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ABSTRACT

For stochastic analysis of single-rate linear systems, a desirable
property for stochastic signals is ergodicity in the mean and cor-
relation. Unfortunately, as we show, the ergodicity property may
not be preserved under downsampling and uniformly stable lin-
ear filtering. This poses a serious problem for stochastic analysis
of multirate linear systems. In this paper, we introduce the no-
tion of strong ergodicity which is preserved under a number of
important multirate operations including downsampling, upsam-
pling and time-variant uniformly stable linear filtering. We provide
conditions for stochastic processes to be strongly ergodic. Using
this result, we show that both independent random processes and
bounded deterministic signals are strongly ergodic in the mean and
correlation.

keywords: Ergodicity, Multirate systems, Stochastic analysis,
Random processes.

1. INTRODUCTION

Multirate signal processing techniques find a wide range of appli-
cations; see, e.g., [1, 2, 3]. Two of the fundamental operations
in a multirate system are downsampling and upsampling. Using
these operations, signals can be decomposed into subbands where
various signal processing operations take place. An example of
such applications is the so-called subband adaptive filtering where
filtering is done at individual subbands to gain a number of numer-
ical advantages. Another example is the so-called subband system
identification. In this technique, the input and output signals of a
system to be identified are split into subbands by using filterbanks.
Then, a parametric model is tuned in every subband. By doing
s0, better convergence and faster computation can be achieved in
many cases. See, e.g., [4], [5], [6], [7].

In order to understand the statistical behavior of multirate sys-
tems, stochastic analysis is essential. For single-rate systems, the
notion of ergodicity play a fundamental role in stochastic analysis.
More specifically, random signals in the system are required to
be ergodic in mean and/or correlation. When dealing with multi-
rate systems, it is desirable that various stochastic analysis results
can be carried over to subbands. This requires that random sig-
nals in each subband are required to be ergodic, which raises the
following question: What conditions are required on the full-band
signals so that the subband signals are ergodic? Unfortunately, as
we will show, the ergodicity of a random signal may not be pre-
served under a number of operations, including downsampling and
uniformly stable linear filtering.

Motivated by the discussion above, we look for suitable no-
tions of ergodicity for multirate systems. More specifically, we
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introduce the notions of strong ergodicity in the mean and strong
ergodicity in the correlation, which are properties preserved under
a number of commonly used linear multirate operations, namely,
downsampling, upsampling, addition and filtering by uniformly
stable linear filters. We establish conditions for random processes
to be strongly ergodic. Using these conditions, we show that white
random processes with uniformly bounded second moments are
strongly ergodic in the mean and that mutually independent ran-
dom processes with uniformly bounded fourth moments are jointly
strongly ergodic in the correlation.

These results mean that commonly used random processes in
multirate linear systems are strongly ergodic (in the mean and cor-
relation). Hence, many known stochastic analysis results available
for single-rate systems can be readily applied to multirate systems.

Due to the space limitation, the proofs of results are not in-
cluded in the paper.

2. PRELIMINARIES

In this section, we introduce the necessary notation and definitions
for this paper.
2.1. Random Processes

Let (2, A, P) be a probability space defined on a set Q2 with o-
algebra A and probability measure P. A random variable is an .A-
measurable map z : {2 — C, where C denotes the set of complex
numbers. We denote the set of all random variables so defined by

L(Q,AP)={z:Q— C:xis A-measurable}

The p-th (absolute) moment (or p-th norm) of a random variable x
is defined by

lzll, = E{|e"}"""
where £{-} denotes the expected value. We denote
L,(Q,AP)={zec L(QAP):|z|, < oo}
If x,y € L2(9Q, A, P), then their inner product is defined as
(@,y) = E{z"y}

A (discrete-time) random processisamap § : Z — L(€, A, P),
where Z is the set of integer numbers. We denote

PQAP) ={(:Z— L(Q,AP)}

and

Pl A,P) = {f € P AP) : sup ()], < oo}
teZ
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i.e., Pp(€, A, P) is a collection of random processes in P(€2, A, P)
with uniformly bounded pth moments.

Since a deterministic signal can also be interpreted as a ran-
dom process, the set P, (£2, .4, P) includes deterministic signals in
l(Z).

A random process is called white if its samples form a set of
pairwise uncorrelated random variables, and it is called indepen-
dent if its samples form a set of independent random variables.
Also, a collection of random processes is called mutually indepen-
dent if their samples form a set of independent random variables.

2.2. Multirate Operations and Filtering

Let z € P(, A, P) be a random process and D € N. The down-
sampled random process with downsampling rate D is given by

y(t) = x(Dt)
Similarly, the upsampled random process with upsampling rate D
t/DeZ

is given by /D)
x(t ;
y(t) = { 0; t/D¢ 7

A time-varying linear filter with impulse response {h:(7T) :
t,7 € Z} is said to be uniformly stable if there exists h € 11(Z)
such that |h:(7)| < h(7),Vt, T € Z.

2.3. Ergodicity

A random process z € P(, A, P) is said to be ergodic in the

mean if
T

. 1 w.p.1
lim ?Zx(t)ff{m(t)} 270 (1)

T—o0
t=1

Similarly, two random processes z,y € P ({2, .A,P) are said to be
Jjointly ergodic in the correlation if, for every T € Z,

hm —Zw Oyt +71)—E{z"(t )(t—i—‘r)}w%l() (2)

Also, a random process is ergodic in the correlation if it is jointly
ergodic in the correlation with itself.

3. MOTIVATING EXAMPLES

In this section we show via examples that ergodicity in the cor-
relation may not be preserved under a number of linear multirate
operations. These operations include downsampling, linear filter-
ing and addition.

Example 1 Consider the probability space ([—1/2,1/2], B, ),
where B denotes the Borel o-algebra on the set [—1/2,1/2] and

X\ denotes the Lebesgue measure. Define the random process x €
P([—1/2,1/2], B, A) as follows:

wen ={ 102500

|w|/w. Then,

t is even
t is odd

where sign(w) =

sz

= %ZtTﬂ( 1>tJrlSlgn( ); Tiseven
0; T is odd

— 0, as T —

z(t+7))(w) — E{(z7 () (W) (@(t + 7)) ()}

so x is ergodic in the correlation. Lety € P([—-1/2,1/2],B,))
be generated from x by downsampling by a factor of 2, i.e.,

(y(1)(w) = (#(20)(w) = 3 (1 + sign(w))

Then,

TZy ()(w

= §sign(w) # 0,

This implies that y is not ergodic in the correlation.

y(t+ 7)) (w) = E{(y" (1) (W) (y(t + 7)) (w)}]

as T — o

Example 2 Consider the random process x in Example 1 and the
uniformly stable time-variant linear filter with the following im-

pulse response
min={ 507,

where §(7) is the Kronecker function. Let y be the random process
obtained by filtering x through h:(7), i.e

th

T=—00

t is even
t is odd

z(t —7))(w) = 5 (1 +sign(w))

l\DI»i

Then,

sz

= %sign(w) + 0,

which means that y is not ergodic in the correlation.

y(t+7)(w) = E{y" M) W)yt + 7)) (w)}

as T — oo

Example 3 Consider the following random processes in P([—1/2,
1/2], B, \):

(z(®)(w) =
(y(t)(w)

It is easy to verify that, forallT € Z,T € N,

TE: z(t+ 7)) ()
~Elle () @) (@t + ) (@)}] = 0;

TEI y(t+7)(w)
—E{(y" () @)yt + 7)) (@)} =0

Hence, x and y are ergodic in the correlation. Define

(z(1)(w) = (z(1))(w) + (2(t))(w) = 1 + sign(w)

It is easy to verify that

TZ (2(t+ 7)) (w)

—E{(z" () (W) (=(t + 7)) (w)}]
= sign(w) /0,

Hence, z is not ergodic in the correlation.

sign(w);
1

as T —
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4. STRONG ERGODICITY

In this section, we introduce the notions of strong ergodicity in the
mean and in the correlation.

4.1. Strong Ergodicity in the Mean

Definition 1 The random process x € P(Q2, A, P) is called strongly
ergodic in the mean if the following conditions hold

(M1) x is ergodic in the mean.

(M2) If the random process y € P(Q, A,P) is also strongly er-
godic in the mean, then x + vy is strongly ergodic in the
mean.

(M3) The filtering of x by a uniformly stable linear filter, yields a
random process that is strongly ergodic in the mean.

(M4) The downsampling of x by any factor yields a random pro-
cess that is strongly ergodic in the mean.

(MS5) The upsampling of x by any factor yields a random process
that is strongly ergodic in the mean.

4.2. Strong Ergodicity in the Correlation

Our aim here is to give a definition for strong ergodicity in the cor-
relation in a way similar to that of strong ergodicity in the mean.
However, this can not be done straightforwardly. Recall that Con-
dition (M2) says that the addition of two signals which are strongly
ergodic in the mean yields a signal which is also strongly ergodic
in the mean. However, in the example below, we show that the ad-
dition of two independent signals can yield a non-ergodic signal.
Imposing a condition similar to (M2) would exclude a large class
of important random processes. Therefore, we need to relax the
requirements for strong ergodicity in the correlation.

Example 4 Consider the probability space ([0, 1), B, \). For ev-
eryw € [0, 1), let its binary expansion be

w = Z wt27t
t=1
Define the random process x € P([0,1), B, \) by

(2()) () = 200 — 1
Define y € P([0,1), B, \) by

Mm@:{<wmw

w € [O,%)
w€E [%,1)

—(z(®)(w);

It is easy to verify that x and y are independent, see [8, Example
4, p.56], however they are not mutually independent. Let z €
P([0,1), B, \) be defined by

()W) = (z®)(w)+ (Y1) (w)
_ { 2(z(t)(w); welo,3)
0; we[3,1)

Then,
1
>

T
1
{2’

Therefore, z is not ergodic in the correlation.

(2(1)(w) = E{(z" (1) (W) (2(1)) (@)}

T

o~

wG[O,Q)
we[ 1)

To get around the difficulty mentioned above, we observe that
there is a property of addition for joint ergodicity, i.e., the addition
of two signals which are ergodic in the correlation and jointly er-
godic in the correlation yields an ergodic signal. In view of this, we
introduce the notion of joint strong ergodicity which has a similar
property.

Definition 2 Two random processes x,y € P(Q, A, P) are said
to be jointly strongly ergodic in the correlation if the following
conditions hold:

(CO) y and x are jointly strongly ergodic, i.e., the condition is

symmetric.
(C1) x and y are jointly ergodic in the correlation.

(C2) If the random process z € P(Q, A, P) is jointly strongly
ergodic in the correlation with both x and y, then z is also
Jjointly strongly ergodic in the correlation with x + y.

(C3) The filtering of y by a uniformly stable linear system, yields
a random process that is jointly strongly ergodic in the cor-
relation with .

(C4) The downsampling of y by any factor yields a random pro-
cess that is jointly strongly ergodic in the correlation with
.

(C5) The upsampling of y by any factor yields a random process
that is jointly strongly ergodic in the correlation with x.

A random process is called strongly ergodic in the correlation
if it is jointly strongly ergodic in the correlation with itself.

5. MAIN RESULTS

In this section, we provide our main results. We first introduce
a norm on a subset of random processes in P2 (€2, A, P), which
characterizes the decay rate of the autocorrelation function of the
random process. We then use this subset to give sufficient condi-
tions for strong ergodicity in the mean and in the correlation. In
particular, a white random process with uniformly bounded sec-
ond moments is strongly ergodic in the mean and two mutually
independent random processes with uniformly bounded fourth mo-
ments are jointly strongly ergodic in the correlation.

Definition 3 Let & € P2(2, A, P) be a random process and T' €
N. Define

I€lls = sup_ (
TEN,d

and

E (€

t,s=1

1/4
&(s+d), t+d))2> 3)

S(Q, A, P) = {£ € P2(Q, A P) : ||€]|ls < o0}

Lemmal The map ||-||g : S(Q, A,P) — RY defines a norm
on S(Q,A,P), ie., for any £, € S(Q, A P) and ¢ € C, the
Sfollowing conditions hold:
(NI) |cglls = |
(N2) [l€+¢lls < 1€l
(N3) [[¢lls =0=¢&=0.
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Lemma 2 Ler £ € P(Q, A, P) be random process and let ¢ be a
random process generated from & by downsampling, upsampling
or filtering via a uniformly stable linear filter. If ¢ € S(Q0, A, P),
then ¢ € S(Q, A, P).

Lemma 3 Let x € P1(Q, A, P) be a random process. If the ran-
dom processes &, defined by

a(t) = a(t) — E{z(t)} )
is in S(Q, A, P), then x is strongly ergodic in the mean.

Theorem 1 Ifthe random process x € P2(Q, A, P) is white, then
it is strongly ergodic in the mean.

Putting together the ideas of this section, we have the follow-
ing result, which we state without proof.

Theorem 2 Let v be a random process formed from the random
processes of the finite collection um, € P2(2, A,P), m=1,---,
M, by any finite combination of additions, filtering with uniformly
stable linear filters, downsampling and upsampling. If for every
m, the random process u, is white, then v is ergodic in the mean.

Remark 1 Note that the signals ., in Theorem 4 can include de-
terministic signals in lo (Z) because they are also in P2(92, A, P).

Lemma 4 Let x,y € P1(Q, A,P) be random processes. If the
collection of random processes & 4(A, B,a,b), (A, B,a,b) €
N x N X Z X Z, defined by

€a,y(A, B, a,b)(t)
= z"(At+a)y(Bt+b) — E{z" (At + a)y(Bt+1b)}

are in S(Q, A, P) and the norms ||z, (A, B, a,b)||s are uniformly
bounded, then x and y are jointly strongly ergodic in the correla-
tion.

Theorem 3 Let z,y € P4(2, A, P) be random processes. Then:

(i) If x is independent, then it is strongly ergodic in the corre-
lation.

(ii) If x and y are mutually independent, then x and y are
Jjointly strongly ergodic in the correlation.

Theorem 4 Let v be a random process formed from the random
processes of the finite collection um € Ps(Q, A,P), m=1,---,
M, by any finite combination of additions, filtering with uniformly
stable linear filters, downsampling and upsampling. If the random
processes {um : m =1, -+, M} are mutually independent, then
v is ergodic in the correlation.

Remark 2 Note that the signals u,, in Theorem 4 can include de-
terministic signals in lo (Z) because they are also in P4+(Q2, A, P).
Also note that if a family of random processes have a Gaussian dis-
tribution, then the uniform boundedness of the fourth moments is
equivalent to that of the second moments.

In Example 1, we showed an random process, which is er-
godic in the correlation, whose ergodicity was lost after downsam-
pling and linear filtering. By definition, this random process is
not strongly ergodic in the correlation. We show below that this
random process indeed violates the condition in Lemma 4.

Example 5 Consider the random process x in Example 1. We
have

1€ {&2,2(1,1,0,0)(t)x.,2(1,1,0,0)(s) } | = 1,

It follows that

Vt,s € N

T
LS e {0, (1,1,0,0) (D6 0(1,1,0,0)(s)} [P = T

Nl

and
||€Ivl(17 17 07 O)HS =

Therefore, the condition in Lemma 4 is violated.

6. CONCLUSION

In this paper we have introduced the notions of strong ergodicity
in the mean and in the correlation which are suitable for stochas-
tic analysis of multirate systems. The definitions of these notions
are motivated by the fact that the ergodicity (in the mean or cor-
relation) may not be preserved under several linear and multirate
operations. In contrast, strong ergodicity in the mean or correla-
tion implies ergodicity in the mean or correlation, respectively, and
they are invariant under the transformations involved in a multirate
linear system, i.e., time-variant, uniformly stable linear filtering,
downsampling, upsampling and addition (In the case of strong er-
godicity in the correlation, the signals to be added need also be
jointly strongly ergodic in the correlation). We have also shown
that independent random processes, which includes bounded de-
terministic signals, are strongly ergodic in the mean or correlation
and mutually independent random processes are jointly strongly
ergodic in the correlation. Therefore, all the signals generated
from these by the transformations mentioned above are strongly
ergodic in the mean or correlation. As a consequence, the usual
signals of interest are strongly ergodic in the mean or correlation.
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