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Sparse Command Generator for Remote Control

Masaaki Nagahara, Daniel E. Quevedo, Jan Østergaard, Takahiro Matsuda, and Kazunori Hayashi

Abstract— In this article, we consider remote-controlled sys-
tems, where the command generator and the controlled object
are connected with a bandwidth-limited communication link.
In the remote-controlled systems, efficient representation of
control commands is one of the crucial issues because of the
bandwidth limitations of the link. We propose a new repre-
sentation method for control commands based on compressed
sensing. In the proposed method, compressed sensing reduces
the number of bits in each control signal by representing it as a
sparse vector. The compressed sensing problem is solved by an
ℓ
1-ℓ2 optimization, which can be effectively implemented with

an iterative shrinkage algorithm. A design example also shows
the effectiveness of the proposed method.

I. INTRODUCTION

Compressed sensing has recently been a focus of intensive

researches in the signal processing community. It aims at

reconstructing a signal by assuming that the original signal

is sparse [2]. The core idea used in this area is to introduce

a sparsity index in the optimization. The sparsity index of a

vector v is defined by the amount of nonzero elements in v

and is usually denoted by ‖v‖0, called the “ℓ0 norm.” The

compressed sensing decoding problem is then formulated

by least squares with ℓ0-norm regularization. The associated

optimization problem is however hard to solve, since it is

a combinatorial one. Thus, it is common to introduce a

convex relaxation by replacing the ℓ0 norm with the ℓ1 norm

[3]. Under some assumptions, the solution of this relaxed

optimization is known to be exactly the same as that of the

ℓ0-norm regularization [8], [2]. That is, by minimizing the

ℓ1-regularized least squares, or by ℓ1-ℓ2 optimization, one

can obtain a sparse solution. Moreover, recent studies have

examined fast algorithms for ℓ1-ℓ2 optimization [5], [1], [15].

The purpose of this paper is to investigate the use of

sparsity-inducing techniques for remote control [11], see [10]

for an alternative approach. In remote-controlled systems,

control information is transmitted through bandwidth-limited

channels such as wireless channels [14] or the Internet [9].
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There are two approaches to reduce the number of bits

transmitted on a wireless link, source coding and channel

coding approaches [4]. In the former, information compres-

sion techniques reduce the number of bits to be transmitted.

In the latter, efficient forward error-correcting codes reduce

redundant data (i.e., parity) in channel-coded information.

In this paper, we study the former approach and propose a

sparsity-inducing technique to produce sparse representation

of control commands, which can reduce the number of bits

in transmitted data.

Our optimization to obtain sparse representation of control

commands is formulated as follows: we measure the tracking

error in the output trajectory of a controlled system by

its ℓ2 norm, and add an ℓ1 penalty to achieve sparsity of

transmitted vector. This is an ℓ1-regularized ℓ2-optimization,

or shortly ℓ1-ℓ2-optimization, which is effectively solved

by the iterative shrinkage method mentioned above. The

problem of command generator has been solved when the

penalty is taken solely as an ℓ2 norm, the solution of which

is given by a linear combination of base functions, called

control theoretic splines [13]. In this work, we also present

a simple method for achieving sparse control vectors when

the control commands are assumed to be in a subspace of

these splines. An example illustrates the effectiveness of our

method compared with the ℓ2 optimization.

Notation

For a vector v = [v1, . . . , vn]
⊤ ∈ R

n, the ℓ1 and ℓ2 norms

are respectively defined by ‖v‖1 :=
∑n

i=1 |vi| and ‖v‖2 :=√
v⊤v. For a real number x ∈ R,

sgn(x) :=

{

1, if x ≥ 0,

−1, if x < 0,
, (x)+ := max{x, 0}.

We denote the determinant of a square matrix M by det(M),
and the maximum eigenvalue of a symmetric matrix M
by λmax(M). Let L2[0, T ] be the set of Lebesgue square

integrable functions on [0, T ]. For f, g ∈ L2[0, T ], the inner

product is defined by

〈f, g〉 :=
∫ T

0

f(t)g(t)dt.

II. COMMAND GENERATION PROBLEM

Let us consider the following linear SISO (Single-Input

Single-Output) plant:

P :

{

ẋ(t) = Ax(t) + bu(t),

y(t) = c⊤x(t), t ∈ [0,∞), x(0) = 0,
(1)



where A ∈ R
n×n, b ∈ R

n and c ∈ R
n. We assume that

the system P is stable and the state space realization (1)

is reachable and observable. The output reference signal is

given by data points D := {(t1, Y1), (t2, Y1), . . . (tN , YN )},

where ti’s are time instants such that 0 < t1 < t2 < · · · <
tN =: T . Our objective here is to design the control signal

u(t) such that the output trajectory y(t) is close to the data

points Y1,. . . ,YN at t = t1, . . . , tN , that is, y(ti) ≈ Yi, i =
1, . . . , N . To measure the difference between {y(ti)}Ni=1 and

{Yi}Ni=1, we adopt the square-error cost function

E2(u) =

N
∑

i=1

(y(ti)− Yi)
2,

where we have made the dependence of y(ti) on u =
{u(t)}t∈[0,T ] through the system equation (1).

In principle, one can achieve perfect tracking, that is,

E2 = 0, by some input signal1. However, the optimal input

for perfect tracking has very large gain especially when

the number N is very large, and may lead to oscillation

between the sampling instants t1, . . . , tN . This phenomenon

is known as overfitting [12]. To avoid this, one can adopt

a regularization or smoothing technique. This method is to

add a regularization term Ω(u) to the cost function E2(u).
We formulate our problem as follows:

Problem 1: Given data D, find a control signal u which

minimizes the regularized cost function J(u) = E2(u) +
µΩ(u), where µ > 0 is the regularization parameter which

specifies the tradeoff between minimization E2(u) and the

smoothness by Ω(u).
A well-known regularization is to use L2 function for

Ω(u), called the control theoretic smoothing spline [13], [6].

We review this in the next section.

III. ℓ2 COMMAND DESIGN BY CONTROL THEORETIC

SMOOTHING SPLINES

For the problem given in section II, the following L2-

regularized cost function was considered in [13]:

J2(u) := E2(u) + µΩ2(u), Ω2(u) :=

∫ T

0

u(t)2dt. (2)

The optimal control u∗
2 which minimizes J2(u) is given by a

linear combination of the following functions called control

theoretic splines [13], [6]:

gi(t) :=

{

c⊤eA(ti−t)b, if ti > t,

0, if ti ≤ t,
(3)

see Fig. 1. More precisely, the optimal control for (2) is given

by

u∗
2(t) =

N
∑

i=1

θigi(t) = g(t)⊤θ∗

2, (4)

θ∗

2 := (µI +G)−1yref, (5)

1The explicit form of this input is given by (4) and (5) in Section III,
with µ = 0.

ti

P (t) = c⊤eAtb

gi(t)

0

Fig. 1. Control theoretic spline gi(t) (solid) and the impulse response
P (t) of the plant P (dots).

(µI +G)−1
yref θ∗

2 u∗
2 y

g(t) P

Fig. 2. Remote-controlled system optimized with J2(u) in (2). The vector
θ∗

2 is transmitted through a communication channel.

where g(t) := [g1(t), . . . , gN (t)]⊤, yref := [Y1, . . . , YN ]⊤,

and G is the Grammian matrix of {g1, . . . , gN}, defined by

[G]ij := 〈gi, gj〉, i, j = 1, . . . , N .

IV. ℓ1-ℓ2 COMMAND DESIGN FOR SPARSE REMOTE

CONTROL

In remote-controlled systems, we transmit the control

input u = {u(t)}t∈[0,T ] to the system P through a com-

munication channel. Since {u(t)}t∈[0,T ] is a continuous-time

signal, we should discretize it.

An easy way to communicate information on the input

signal is to transmit the data yref itself, and produce the input

u(t) by the formulae (4) and (5) at the receiver side. The

vector yref is just an N -dimensional one, and much easier to

transmit than the infinite-dimensional vector {u(t)}t∈[0,T ].

An alternative method consists in transmitting the coeffi-

cient vector θ∗

2 given in (5) instead of the continuous-time

signal u. This procedure is shown in Fig. 2. In this procedure,

we fix the sampling instants t1, . . . , tN and the vector yref

is given. We first compute the parameter vector θ∗

2 by (5),

and transmit this through a communication channel. The

transmitted vector is received at the receiver, and then the

control signal u∗
2(t) is computed by (4), and applied to the

plant P . We assume that the time instants t1, . . . , tN are

shared at the transmitter and the receiver.

A problem of the above-mentioned strategies is that the

communication channel is band-limited and therefore the

vector to be transmitted has to be first quantized and encoded.

To solve this, we will seek a sparse representation of

the transmitted vector θ in accordance with the notion of

compressed sensing [2], [7].

Define a subspace V of L2[0, T ] by

V :=







u ∈ L2[0, T ] : u =
M
∑

j=1

θjφj , θi ∈ R







, (6)

where φ1, . . . , φM are linearly independent vectors in

L2[0, T ]. Note that if M = N and φi = gi, i = 1, . . . , N
defined in (3), the optimal control u∗

2(t) in (4) belongs to



this subspace2. We assume that the control u is in V , that

is, we find a control u in this subset. Under this assumption,

the squared-error cost function E2(u) is represented by

E2(u) =

N
∑

i=1

(y(ti)− Yi)
2 = ‖Φθ − yref‖22 , (7)

where [Φ]ij = 〈gi, φj〉, i = 1, . . . , N , j = 1, . . . ,M . To

induce sparsity in θ, we adopt ℓ1 penalty on θ and introduce

the following mixed ℓ1-ℓ2 cost function:

J1(θ) :=
1

2
‖Φθ − yref‖22 + κ‖θ‖1. (8)

Note that if ‖φj‖1 = 1 for j = 1, . . . ,M , then the cost

function (8) is an upper bound of the following L1-L2 cost

function:

J1(u) =
1

2
E2(u) + κΩ1(u), Ω1(u) =

∫ T

0

|u(t)|dt.

As mentioned in the introduction, the ℓ1-regularized least-

squares optimization is a good approximation to one regu-

larized by the ℓ0 norm which counts the nonzero elements

in θ. Although the solution which minimizes J1(θ) cannot

be represented analytically as in (4), we can compute an

approximated solution by using a fast numerical algorithm.

The algorithm is described in the next section. By using this

solution, say θ∗

sparse, the optimal control u∗
1 can be obtained

from

u∗
1(t) =

N
∑

i=1

θ∗i φi(t) = φ(t)⊤θ∗

sparse, t ∈ [0, T ].

V. SPARSE REPRESENTATION BY ℓ1-ℓ2 OPTIMIZATION

We here describe a fast algorithm for obtaining the optimal

vector θ∗

sparse. First, we consider a general case of optimiza-

tion. Next, we simplify the design procedure in a special

case.

A. General case

The cost function (8) is convex in θ and hence the

optimal value θ∗

sparse uniquely exists. However, an analytical

expression as in (5) for this optimal vector is unknown except

when the matrix Φ is unitary. To obtain the optimal vector

θ∗

sparse, one can use an iteration method. Recently, a very fast

algorithm for the optimal ℓ1-ℓ2 solution has been proposed,

which is called iterative shrinkage [1], [15].

This algorithm is given by the following: Give an initial

value θ[0] ∈ R
M , and let β[1] = 1, θ′[1] = θ[0]. Fix a

constant c such that c > ‖Φ‖2 := λmax(Φ
⊤Φ). Execute the

2The functions {g1, . . . , gN} are linearly independent [13].

0 κ/c

−κ/c θ

Fig. 3. Nonlinear function sgn(θ)(|θ| − κ/c)+

FISTA
yref

θ∗

sparse u∗
1 y

g(t) P

Fig. 4. Remote-controlled system optimized with J1(θ) in (8). The
vector θ∗

sparse minimizing (8) is computed by the FISTA (Fast Iterative
Shrinkage-Thresholding Algorithm) given in (9), and transmitted through
a communication channel.

following iteration3:

θ[j] = Sκ/c

(

1

c
Φ⊤(yref − Φθ′[j]) + θ′[j]

)

,

β[j + 1] =
1 +

√

1 + 4β[j]2

2
,

θ′[j + 1] = θ[j] +
β[j]− 1

β[j + 1]
(θ[j]− θ[j − 1]),

j = 1, 2, . . . ,

(9)

where the function Sκ/c is defined for θ = [θ1, . . . , θM ]⊤

by

Sκ/c(θ) :=







sgn(θ1)(|θ1| − κ/c)+
...

sgn(θM )(|θM | − κ/c)+






.

The nonlinear function sgn(θ)(|θ| − κ/c) in Sκ/c is shown

in Fig. 3. If c > ‖Φ‖2, the above algorithm converges to the

optimal solution minimizing the ℓ1-ℓ2 cost function (8) for

any initial value θ[0] ∈ R
M with a worst-case convergence

rate O(1/j2) [5], [1]. The above algorithm is very simple

and fast; it can be effectively implemented in digital devices,

which leads to a real-time computation of a sparse vector

θ∗

sparse.

B. The case Φ = G

We here assume M = N and φi = gi, i = 1, 2, . . . , N ,

that is, Φ = G. Since g1, . . . , gN are linearly independent

3Several methods have been proposed for the iterative shrinkage [15]. The
algorithm given here is called FISTA (Fast Iterative Shrinkage-Thresholding
Algorithm) [1].



Pg(t)Φ−1Sν

yref
η∗

sparse u∗
1 y

Fig. 5. Remote-controlled system optimized with J(η) in (10). The vector
η is transmitted through a communication channel.

vectors in L2[0, T ], the Grammian matrix Φ = G is non-

singular. Let the control input u be

u(t) =

N
∑

i=1

θigi(t) = g(t)⊤θ,

and let η := Φθ. Then, by (7) we have

N
∑

i=1

(y(ti)− Yi)
2
= ‖η − yref‖22.

Consider the following ℓ1-ℓ2 cost function:

J(η) = ν‖η‖1 +
1

2
‖η − yref‖22. (10)

The optimal solution η∗
sparse minimizing this cost function is

given analytically by

η∗
sparse = Sν(yref). (11)

Then we transmit this optimal vector η∗
sparse, and at the

receiver we reconstruct the optimal control by u∗
1(t) =

g(t)⊤Φ−1η∗
sparse. Fig. 5 shows the remote-controlled system

with the optimizer η∗
sparse. In this case, we compute (11) only

one time, while in the general case considered in Section V-A

we should execute the iteration algorithm (9).

VI. EXAMPLE

We here show an example of the sparse command gen-

erator. The state-space matrices of the controlled plant P is

assumed to be

A =

[

0 1
−1 −2

]

, B =

[

0
1

]

, C =
[

1 0
]

.

Note that the transfer function of the plant P is 1/(s+ 1)2.

The sampling instants are given by ti = i × π/6, i =
1, 2, . . . , 12, and the data Y1, . . . , Y12 is given by Yi = sin ti,
that is, we try to track the sine function y(t) = sin t in

one period [0, 2π]. We assume the base functions φi in the

subspace V in (6) are the same as gi’s, that is, we consider

the case Φ = G discussed in Section V-B. We design three

signals to be transmitted: the ℓ2-optimized vector θ∗

2 in

(5), the sparse vector θ∗

sparse given in subsection V-A, and

the sparse vector η∗
sparse in (11). We set the regularization

parameters µ = 0.01, κ = 0.001, and ν = 0.05, see

equations (2), (8) and (10).

The obtained vectors are shown in Table I. We can see

that the vector θ∗

sparse is the sparsest due to the sparsity-

inducing approach. The second sparsest vector is η∗
sparse

which converts small elements in yref to 0. The vector θ∗

2 is

not sparse.

Fig. 6 shows the plant outputs obtained by the above

vectors. The transient responses show relatively large errors

tbp

TABLE I

DESIGNED VECTORS

θ∗

2 θ∗

sparse η∗

sparse yref

9.7994 9.6727 0.4500 0.5000
2.7995 4.5626 0.8160 0.8660
1.6544 0 0.9500 1.0000
1.6695 2.9973 0.8160 0.8660
1.0358 0 0.4500 0.5000
0.0059 0 0 0.0000
-1.0231 0 -0.4500 -0.5000
-1.7456 -2.8678 -0.8160 -0.8660
-2.0234 -0.6316 -0.9500 -1.0000
-2.2424 -4.8575 -0.8160 -0.8660
-2.4153 0 -0.4500 -0.5000
5.1813 4.4185 0 -0.0000
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Fig. 6. The original curve (dots) and outputs: by ℓ2-optimal θ∗

2 (dash),
ℓ1-ℓ2-optimal θ∗

sparse (solid), and simple ℓ1-ℓ2-optimal η∗

sparse (dash-dots).
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sparse (solid), and simple ℓ1-ℓ2-optimal η∗

sparse (dash-dots).



tbp

TABLE II

QUANTIZED VECTORS

Q(θ∗

2) Q(θ∗

sparse) Q(η∗

sparse) Q(yref)

9.8 9.7 0.5 0.5
2.8 4.6 0.8 0.9
1.7 0.0 1.0 1.0
1.7 3.0 0.8 0.9
1.0 0.0 0.5 0.5
0.0 0.0 0.0 0.0
-1.0 0.0 -0.5 -0.5
-1.7 -2.9 -0.8 -0.9
-2.0 -0.6 -1.0 -1.0
-2.2 -4.9 -0.8 -0.9
-2.4 0.0 -0.5 -0.5
5.2 4.4 0.0 0.0

0 1 2 3 4 5 6
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14
error with quantization
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Fig. 8. The reconstruction errors with quantization: by ℓ2-optimal θ̂
∗

2

(dash), ℓ1-ℓ2-optimal θ̂
∗

sparse (solid), and simple ℓ1-ℓ2-optimal η̂∗

sparse (dash-
dots).

because of the phase delay in the plant P (s) = 1/(s+ 1)2.

Despite of sparsity in θ∗

sparse and η∗
sparse, the performances of

the reconstructed signals are comparable to that of the ℓ2-

optimal reconstruction by θ∗

2. To see the difference between

these performances more precisely, we draw the reconstruc-

tion errors in Fig. 7. We can see that the errors by θ∗

2 and

θ∗

sparse are almost comparable, and the error by η∗
sparse is

relatively large.

Then we consider quantization. We use the uniform quan-

tizer with step size 0.1 and simulate the output reconstruc-

tion. Table II shows the quantized vectors. Fig. 8 shows

the reconstruction error under quantization. The errors by

the sparse vectors θ∗

sparse and η∗
sparse still remains small

while the ℓ2-optimal reconstruction shows errors affected by

quantization. This is because the zero-valued elements in the

sparse vectors do not suffer from any quantization distortion.

VII. CONCLUSION

In this paper, we have proposed to use sparse represen-

tation for command generation in remote control by ℓ1-ℓ2

optimization. An example illustrates the effectiveness of the

proposed method. Future work may include the study of

advantages of sparse representation in view of information

theory.
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