the following three parts.
[93] 1. The likelihood of observed runoffs, derived from

(18) as

pð~Q j q;F;L; �; ~RÞ ¼
YT
t¼1

Nð~qt j q̂t; ð0:1~qtÞ2 þ �2Þ

¼
YT
t¼1

N ~qt j M ~R1:t;F1:�ðtÞ
� �

; q;L1:!ðtÞ
� �� �

; ð0:1~qtÞ2 þ �2
� �

ð20Þ

[94] 2. The prior distribution of deterministic parameters
and hyperparameters p(q, mr, sr, mkS, skS, s). In this study,
independent priors are used.
[95] 3. The terms p(F∣mr, sr) and p(L∣mkS, skS) represent

the hierarchical parts of the model and are derived from (14)
and (15),

pðF j �r; �rÞ ¼
YNwet

�¼1

Nð�� j �r; �rÞ ð21Þ

pðL j �kS ; �kS Þ ¼
YNepochs

!¼1

Nð
! j �kS ; �kS Þ ð22Þ

5.8. Distinction Between Posterior Distributions
of Latent Variables and Their Hyperdistribution

[96] A subtle but important aspect of hierarchical models
such as (19) is the distinction between the posterior dis-
tributions of individual latent variables and their prior/
posterior hyperdistributions. This distinction is highly germane
to the analyses carried out in this paper.
[97] In the case of rainfall errors, the prior hyperdistribu-

tion describes the prior knowledge of rainfall uncertainty. The
calibration data supports the inference of individual rain-
fall multipliers, yielding the posterior distributions of indi-
vidual latent variables (i.e., of individual rainfall errors). The
Bayesian formulation jointly uses these distributions to refine
the prior hyperdistribution, yielding the posterior hyperdis-
tribution. The posterior hyperdistribution of rainfall multi-
pliers represents a refined description of rainfall uncertainty
given the observed data and the CRR model. The same
mechanism applies to the latent variables describing struc-
tural errors.

5.9. Summary of Calibration Schemes

[98] Table 2 summarizes the nine calibration schemes
used in this paper. They correspond to special cases of the
Bayesian framework described in sections 5.2–5.7 and differ
in their representation of each source of uncertainty.
[99] SLS refers to standard least squares regression

(equivalent to maximizing the Nash‐Sutcliffe statistic). In the
application of SLS in this paper, the residual standard devi-
ation s in equation (17b) is inferred rather than specified
a priori. It lumps the effects of input, output and structural
errors affecting the CRR model in the remnant (“residual”)
error model. This can be obtained by setting mr = 0 and sr = 0
(so that rt = ~rt) in equation (14) and z = 0 in (18c) (so that
qt = ~qt).
[100] Scheme O is similar to SLS, except that output

uncertainty is represented directly (z = 0.1 in (18c)). This can
be viewed as a special case of the weighted least squares
(WLS) method, where s in equation (18) is inferred. In the
formulation (18), the remnant error term " lumps the effects
of input and structural errors, as well as imperfections of the
output error model (16).
[101] The SLS and O schemes treat the CRR model as

deterministic and use an additive error term to represent all
other sources of error (see section 2.2). They are used in this
paper as baseline methods representing common practice.
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[102] Scheme OP, in addition to representing output
uncertainty, describes structural errors using a single sto-
chastic CRR parameter. Consequently, the remnant error term
lumps the effect of input errors and imperfections of the
output and structural error models.
[103] Schemes OI represent the case where input and out-

put errors are included (sections 5.2 and 5.4, respectively).
The suffixes 1, 2 and 3 represent the specified precision of
prior information on input errors, with 1 denoting the highest
precision and 3 the lowest. In the OI scheme, the remnant
error term lumps structural errors and imperfections of the
input/output error models.
[104] Schemes OIP represent the case where input/output

errors are included and structural errors are represented using
a single stochastic CRR parameter (with suffixes 1, 2 and 3
denoting the specified prior precision of input errors). In this
case, remnant errors solely represent imperfections of the
input/output/structural error models.

5.10. Dimensionality of the Inference and MCMC
Strategy

[105] Introducing and inferring latent variables represent-
ing input and/or structural errors in the CRR model comes
at the cost of increased dimensionality of the inference. This
can be seen in Table 2 (Inferred Quantities), where schemes
accounting for input errors and/or allowing parameter sto-
chasticity require the inference of a large number of latent
variables. For example, the calibration data in experiment B
yields 251 rainfall log multipliers (one for each wet day) and
157 latent variables for the stochastic parameter sK (one for
each epoch).
[106] Sampling from high‐dimensional posteriors is com-

putationally challenging but not insurmountable. In partic-
ular, the evaluation of the BATEA posterior distribution for
a given set of CRR parameters is only marginally more
expensive than that of SLS or WLS (the extra cost of evalu-
ating (21)–(22) is trivial). The increased cost of the BATEA
inference comes almost exclusively from a larger number of
samples needed to adequately characterize high‐dimensional
distributions. In particular, the adaptation of high‐dimensional
MCMC jump distributions can be very challenging, with few
theoretical guidelines [e.g., Haario et al., 2005].

[107] In this study, the BATEA posterior (19) is explored
using a two‐stage MCMC strategy [Kuczera et al., 2007;
Thyer et al., 2009]. The sampler evolves four parallel chains
until the Gelman‐Rubin criteria [Gelman et al., 1995] are
below 1.2 for all inferred quantities. The number of MCMC
iterations and the total CPU times needed to satisfy the
Gelman‐Rubin criterion are reported in Table 2. The longest
run did not exceed 6 h on a standard desktop computer
(2.2 GHz CPU, 4 GB RAM, Windows XP). The increase in
dimensionality and its implications for inference are further
discussed in section 10.1.3.

6. Experimental Methodology

6.1. Evaluation Strategy

[108] Several analyses are necessary to achieve the objec-
tives of this study:
[109] 1. Examine the well posedness of the inference. This

is done by inspecting convergence diagnostics and the cor-
relation structure of the MCMC samples (section 3.5).
[110] 2. Evaluate the predictive distribution (PD) of the

observed runoff during the validation period (see Thyer et al.
[2009] for details). This establishes the adequacy of the total
predictive uncertainty.
[111] 3. [Synthetic studies only] Evaluate the PD of the true

rainfall. This establishes whether the sources of uncertainty
have been accurately and precisely identified. This check can
only be carried out for the synthetic data sets D0 and D1,
where the true rainfall is known.

6.2. Evaluating Time‐Varying Predictive Distributions

[112] In time series analysis, evaluating a predictive dis-
tribution (PD) requires comparing a time‐varying random
variable Xt (with cdf Ft) to a time series of realizations xt. For
the rainfall PD, xt represents the true rainfall, while for the
runoff PD, xt represents the observed runoff. However, model
performance measures currently predominant in hydrology,
such as the Nash‐Sutcliffe statistic, are unsuitable for ana-
lyzing PD’s, because they merely compare two time series of
values and disregard their associated uncertainties. Instead,
following the terminology used in meteorological ensemble
predictions [Atger, 1999], this paper considers two criteria:

Table 2. Summary of Calibration Schemes in Experiments A–C and Run Details of Experiment B

Namea

Handles
Input
Errors

Prior Precision
of p(mr) and p(sr)

Handles
Output
Errors

Stochastic
CRR Model

Interpretation of
Remnant Errorsb

Treatment
of Structural Errors

Experiment B Details

Inferred
Quantities

MCMC
Iterations Nc

(×103)

Total
CPU Timed

(h)

SLS no n/a noe no OIS Additive, lumped with IO 7 1.8 0.04
O no n/a yes no IS + F Additive, lumped with I 7 0.3 0.04
OP no n/a yes yes I + F P 165 91.5 0.55
OI‐1 yes high yes no S + F Additive 260 48.6 0.73
OI‐2 yes medium yes no S + F Additive 260 62.4 0.82
OI‐3 yes low yes no S + F Additive 260 205.0 1.31
OIP‐1 yes high yes yes F P 418 176.6 2.45
OIP‐2 yes medium yes yes F P 418 624.8 5.41
OIP‐3 yes low yes yes F P 418 1 1

aName is constructed as follows: SLS = standard least squares method, O = uses the (heteroscedastic) output error model, I = recognizes input uncertainty,
P = uses a stochastic parameter to characterize structural errors. The numbers 1, 2, 3 denote decreasing prior precision.

bDescribed as follows: O = denotes ignored output errors, I = denotes ignored input errors, S = denotes ignored structural errors, F = denotes errors
remaining from imperfect error models (as opposed to ignored sources of uncertainty).

cNumber of MCMC iterations needed for a max Gelman‐Rubin criterion below 1.2 in Experiment B.
dStandard desktop 2GHz CPU for Experiment B.
eSLS does not distinguish between output and structural errors.
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“reliability” to quantify the statistical consistency between
the time series of xt and its PD, and “resolution” to quantify
the sharpness of the PD.

6.3. Reliability

[113] If the PD is reliably quantified, the observations
correspond to realizations from the PD. This can be examined
using the predictive QQ‐plot [Laio and Tamea, 2007; Thyer
et al., 2009]. If the realizations xt are consistent with Ft, the
p values Ft(xt) = p(Xt ≤ xt) will follow a uniform distribution
on the interval [0,1]. This can be checked graphically: devia-
tions from the bisector (the 1:1 line) denote interpretable
deficiencies (see Figure 3). To simplify the comparison of QQ
plots, they are summarized using two indexes that quantify
the reliability of the PD:

x ¼ 1� 2
0
x ð23aÞ


0
x ¼

XNx

i¼1

j pxðiÞ � pðthÞxðiÞ j =Nx ð23bÞ

�x ¼ 1� �
0
x ð24aÞ

�
0
x ¼

XNx

i¼1

1 0;1f gðpxðiÞÞ
� �

=Nx ð24bÞ

1 0;1f gðzÞ ¼
1 if z ¼ 0 or z ¼ 1

0 otherwise

8<
: ð24cÞ

where px(i) and px(i)
(th) are the ith observed and theoretical

p values of xt, Nx is the number of xt values and 1A(x) is the
indicator function of the set A.

[114] The index a is related to the area a′ between the
p value curve and the 1:1 line, and reflects the overall
reliability of the PD. It varies between 0 (worst reliability,
with all observed p values equal to 0 or 1) and 1 (perfect
reliability).
[115] The index x is the complement of the fraction x′ of

observed p values equal to 0 or 1, which correspond to xt
values outside the range of the PD. It varies between 0 (worst
reliability, with all realizations outside their predictive range)
and 1 (no incompatible realizations). Note that x = 1 does
not imply perfect reliability. Consequently, this index is used
primarily for detecting highly unreliable PDs. For the rain-
fall PD these indices are denoted as ar and xR, while for
the runoff PD, they are denoted as aQ and xQ.

6.4. Resolution

[116] “Resolution” denotes the sharpness (effectively, the
“average precision”) of the PD. Note that two inferences can
both yield reliable PDs, but with different resolutions. In this
paper, the resolution is quantified by indexes p(abs) and p(rel)

defined as the average absolute and relative precision of the
predictions Xt, respectively:

�ðabsÞ
x ¼ 1

Nx

XNx

t¼1

1

Sdev½Xt� ð25Þ

�ðrelÞ
x ¼ 1

Nx

XNx

t¼1

E½Xt�
Sdev½Xt� ð26Þ

where E[] and Sdev[] are the expectation and standard
deviation operators. In this paper, we use the index pR

(abs) =
px=log(�)
(abs) to assess the resolution of the rainfall PD, and the

index pQ
(rel) = px=~q

(rel) for the resolution of the observed runoff
PD. The analysis of log multipliers is based on the absolute
measure because the multiplicative error model (14a) already
represents relative errors.
[117] The data used in (23)–(26) can be prefiltered. In

order to focus on hydrologically significant events, the
computation of indexes in this paper is restricted to observed
rainfalls exceeding 10 mm/d and observed runoffs exceeding
1 mm/d.

7. Experiment A: Estimating Input Errors
When the CRR Model Is Exact

[118] Experiment A examines the OI‐3 calibration scheme
(with weak prior knowledge of rainfall error hyperpara-
meters) when the calibration data contains input/output errors
but the model does not contain structural errors. This estab-
lishes the “best‐case” scenario for parameter estimation,
indicating what can be achieved when the model is accurate
(indeed, exact), and provides a necessary benchmark for the
comparison of more complicated calibration scenarios where
structural errors are present.

7.1. Assessing Well Posedness

[119] MCMC convergence was readily achieved, suggest-
ing that the inference is well posed. This is consistent with

Figure 3. Schematic of the predictive QQ plot and derived
indexes.
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previous synthetic studies focusing on input errors [e.g.,
Kavetski et al., 2002; Renard et al., 2009a].

7.2. Evaluating the Predictive Distribution of Runoff

7.2.1. Reliability
[120] The runoff PD shows a good agreement with the

observed runoff (Figure 4a). The predictive QQ plot shown in
Figure 4b confirms this observation, with the curve closely
following the bisector. The reliability indexes aQ = 0.92 and
xQ = 1 further demonstrate that the PD of observed runoff is
reliable.
7.2.2. Resolution
[121] Figure 4a shows that the width of the prediction limits

varies with the magnitude of the predicted runoff, which
justifies the use of the relative precision measure pQ

(rel) for
assessing the runoff PD. The resolution index pQ

(rel) = 4.87
corresponds to an average coefficient of variation of about
20%.

7.3. Evaluating the Predictive Distribution of Rainfall

7.3.1. Reliability
[122] Figures 4c–4d suggest that the true rainfall values

are reliably estimated, with reliability indexes aR = 0.92 and
xR = 1. This is consistent with the results for runoff.
7.3.2. Resolution
[123] Despite rainfall multipliers being reliably estimated,

the precision of the individual estimates is not identical.
Figure 5 shows that multipliers affecting large rainfalls can be
identified much more precisely than multipliers affecting
smaller rainfalls. The resolution index pR

(abs) = 7.52, computed
for rainfall values larger than 10 mm, corresponds to an

average coefficient of variation of about 13%, which is rel-
atively low.
[124] Furthermore, Figure 6 shows the posteriors of some

rainfall multipliers remain similar to the hyperdistribution.
A given rainfall multiplier �t affects the posterior pdf
(19) both through the likelihood function and through the pdf
of the hyperdistribution evaluated at �t. Consequently, if the
likelihood is only weakly dependent on �t, as in condition
(3), the posterior pdf will remain close to the hyperdistribu-
tion. Such multipliers are “weakly identifiable.”

Figure 4. Experiment A: diagnostic plots for calibration scheme OI‐3. (a) Observed versus simulated
runoff (validation period); (b) predictive QQ plot of runoffs exceeding 1 mm (validation period); (c) true,
observed and estimated rainfall; (d) predictive QQ plot of true rainfall. The size of the bubbles in Figures 4b
and 4d is proportional to the observed runoff and rainfall, respectively.

Figure 5. Experiment A: dependence of the posterior pre-
cision of estimated log multipliers on the magnitude of
observed rainfall. The horizontal line denotes the precision
of the posterior hyperdistribution.
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[125] It is stressed that weak identifiability of some indi-
vidual rainfall multipliers does not imply that the entire
hyperdistribution is nonidentifiable. The estimated hypermean
and hyper‐SD of the rainfall multipliers was −0.215 (standard
error ± 0.094) and 0.223 (standard error ± 0.018), which are
close to the true values of −0.2 and 0.2, respectively. Hence,
there is enough information in the identifiable multipliers
to infer their hyperdistribution. The nonidentifiability of
some rainfall multipliers is effectively “benign” because it
neither affects model predictions (since the hyperdistribution
is properly identified), nor causes computational problems
(MCMC sampling converges because the hyperdistribution
constrains the rainfall multipliers).

8. Experiment B: Estimating Input and Structural
Errors Using Inaccurate CRR Models

[126] In this section, the nine inference schemes listed in
Table 2 are used to calibrate the CRR model LogSPM using
the synthetic data set D1 generated using GR4J. This exper-
iment considers input, output and structural errors.

8.1. Achieving Well Posedness Using Prior Information

[127] MCMC convergence was readily achieved for SLS,
O, OI andOP, suggesting that these inferences are well posed.
However, convergence difficulties were encountered with
OIP. This suggests the simultaneous inference of both input
and structural errors may be ill posed. Section 8.1 examines
the role of priors when attempting to decompose the total
predictive uncertainty by estimating both input and structural
errors.
8.1.1. Low‐Precision Priors (OIP‐3)
[128] As shown in Table 2, the OIP‐3 scheme has a pro-

hibitively slow rate of MCMC convergence – even after more
than 3 × 106 MCMC iterations, the Gelman‐Rubin criterion

still exceeded 5.0 for many quantities (including both latent
variables and CRR parameters). This is symptomatic of an ill‐
posed inference. Since the inference was based on a vague
prior, its ill posedness can be attributed to nonidentifiability,
in particular of latent variables.
[129] The MCMC samples from the OIP‐3 posterior yield

insights into the reasons for poor convergence. Figure 7c
shows strong correlations between the latent variables char-
acterizing input and structural errors affecting the same time
steps. This yields a characteristic bloc‐diagonal structure of
the correlation matrix. This degeneracy is analogous to the
simple example in section 3.5, where nonidentifiable param-
eters �1 and �2 were almost perfectly correlated when a
noninformative prior was used. The implications of this are
discussed in section 10.1.2.
8.1.2. Medium and High‐Precision Priors (OIP‐1
and OIP‐2)
[130] The MCMC sampling from the OIP‐1 and OIP‐2

posteriors was convergent, suggesting that the inference
becomes well‐posed when more precise priors on the rainfall
multiplier hyperparameters are used. However, the onset of
ill posedness is gradual: the posterior correlations for OIP‐1
and OIP‐2 (Figures 7a–7b) display similar, though less pro-
nounced, features as the OIP‐3 case.
[131] Note that since the nonidentifiability criterion (2)

depends solely on the likelihood but not on the prior,
OIP‐1 and OIP‐2 methods are necessarily subject to the same
nonidentifiability issues as OIP‐3. The MCMC convergence
is due to a sufficiently precise prior restricting the size
and improving the shape of the high‐density regions of the
posterior.

8.2. Evaluating the Predictive Distribution of Runoff

[132] The reliability and resolution runoff indexes obtained
for the nine calibration schemes are reported in the second
row of Figure 8.
8.2.1. Reliability
[133] Figure 8 shows significant differences in the reli-

ability of the runoff PDs between (1) standard calibration
approaches SLS and O; versus (2) approaches OP, OI and
OIP, which use Bayesian hierarchical inference for at least
one source of uncertainty.
[134] Approaches SLS and O lead to an unreliable quanti-

fication of predictive uncertainty, with low aQ and xQ values.
In particular, about 40% and 25% of observed runoffs are
outside the predictive range for SLS and O, respectively. This
represents a significant underestimation of predictive uncer-
tainty, especially for large runoff events.
[135] Approaches OP, OI and OIP quantify predictive

uncertainty much more reliably, with high aQ values and no
runoff values outside the predictive range in most cases.
SchemeOI‐1 is the only exception, with xQ = 0.9 (i.e., 10% of
observations outside the predictive range), corresponding to a
mild underestimation of predictive uncertainty.
8.2.2. Resolution
[136] Figure 8 shows that schemes SLS and O achieve a

significantly higher resolution (with pQ
(rel) ≈ 9) than schemes

OP, OI and OIP (with pQ
(rel) ≈ 2 − 6). However, section 8.2.1

demonstrated that the former schemes do not lead to a reli-
able estimation of the runoff PD. It follows that schemes
SLS and O yield unduly optimistic estimates of predictive
uncertainty: their higher resolution comes at the cost of an

Figure 6. Experiment A: comparison of the posterior dis-
tributions of individual log multipliers (thin lines) with the
true (solid thick line) and the estimated (dashed thick line)
hyperdistribution. For readability, only 11 log multipliers
are displayed.
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Figure 7. Experiment B: correlation matrix of latent variables representing structural errors lw and input
errors �t as a function of the prior precision of the input error hyperparameters (OIP‐1 assumes the highest
prior precision). For readability, only latent variables affecting time step 1 to 58 of the calibration period are
displayed.

Figure 8. Experiment B: summary of the reliability and resolution of the predictive distribution of (top)
rainfall and (bottom) runoff inferred using the nine calibration schemes. The indices are defined in section 6.
The star denotes the nonconvergent OIP‐3 case.
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unacceptably low reliability, which can be misleading to a
decision‐maker.
[137] On the other hand, schemes OP, OI and OIP yield

similar results, with the exception of OI‐1, which yields a
higher resolution (pQ

(rel) ≈ 6). This causes the mild underes-
timation of predictive uncertainty noted in section 8.2.1.

8.3. Evaluating the Predictive Distribution of Rainfall

[138] The rainfall PD is evaluated only for OI and OIP.
SLS, O and OP are not considered because they do not
explicitly consider input errors, and hence do not produce a
rainfall PD. The first row of Figure 8 summarizes the results
using the indexes aR, xR and pR.
8.3.1. Reliability
[139] For OI and OIP with medium to high prior precision,

the PD of true rainfall is inferred reliably (aR and xR are close
to one in Figure 8). When only weak prior information is
available (OI‐3), the indexesaR and xR decrease to about 0.55

and 0.9, respectively, reflecting the deterioration of the
inference as less prior knowledge is available. This deterio-
ration is also reflected in the overestimation of the hyper‐SD
of the rainfall multipliers (Table 3, estimated value of 0.862
versus the true value of 0.2). Section 10.3.1 discusses the
implications of this result.
8.3.2. Resolution
[140] Two observations can be drawn from Figure 8.
[141] 1. The resolution depends on the prior precision for

both the OI and OIP methods. This implies that the prior
exerts a significant influence on the inference.
[142] 2. For a given prior precision, OI yields a higher

resolution than OIP.
[143] Figure 9 offers insight about point 2 above. In the

OI case, the precision of the inferred rainfall multipliers
increases with the observed rainfall. This is consistent with
section 7.3.2. In the OIP case, this relationship is weaker, with
the posterior precision of most multipliers remaining close to
the precision of their posterior hyperdistribution. Indeed, the
posterior distributions of the individual rainfall multipliers
remain similar to the posterior hyperdistribution (similar
to Figure 6). The implications of this are discussed in
section 10.3.1.

9. Experiment C: Real‐Data Study

[144] In this experiment, LogSPM is calibrated to the
observed runoff from the Abercrombie catchment. The aim is
to investigate whether the conclusions drawn from synthetic
experiment B hold in real‐data applications. This is carried
out by comparing experiments B and C in terms of (1) well

Table 3. Estimated Hyperparameters of Log Multipliers Repre-
senting Rainfall Data Errorsa

BATEA Model Hypermean mr Hyper‐SD sr

OI‐1 −0.200 [0.001] 0.205 [0.003]
OI‐2 −0.203 [0.011] 0.499 [0.038]
OI‐3 −0.500 [0.069] 0.862 [0.074]
OIP‐1 −0.200 [0.001] 0.201 [0.003]
OIP‐2 −0.200 [0.009] 0.349 [0.059]
OIP‐3 Did not converge Did not converge

aThe first number is the marginal posterior mean of the hyperparameter,
the number in brackets is the marginal posterior standard deviation.

Figure 9. Experiment B: dependence of the posterior precision of individual log multipliers on the mag-
nitude of observed rainfall. The horizontal line denotes the precision of the posterior hyperdistribution.
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posedness of the inference and (2) quantification of the
predictive uncertainty in the runoff. Since we do not have
information about the true rainfall, its PD cannot be assessed.

9.1. Achieving Well Posedness Using Prior Information

[145] The MCMC sampler did not converge for OIP‐2 and
OIP‐3, suggesting that the inference is ill‐posed due to non-
identifiability of some inferred quantities. In comparison with
Experiment B (where OIP‐2 was well posed), the inference is
ill posed even when the prior contains appreciable informa-
tion on the rainfall error hyperparameters. The posterior
correlation matrix of latent variables characterizing input and
structural errors (Figure 10) exhibits the same bloc‐diagonal
structure as observed with Experiment B (section 8.1).

9.2. Evaluating the Predictive Distribution of Runoff

[146] The reliability of the runoff PD is summarized in
Figure 11. Similar conclusions to those reached in Experi-
ment B hold.
[147] 1. Schemes SLS and O lead to a significant fraction

of observed runoffs being outside their predictive range, with
xQ values of 0.83 and 0.68, respectively.

[148] 2. Scheme OI‐1 has a high number of observations
outside the predictive range (xQ = 0.84), which is similar
to findings in Experiment B. However, as discussed in
section 10.2.5, the reasons for this may be different.
[149] 3. Schemes OI‐2 and OI‐3 have almost no observa-

tions outside the predictive range, (xQ = 0.99 and 1, respec-
tively). Moreover, the reliability of the runoff PD (aQ values
of 0.68 and 0.72) is acceptable, though far from perfect.
[150] 4. Schemes OP and OIP‐1, which allow parameter

stochasticity, have no observations outside the predicted
range (xQ = 1 in all cases). However, low aQ values of
0.48 and 0.44 suggest that the reliability of the runoff PD is
unsatisfactory; it considerably overestimates the predictive
uncertainty. This is in contrast to Experiment B, which had
higher values of aQ around 0.8. The reasons for this differ-
ence are discussed in section 10.2.5.

10. Discussion

[151] This paper investigates the feasibility of decompos-
ing the total predictive uncertainty into several components
arising from input and structural errors. To achieve this, a cali-
bration scheme must conform to the following progressive

Figure 10. Experiment C: correlation matrix of latent variables representing structural errors lw and input
errors �t as a function of the prior precision of the input error hyperparameters (OIP‐1 assumes the highest
prior precision).

Figure 11. Experiment C: summary of the reliability and resolution of the predictive distribution of runoff
inferred using the nine calibration schemes. The indices are defined in section 6. The stars denote the
nonconvergent OIP‐2 and OIP‐3 cases. Since the true rainfall is unknown, its PD cannot be assessed.
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requirements: (1) the inference is well posed; (2) the total
runoff PD is successfully quantified (i.e., with acceptable
reliability and resolution); and (3) input and structural
uncertainties are successfully decomposed. This section dis-
cusses the results of sections 8 and 9 in the context of these
requirements.

10.1. Well Posedness of the Inference

10.1.1. Well‐Posed Schemes
[152] Schemes SLS, O, OI and OP lead to a well‐posed

inference in all experiments. Moreover, scheme OIP is also
well posed when sufficiently precise priors on rainfall errors
are specified, though the required precision varied between
experiments B and C.
[153] This shows that direct modeling of multiple sources

of error using hierarchical methods is not inherently ill posed,
but depends on the amount of prior knowledge relative to the
number and complexity of the sources of uncertainty included
in the analysis. Section 10.1.3 further discusses the relation-
ship between dimensionality and well posedness.
10.1.2. Ill‐Posed Schemes
[154] Experiments B and C show that when both input and

structural errors are explicitly modeled using latent variables
(OIP schemes) and only vague prior information on the input
errors is available, the decomposition of input and structural
errors becomes an ill‐posed problem. This is due to interac-
tions between latent variable representing input and structural
errors. For example, an increase in log multiplier �t(t) can
be compensated by a decrease in the stochastic CRR param-
eter lw(t) associated with the same time step. This results in
large correlated subspaces within the inference space having
near‐constant likelihood values. This is the nonidentifiability
property described in section 3.1, which turns into ill posed-
ness in the absence of sufficient prior information.
[155] Sufficient prior information on rainfall uncertainty

is required for a well‐posed inference (scheme OIP‐1). It is
stressed that the inference is then conditioned on this auxiliary
information and it is crucial that the latter reflect actual
knowledge rather than be viewed as a tuning parameter to
achieve MCMC convergence. Section 10.3.2 outlines several
avenues for obtaining adequate prior information.
[156] The consistency of results of experiments B and C

suggests that the strong interaction between input and struc-
tural errors is not an artifact due to the type of structural errors
used in the synthetic case study (calibrating a CRR model
M1 with data generated from a different model M0 in
experiment B). Indeed, we encountered similar ill posedness
in case studies based on other catchments (not shown). This
confirms that ill posedness is not specific to experiments B
and C, but reflects a general and intrinsic difficulty in sepa-
rating multiple sources of error, especially with weak prior
knowledge. These results are unsurprising; it is impossible
to infer CRR parameters and individual input and structural
errors using only a single rainfall‐runoff data set if the
modeler has no idea about the accuracy of neither the CRR
model nor the data.
[157] Note that calibrating to longer time series may not

necessarily help in identifying individual input errors or
breaking their interaction with structural errors. In particular,
due to the finite memory of the CRR model, the effect of a
rainfall error decreases over time, such that, e.g., additional

data at step t+30 (days) will hardly improve the identifiability
of a latent variable at step t.
[158] Instead, independent estimates of data accuracy are

required to formulate meaningful priors on the data errors.
Whether these priors will be sufficient to achieve a well‐
posed inference is problem specific. For example, a higher‐
precision prior was required to achieve well‐posedness in
experiment C than in experiment B. From a practical per-
spective, an understanding of the data uncertainty needs to
become an essential part of the CRR model calibration.
10.1.3. Well Posedness, Nonidentifiability and Over
Parameterization
[159] The representation and inference of input and/or

structural errors using stochastic parameters inevitably in-
creases the dimensionality of the problem.Many hydrologists
and practitioners instinctively shy away from high‐dimensional
inference problems, believing them to be invariably ill posed
or nonidentifiable. However, high‐dimensional problems are
neither inherently nonidentifiable nor inherently ill posed;
this depends on how the likelihood is formulated and what
additional (prior) information is available.
[160] It is stressed that identifiability, well posedness and

the dimensionality of the inference space are three distinct
concepts. For example, section 3 shows that a simple two‐
parameter problem is completely nonidentifiable for any
sample size. This nonidentifiability may or may not lead to an
ill‐posed inference, depending on the strength of the prior
distribution.
[161] More generally, the notion of “model complexity” in

Bayesian hierarchical models is nontrivial; in most cases, the
number of inferred quantities is a poor measure of complexity
(see Spiegelhalter et al. [2002] for a detailed discussion). In
particular, different prior assumptions may affect the well
posedness of the inference. For example, the well posedness
of the OIP scheme in Experiment B varies with the prior
precision even though the number of estimated quantities
remained exactly the same.

10.2. Successful Quantification of Runoff Predictive
Uncertainty

10.2.1. Effects of CRR Parameter Uncertainty
on Predictive Distributions
[162] Analysis of the posterior distributions in all experi-

ments suggested that the uncertainty in the deterministic
CRR parameters is relatively small (not shown) and its effect
on predictive uncertainty is dominated by errors in the data
and model structure. This is a consequence of posterior
parametric uncertainty decreasing as more data is used [e.g.,
Kuczera et al., 2006; Stedinger et al., 2008]. Consequently,
it is not considered in further detail in this paper (but see
discussions by Beven et al. [2008] andMantovan and Todini
[2006]).
10.2.2. Traditional (Nonhierarchical) Schemes
[163] Approaches SLS and O lead to an unreliable and

underestimated predictive uncertainty, especially for high
runoffs. This occurs because these calibration schemes lump
several sources of errors (input/output/structural for SLS,
input/structural for O) into the single remnant error term.
Consequently, the majority of predictive uncertainty arises
from remnant errors, which are assumed to have a Gaussian
distribution. However, the Gaussian assumption is clearly not
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supported by the data: the standardized residuals are highly
skewed and leptokurtotique (Figure 12). This violation
of assumptions explains the underestimation of predictive
uncertainty.
10.2.3. Hierarchical Schemes: General Comments
[164] In Experiment B, approaches OP and OI quantified

predictive uncertainty much more reliably than O and SLS.
Method OI‐1 is the only exception, with a mild underesti-
mation of predictive uncertainty (see section 8.2.1). When
well posed due to sufficient prior precision (cases OIP‐1 and
OIP‐2), approach OIP also improves the estimation of the
runoff PD.
[165] In all cases, the improvement is due to the use of

latent variables for describing structural and/or input errors:
most of the predictive uncertainty arises from stochastic
parameters. Introducing stochastic parameters has two effects
on remnant errors.
[166] 1. It reduces their standard deviation s (Figure 13).

This is consistent with its expected behavior as the input/
output/structural error models are improved (section 5.5).
[167] 2. The standardized residuals are more Gaussian

(Figure 12). This suggests that the common observation that
residuals of hydrological models are skewed and leptokurtotic
[Beven, 2006] is probably caused by unduly simplistic lumped
treatment of the different sources of uncertainty.
[168] Note that the introduction of stochastic parameters

did not significantly affect the autocorrelation of the resid-
uals, with a lag‐1 coefficient remaining between ∼0.2–0.3 for
all calibration schemes except scheme O (lag‐1 coefficient
∼0.5). While such low autocorrelation will not affect the
conclusions of this study, much stronger autocorrelation may
arise when modeling on a shorter time scale. Hence, simu-
lations based on hourly rainfall may require specialized
treatment to handle autocorrelation.
[169] Overall, the results suggest that characterization of

errors (input and/or structural) using stochastic parameters
leads to a significant improvement over traditional additive
error approaches in terms of reliability of the predictive
uncertainty.

10.2.4. Treating a Single Source of Uncertainty
Hierarchically
[170] Experiment B suggests that treating either input

or structural error (but not both) with a single stochastic
parameter can produce reliable runoff predictions (Figure 8,
index aQ in the range 0.78–0.9). However, this is only par-
tially supported by experiment C (section 9.2), where the
reliability index aQ in the range 0.48–0.84 leaves room for
improvement.
[171] These results emphasize the importance of validating

the predictive uncertainty [Hall et al., 2007]: in its absence,
there is no guarantee that the inferred predictive uncertainty
is meaningful. The use of predictive distributions without
comprehensive analysis of their reliability and resolution can
lead to large prediction errors and misleading risk estimates.
[172] Interestingly, representing either rainfall or structural

errors using a stochastic parameter can lead to a reliable PD of
the runoff (Figure 8) even though input and structural errors
cannot be successfully decomposed. This is analogous to the
simplified example in section 3.6 – even though the indi-
vidual parameters �1 and �2 were not inferable, the model still
provided reliable predictions of the responses that it was
calibrated to (but see section 3.6 for very important caveats).
[173] The approach of treating a single source of error

(input or structural) using a stochastic parameter is not a
complete solution. Even though it may produce more reliable
predictions than SLS and additive errors models, the fol-
lowing problems remain:
[174] 1. Interpretation of the stochastic parameter is prob-

lematic because it can encompass both input and structural
errors. This provides no insight on whether the reduction of
predictive uncertainty requires improving the input data (e.g.,
more rain gauges) or the model structure. While the need for
more accurate and precise hydrological data (accompanied
by uncertainty estimates) cannot be overstated, the ability
to determine the relative contributions of input/structural

Figure 12. Experiment B: skewness and excess kurtosis of
standardized residuals.

Figure 13. Experiment B: reduction of remnant errors as
more sources of uncertainty are treated explicitly. Note the
logarithmic scaling of the y axis.
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uncertainties would strategically guide research efforts and
experimental resources to reduce predictive uncertainty.
[175] 2. Model extrapolation can be particularly unreliable.

For example, the predictive ability of the model can deteri-
orate if forced with rainfall time series with different prop-
erties than those of the calibration period. This can occur
during climate change projections, flood forecasting, or sim-
ply when the number of rain gauges changes.
10.2.5. Further Comments on the OI‐1 Scheme
[176] Scheme OI‐1 deserves further comment. In both

experiments B and C, OI‐1 has a larger number of observa-
tions outside the predictive range (xQ = 0.9 and xQ = 0.84,
respectively) than OI‐2 and OI‐3.
[177] In experiment B, this occurs because the very precise

prior used for the rainfall error hyperparameters strongly
constrains the latent variables, preventing them from com-
pensating for the inadequate treatment of structural uncer-
tainty. The structural uncertainty is accounted for by remnant
errors, which in this case are highly skewed and non‐Gaussian
(Figure 12).
[178] The interpretation of experiment C is more difficult.

In addition to a poor remnant error model, the unreliable
performance of the OI‐1 methods is likely a consequence of
inaccurate prior knowledge of rainfall and runoff data errors,
moreover, specified using unduly precise priors (in particular,
the generic 10% streamflow error model was fixed a priori).
However, since additional data is not available for this
catchment, it is impossible to verify either explanation. This
highlights three key issues: (1) posterior scrutiny is essential
to identify violations of underlying statistical hypotheses;
(2) reliable independent estimates of data accuracy are needed
for meaningful statistical inference; and (3) all hydrological
data should be accompanied by error estimates.
10.2.6. Interaction Between Log Multipliers and
Structural Errors
[179] In the OI schemes, the latent variables (log multi-

pliers) are intended to represent input errors, whereas rem-
nant errors are intended primarily for structural errors
(Table 2). However, for these methods, the standard devi-
ation (Figure 13) and the skewness (Figure 12) of the
remnant errors decrease as the precision of the priors on
rainfall uncertainty decreases, while the estimated hyper‐
SD of log multipliers increases.
[180] This suggests that, in the absence of sufficient prior

information on input uncertainty, the rainfall log multipliers
can be contaminated by structural errors. In other words,
both sources of errors tend to be conflated in the input error
model. This causes an overestimation of rainfall uncertainty
(section 8.3). The implications of this behavior for prac-
tical applications that calibrate CRR models to rainfall data
with no associated error estimates is further discussed in
section 10.3.2.

10.3. Successful Decomposition of Runoff Predictive
Uncertainty in Input/Structural Errors Components

10.3.1. Reliability and Resolution of Input PD
[181] In the absence of structural errors, no prior infor-

mation on input errors appears to be required to achieve a
well posed and accurate inference. In particular, estimates of
rainfall errors are reliable and precise (experiment A). This is
not the case when structural errors are present (experiment B).

[182] This section considers the estimation of the rain-
fall PD. In particular, it must be inferred reliably before a
meaningful decomposition of predictive uncertainty can be
obtained. In experiment B, only two approaches achieved
this.
[183] 1. Schemes OI with precise priors (OI‐1, and to a

lesser extent, OI‐2) achieve high rainfall reliability (aR ≈ 0.9,
xR ≈ 0.95). This is an important result because it suggests
that individual rainfall errors (and hence estimates of the true
rainfall) can be retrieved from the data in the presence of
structural errors, provided the properties of rainfall errors are
well understood prior to the inference (i.e., precise priors for
the hyperparameters).
[184] However, the reliability and resolution of the rain-

fall PD deteriorates rapidly when weaker prior information
is supplied. In particular, the standard deviation of the
hyperdistribution of input errors becomes progressively over-
estimated, up to by a factor of 4 for OI‐3 (Table 3). Moreover,
the improved reliability of rainfall PD achievable with high
prior precision comes at the cost of a decreased reliability of
the runoff PD (section 10.2.5). Consequently, precise prior
information on rainfall alone, without an appropriate repre-
sentation of structural errors, appears insufficient for suc-
cessfully decomposing the total predictive uncertainty.
[185] 2. Schemes OIPwith precise priors (OIP‐1 and OIP‐2)

also achieve high rainfall reliability (aR ≈ 0.9, xR ≈ 1). Again,
prior information plays a central role by controlling the well
posedness of the inference. However, although the rainfall
PD is reliable, it remains similar to the hyperdistribution (see
Figure 9 and section 8.3.2). This is a consequence of most
multipliers being only weakly identifiable from the data; their
inference is largely controlled by prior knowledge. In the
language of probabilistic forecasting [Atger, 1999], the
resulting rainfall PD is not “skillful” because it does not
contain any information beyond that given by the prior
hyperdistribution. The influence of the prior also emphasizes
that meaningful uncertainty estimates are not an optional
extra when collecting and reporting hydrological data.
[186] As an aside, the point above also illustrates that

reliability alone does not imply usefulness when the resolu-
tion is low. For example, climatologic predictions are reliable
in the distributional sense, but are not useful for forecast-
ing specific events. This is broadly analogous to the differ-
ence between the marginal versus conditional predictive
distribution.
10.3.2. Perspectives on Uncertainty in Hydrological
Modeling
[187] This study suggests that success of the inference

(measured by the reliability of runoff predictions and suc-
cessful decomposition of input and structural errors) is largely
determined by the prior hypotheses describing the distribu-
tional properties of rainfall and runoff errors. It is therefore
important that the priors used in the inference reflect actual
knowledge, rather than be treated as mere mathematical tricks
to ensure MCMC convergence. Indeed, a precise but inac-
curate prior will simply yield fast convergence to the wrong
posterior. The limiting case is SLS – it specifies the precise
but incorrect prior that the observed rainfall is exact and
yields a biased inference. This highlights the need to develop
and implement reliable methods for estimating the accuracy
and precision of measured environmental data at the data
collection and postprocessing stages. Given the superior
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performance of methods exploiting accurate prior informa-
tion, this would allow much deeper statistical inferences to be
carried out than currently possible. Contrary to widespread
hydrological pessimism, formulating accurate prior hypoth-
eses is not an impossible Herculean task, and several prom-
ising avenues are already apparent.
[188] Useful prior distributions of rainfall errors and their

hyperparameters can be derived from spatial analysis of
rainfall fields, e.g., using radar data and/or geostatistical
analyses of rain gauge networks [e.g., Severino and Alpuim,
2005]. Our preliminary research in this direction is very
encouraging – using conditional rainfall simulation elimi-
nated ill posedness and significantly improved the reliability
and resolution of predictive distributions [Renard et al.,
2009b].
[189] Using data on other state variables can also be use-

ful. For example, independent estimates of saturated areas
[Franks et al., 1998] may help identifying the variations of
stochastic parameters controlling the catchment saturation.
Additionally, isotope data can yield independent insights into
residence times and internal model pathways [e.g., Fenicia
et al., 2008; Fenicia et al., 2010]. Further research is needed
to derive meaningful probabilistic models for such additional
data and will be reported in future work.
[190] Finally, while this study focuses on lumped con-

ceptual hydrological models, similar concerns hold for the
identifiability of more complex physically based distributed
models. Indeed, given the increased data requirements
necessary to support the identification and resolution of
additional catchment processes represented in these models,
we expect the role of reliable prior knowledge to become
even more critical.

11. Conclusions

[191] Bayesian total error analysis (BATEA) offers an
inference framework that combines the estimation of rainfall‐
runoff dynamics with an honest accounting of errors in the
observations and the hypothesizedmodel structure. However,
this study shows that sufficient independent information
must be supplied to the inference before the total predictive
uncertainty can be meaningfully decomposed into its con-
tributing sources. Indeed, a key strength of the Bayesian
paradigm is its ability to use independent prior knowledge to
obtain a well posed and useful inference even when the data
alone may not be sufficient.
[192] Empirical analysis suggests that a single set of

rainfall‐runoff data without sufficiently precise estimates of
rainfall uncertainty is insufficient to infer more than one
source of errors, even if the distribution of runoff errors is
known. Nonidentifiability problems arise when attempting to
disaggregate input and structural errors; unless informative
priors on rainfall uncertainty are used, this leads to an ill‐
posed inference. In this respect, priors on the hyperparameters
describing data uncertainty play a very different role to the
priors on the CRR model parameters: while the latter merely
enhance the inference for short calibration data sets, the for-
mer control the overall well posedness of the inference.
[193] It was also demonstrated that ill posedness of the

inference can often be diagnosed from exceedingly slow
MCMC convergence. In particular, when noninformative
priors are used, poor MCMC convergence is symptomatic of

inferred quantities (e.g., model parameters, data and struc-
tural errors, etc.) being poorly identifiable from the data.
[194] In the broader hydrological context, this reflects the

inherent limitations of using sparse data of unknown quality
to make reliable statistical inference and meaningfully dis-
aggregate multiple sources of uncertainty. If no independent
estimates of data uncertainty are available, the discrepancy
between observed and simulated responses only provides
information about total errors. Without further information,
it is impossible to decompose this error into its compo-
nents. This is the fundamental reality confronting hydrologic
modeling.
[195] Another important conclusion is that hierarchical

representation of input and/or structural errors produces more
reliable runoff predictions than the traditional approach of a
deterministic CRRmodel with an additive error model.While
this results in an increased dimensionality of the problem, it
remains computationally practical even on standard compu-
ters and laptops.
[196] More specifically, synthetic and real data studies in

this paper suggest that:
[197] 1. If only rainfall‐runoff data are used and no inde-

pendent data uncertainty estimates are available, only the
total error can be analyzed. This can be accomplished using
standard regression methods such as standard and weighted
least squares schemes. The individual contributions of rain-
fall, runoff and structural errors to predictive uncertainty
cannot be disaggregated. Moreover, in standard regression
methods, unless the statistical properties of the total error are
properly satisfied by the residual error model, which is dif-
ficult to attain in practice, especially with multiple sources of
error and large errors in the inputs, predictive uncertainty
quantification is inadequate and predictions may be biased.
Consequently, in the case where insufficient prior informa-
tion is available, uncertainty analysis should be based on
specialized statistical techniques (e.g., the semiparametric
approaches of Krzysztofowicz [2002] and Montanari and
Brath [2004]), and the reliability of the predictive uncer-
tainty should be thoroughly assessed. Yet attaining inde-
pendent data uncertainty estimates is always preferable, and
we strongly encourage experimentalists and data analysts to
work toward this.
[198] 2. Adding independent knowledge to formulate an

informative prior on the properties of runoff errors enables a
meaningful inference of the combined distributional proper-
ties of rainfall and structural errors, and their combined
contribution to predictive uncertainty. However, what may
be identified as “input error” by the calibration scheme can
also encompass a significant portion of structural error, and
vice versa. In either case, the disaggregation of rainfall and
structural errors is ill posed.
[199] 3. Using independent knowledge to formulate precise

priors for both runoff and rainfall hyperparameters permits
well‐posed individual inference of rainfall and structural
errors, including the distributional properties of the latter.
In other words, the decomposition of the total predictive
uncertainty into its three constituents requires precise priors
for rainfall and runoff error hyperparameters, with the
rainfall‐runoff data then providing closure on the remaining
structural error. The resulting inference provides both
(1) reliable estimates of total predictive uncertainty, with
predictive precision dependent on the quality of the data and
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model; and (2) reliable decomposition of the total uncertainty
into its various sources. Along with a corresponding improve-
ment in the model representation, we consider this scenario
to be a strategic goal for hydrologic model estimation.
[200] These conclusions highlight inherent limitations

of calibrating inaccurate CRR models to observed rainfall‐
runoff data of unknown quality. They also call for a more
systematic reporting of errors affecting environmental data,
both at the acquisition and postprocessing stages. In partic-
ular, a reliable quantitative understanding of data uncertainty
should not be viewed as some “esoteric” prior knowledge, but
rather as an essential specification of the inference problem.

Appendix A: Description of LogSPM

[201] This paper uses a modified version of the LogSPM
model [Kavetski et al., 2003; Kuczera et al., 2006]. The
model simulates runoff (q) using rainfall (r) and potential
evapotranspiration (pet) (here, all in mm). The model has
three stores and six parameters (shown in bold below).

Soil store:

Surface water balance
dhs
dt

¼ r � qquick � qrge � qet ðA1aÞ

Quickflow qquick ¼ f ðhsÞ � r ðA1bÞ

Groundwater recharge qrge ¼ f ðhsÞ � rgeMax ðA1cÞ

Actual evapotranspiration qet ¼ pet � ð1� expð�hs � kEtÞÞ
ðA1dÞ

Fraction of saturated area f ðhsÞ ¼ 2

1þ expð�hs � kSÞ � 1

ðA1eÞ

Groundwater store:

Groundwater balance
dhgw
dt

¼ qrge � qb � qdeep ðA2aÞ

Baseflow qb ¼ hgw � kGw ðA2bÞ

Percolation to deep aquifers qdeep ¼ hgw � kDp ðA2cÞ

Stream store:

Stream store balance
dhstream

dt
¼ qquick þ qb � q ðA3aÞ

River runoff q ¼ hstream � kStream ðA3bÞ

The prior parameter distributions are given in Table 1.
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