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ABSTRACT 

In this paper, we study the problem of filterbank design for 
the subband identification method in the oversampled case. 
We aim to design the filterbanks such that the coupling be- 
tween adjacent subbands is minimized. This will allow the 
subband model of the system to be diagonal, thus simplify- 
ing the complexity of identification. Solutions are given to 
two minimization criteria: the worst-input case and white- 
input case. 

1. INTRODUCTION 

The linear system identification problem has been exten- 
sively studied [l]. Algorithms based on least-squares are 
commonly employed in practice and their behaviors are well 
understood. However, the direct use of this algorithm is un- 
suitable for real-time applications where high order finite 
impulse response (FIR) models are required (e.g. speech 
echo cancellation and channel equalization). 
These difficulties have motivated a new line of research on 
system identification that uses subbands [2, 31. Loosely 
speaking, the subband approach divides the input and output 
signals into a number of subbands using two filter banks. 
Then for each subband channel, a model is identified. Fi- 
nally, the subband models are combined to give a full-band 
model. It is known that the subband approach leads to im- 
provement in computational cost savings, convergence rate 
and residual error, when the system to be identified has a 
long impulse response. 
If the subband filters are non-ideal, the so called "cross- 
models" are needed to model interference between different 
subbands (2.5) [2]. In such case, the subband model is said 
to be coupled. Decoupled subband identification, in the crit- 
ically sampled case (number of subbands equals the down- 
sampling factor), requires that the filters have very sharp 
band edges. This drastically increases the filter tap size 
and therefore the computational cost. In the oversampled 
case (number of subbands greater than the downsampling 
factor), the filters are allowed to have a non-zero transition 
band and therefore smaller tap sizes. 

In this work, we consider an oversampled subband identifi- 
cation scheme, with a decoupled subband model. As said 
before, in order to perfectly identify the fullband system 
with a decoupled subband model, we need the subband fil- 
ters to be ideal. In spite of that, we will consider non-ideal 
FIR filters, and introduce the optimization criteria for the 
subband filter design, in order to minimize the identifica- 
tion error. This is done for the worst-input case and for the 
white-input case. 

2. PRELIMINARIES 

2.1. Frames 

The following are some basic definitions and results about 
frames. For a more detailed presentation see [43. 

Definition 1 Let Ift be a separable Hilbert space. A set 
{ei E 'H : i E Z} is a frame ifthere exist constants A ,  B > 
0 such that 

The tightest A and B are denoted by A and B, respec- 
tively. The operator T : 'H -+ 12(2) defined by ( T x ) ~  = 
(2, ei)  (Vi E Z)(Qx E 'H) is called theframe operator 

Remark 2 Denote by T' the adjoint operator of T .  Then 
thepseudo-inverse of T is given by T +  = (T'T)-'T', i.e.. 
T+T is the identity operator. It is obvious that (IT(1 = B1/2; 
(IT+([ A-'/2 

Proposition 3 Given a frame {e i  E Ift : i E Z} and the 
associatedframe operator T ,  there exists a set {e: E 'H : 
i E Z} such that for  any c E Z2((z), 

T+c = tie: 

The set {e: }  above is called the dual frame of { e i ) .  
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2.2. Filterbank Approaches 

Consider the filterbank scheme in figure 1 which involves 
an analysis filterbank and a synthesis filterbank. 

2.3. Subband Identification 

Fig. 1. Filterbank Block Diagram 

Filterbanks can be studied and understood using different 
approaches. In this work we will use the alias approach and 
the frame approach. 
Alias approach: The output j:(z) can be written as 

Z( 2) = $fT (.)HZ ( z ) x A  (2) 

where 
X A ( Z )  = [.(Z) .(Wz) . . . .(WD-'z)]T 

f(2) = [fo(z) fib) .. .  fM-lb>IT 
hM-I ( z )  

H A ( z )  = . .  1 I ho(WD-%) ' .  . h M - 1  (WD-lz)  

. . .  ho(z)  

. .  

and W = e- j%.  Which means that the filterbank behaves 
as a linear time-invariant system from the input X A ( Z )  to 
the output j: (2). 

Frame approach: In order for the synthesis filterbank to be 
perfectly reconstructing, it is required that 

& f T ( z ) H , T ( z )  = [ l , O ,  ..., O]z-' (2.1) 
where 7 represents the reconstruction time delay. Define 
b ( z )  = z-,f(z). Then b ( z )  is a perfect reconstructing syn- 
thesis filterbank with no time delay. Using the frame ap- 
proach, we define 

e i j ( t )  = h t ( j D  - t )  E 31, ( i , j )  E Z (2.2) 
where Z = { ( i , j )  : i = 0, ..., A4 - 1 ; j  E Z} and 31 = 
12(Z). Then { e i j ,  ( i , j )  E Z} is a frame. It can be checked 
that (2.1) can be guaranteed by taking b ( z )  such that. 

(2.3) 

where { e t }  is the dual frame of { e i j } .  We will see later 
that this choice of b(z) not only satisfies (2.1) but also has 
additional nice properties. The input-output relationship is 
given by 

bi ( t  - j D )  = e:(t), (i,j) E Z 

5 = T,T+Tx (2.4) 

where T ,  T+ are the frame operators for {eij}, and {e;}, 
and T, is the time delay operator. 

The subband identification scheme is shown in figure 2, 
where g ( z )  represents a linear time-invariant system with 

Fig. 2. Subband Identification Block Diagram 

inputu(z), outputy(z) andmeasurementnoise w(z); h ( z )  = 

analysis filterbank and synthesis filterbank respectively, and 
G ( z )  = [ G i j ( z ) ] ~ ~ ~  represents an equivalent model of 
g ( z )  in the subband with down-sampling rate D. 
Decoupling Condition: To simplify the analysis we as- 
sume that h,(~) = ho(Vmz), m = 0 ,  ..., A4 - 1 (i.e. 
the subband filters come from frequency shifting of a pro- 
totype), where V = e - j g  and ho(z) is a low-pass filter. 
In order for the subband model G ( z )  to be diagonal, it is 
needed that 

[hob) ,  ..., h ~ - - l ( z ) I ~ ,  f ( z )  = [fo(z), - . . , f ~ - 1 ( ~ ) 1 ~  are 

(2.5) ho(Wdz1lD) = 0, d = 1, ..., D - 1 

The following convention is used throughout this paper: for 
any D E N, and z = r exp(j+), r, $J E I$ 

z l / D  = ?.1/D exp(jmod(6>2k)-n 
D ) ' 

3. IDENTIFICATION ERROR BOUND 

If (2.5) is satisfied, we only need to identify the diagonal 
terms of G ( z ) .  However, (2.5) can only be an approximate 
in practice due to the fact that non-ideal filters are used. 
One remedy is also to identify off-diagonal terms of G ( z ) .  
However, this will increase the computational complexity. 
Alternatively, we can ignore the off-diagonal terms but try 
to minimize the errors caused by the non-ideal filterbanks. 
This is what we intend to do in this section. More specif- 
ically we consider two cases: the worst-input case and the 
white-input case. In the sequel we assume that U(.) = 0. 

3.1. Identification Stage 

Apply the signal U(.) to the input and assume we perfectly 
identify the input-output relation in each subband. Then, 
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using the alias approach, since h,(Wdr,(z)) = ho(Wdzz ' /D) .  Then 

(3.1) 
form = 0, ..., M - 1. 

3.2. Reconstruction Stage 

Now apply a different input signal U'(.). Then, 

V h ( z )  = j$ cy)' (G ;y (z )  - .9(Wdz1/D)) 
h,(Wdzl U (Wdzz'l") 

(3.2) 
for m = 0, ..., A4 - 1. We can use the frame approach to 
write it as 

V'  = Tu' (3.3) 

where 
we are ready to state the results for the two cases above. 

is the map u ' ( z )  I--) [Vd(z ) ,  ..., VL4-l (z)]'. Now 

3.3. Worst-Input Case Input 

Lemma 4 Consider the mapping in (3.3) and dejne 

and the result follows immediately from the definition of the 
norm of a linear operator 

We know that if we choose the synthesis filterbank as in 
(2.3), its associated operator will be the pseudo-inverse of 
the operator associated with the analysis filterbank. This 
option has the property that cancels every component of the 
subband signals that is orthogonal to the range of the anal- 
ysis filterbank (the subspace of possible subband signals). 
Clearly, this is the best option for the synthesis filterbank, 
since it minimizes the energy of ~ ' ( 2 )  while preserving the 
perfect reconstruction property. With this choice for the 
synthesis filterbank, using the frame approach, and in view 
of (3.3), we can express the reconstruction error as 

Lemma 5 Let T be the frame operator associated with the 
frame defined by (2.2), and let A > 0 be its tightest lower 
bound, then 

close to zero outside its support, we have that 

piJ (z )  E 

Now, taking into account and that the right hand side of (3.1) 
does not change if we replace z ' l n  by r n l ( z ) ,  we have that 

(G,,,,,(z) - g ( r m ( z ) ) )  hm(rm(z ) )u i ( rVL(z ) )  Proof: The prooffollows the proofofsection 3.3.2 (pp. 67) 
(3.5) in [51 

Combining lemmas 4 and 5 ,  we have the next result 

(3.10) 
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3.4. White-Input Case 

If the signal u’(z) in the reconstruction stage is a white ran- 
dom process, it can be shown by following similar steps that 

&{8‘2(t)} = &P&{u”t)} (3.1 1) 

where C is in (3.4) and 

(3.12) 

4. FILTERBANK DESIGN 

In (3.10) and (3.1 l), C does not depend on the filter de- 
sign. Also it can be shown that E does not depend either, 
provided that the prototype is close to zero in its stop band. 
Then, the designs should aim to minimize just the term F 
and F respectively. 
In summary he filter prototype (see figure 3) needs to be: 

FIR, to be able to use the relation given in [SI to con- 
struct the synthesis filterbank. 
lowpass so as to generate all the M subband filters, 
from the prototype ho ( z ) ,  by frequency shifting. 
approximately a constant value in its passband ( -w 1 < 

optimized such that F (or k) is as small as possible 
w < W l ) .  

w1 w 2  ,IT 

Fig. 3. Filter Prototype 

For the worst-input case, the suggested optimization scheme 
is to start with a Parks-McClellan filter, which gives an equir- 
riple FIR filter. Then, a nonlinear optimization algorithm is 
used to improve the above filter. 
For the white-input case, it is known that the optimal filter 
that minimizes F in (3.12) is an eigenfilter; see [6]. 

4.1. Numerical Example 

As an example we consider a subband identification scheme 
with white inputs, U(.) andu‘(z). Also, M = 6, D = 4 and 
ho(z )  has a tap size of 20. We compare the norm of ij’(z) 
for tree filterbank prototypes: the Parks-McClellan filter, the 
optimized worst-input case filter and the eigenfilter. 
Figure 4, shows the frequency response of all tree filters, 
and figure 5 shows the comparison of the responses in the 
stopband 

Fig. 4. Optimal prototype Fig. 5. Stopband detail 

The identification error obtained by using the Parks-McClellan 
filter is 1.04 x lop3, for the optimized worst-input filter is 
7.89 x and for the eigenfilter is 6.55 x Obvi- 
ously, the eigenfilter gives the best error because the input 
u‘(z )  is white. It should be noted that the optimized worst- 
input case filter may outperform the eigenfilter if u’(z)  is 
not white. 

5. CONCLUSION 

In this work we have studied the oversampled subband iden- 
tification scheme with a decoupled subband model, using 
FIR filters. We have introduced a bound for the identifica- 
tion error power originated by the use of non-ideal filters. 
This bound depends on the subband filter prototype. Next, 
we have used the expression of the bound to find optimal 
choices to minimize it in both the worst-input case and the 
white-input case. 
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