
 

 

 

 

Revisiting Miller’s Limit: 

Studies in Absolute Identification 

 

Pennie Dodds – BPsych (Hons) 

Thesis Submitted for Doctorate of Philosophy, September 2011 



 

 

 



 

 

Statement of Originality 

This thesis contains no material which has been accepted for the award of any other 

degree or diploma in any university or other tertiary institution and, to the best of my 

knowledge and belief, contains no material previously published or written by another 

person, except where due reference has been made in the text. I give consent to this 

copy of my thesis, when deposited in the University Library, being made available for 

loan and photocopying subject to the provisions of the Copyright Act 1968. 

Acknowledgment of Collaboration 

I hereby certify that the work embodied in this thesis has been done in collaboration 

with other researchers. I have included as part of the thesis a statement clearly outlining 

the extent of collaboration, with whom and under what auspices. 

Thesis by Publication 

I hereby certify that this thesis is in the form of a series of published papers of which I 

am a joint author.  I have included as part of the thesis a written statement from each co-

author, endorsed by the Faculty Assistant Dean (Research Training), attesting to my 

contribution to the joint publications. 

 

 

 

 

 

Pennie Dodds 

  



 

 

Publications Included in Thesis 

 

In order of reference: 

Dodds, P., Donkin, C., Brown, S. D. & Heathcote, A. (2011) Increasing Capacity: 

Practice Effects in Absolute Identification Journal of Experimental Psychology: 

Learning, Memory & Cognition, 37(2), 477-492. 

 

Dodds, P., Donkin, C., Brown, S. D., Heathcote, A., & Marley, A. A. J. (2011) 

Stimulus-Specific Learning: Disrupting the Bow Effect in Absolute 

Identification. Attention, Perception & Psychophysics 

 

Brown, S.D., Marley, A.A.J., Dodds, P., & Heathcote, A. (2009) Purely relative models 

cannot provide a general account of absolute identification. Psychonomic 

Bulletin & Review, 16, p.583-593 

 

Dodds, P., Brown, S. D., Zotov, V., Shaki, S., Marley, A. A. J. & Heathcote, A. (2011). 

Absolute production and absolute identification. Manuscript submitted for 

publication 

 

Dodds, P., Donkin, D., Brown, S.D., Heathcote, A. (2010) Multidimensional scaling 

methods for absolute identification data In S. Ohlsson & R. Catrambone (Eds.), 

Proceedings of the 32nd Annual Conference of the Cognitive Science Society. 

Portland, OR: Cognitive Science Society 

 

Dodds, P., Rae, B. & Brown, S. D. (2011). Perhaps Unidimensional is not 

Unidimensional. Manuscript submitted for publication 

 

  



 

  

adob174
Text Box

adob174
Text Box

adob174
Text Box

adob174
Text Box

adob174
Text Box



 

 

Dodds, P., Brown, S. D., Zotov, V., Shaki, S., Marley, A. A. J. & Heathcote, A. 

Reconciling absolute identification and absolute production: a method of examining 

internal magnitude representation. Submitted 

 

This project was led by Pennie, 50% contribution. Pennie coordinated and 

supervised data collection, completed all data analyses, and took the lead role 

in manuscript preparation. Other authors contributed as follows: S. Brown 

(10%), V. Zotov (10%), S. Shaki (10%), A. A. J. Marley (10%), A. Heathcote 

(10%). 

 

Dodds, P., Rae, B. & Brown, S. D. When unidimensional is not unidimensional. 

Submitted 

  

This project was led by Pennie, 40% contribution. Pennie completed all data 

analyses, took the lead role in manuscript preparation, and collected most of 

the data that were analysed. The other PhD student on the project (Babette 

Rae) contributed 40%, Associate Professor Brown contributed 20%. 

 

Dodds, P., Donkin, C., Brown, S. D., Heathcote, A., Marley, A. A. J. (2011) Stimulus-

Specific Learning: Disrupting the Bow Effect in Absolute Identification. Attention, 

Perception & Psychophysics, 73(6), 1977-1986 

  

This project was led by Pennie. She conducted all data collection and all 

analyses, and was primarily responsible for manuscript preparation. 

Numerically, the contributions from the authors were: Pennie Dodds, 50%; 

Chris Donkin, 20%; Scott Brown, Andrew Heathcote & A.A.J. Marley, 10% 

each. 

 

Dodds, P., Donkin, C., Brown, S. D. & Heathcote, A. (2011) Increasing Capacity: 

Practice Effects in Absolute Identification. Journal of Experimental Psychology: 

Learning, Memory & Cognition, 37(2), 477-492 

 

This project was very large (many experiments, over several years) and was 

jointly led by Pennie Dodds and Scott Brown. Pennie was responsible for 



 

 

almost all of the extensive data collection, all of the data analyses and most of 

the manuscript preparation. Numerically: Pennie Dodds 50%, Chris Donkin 

30%, Scott Brown 10%, Andrew Heathcote 10%. 

 

Dodds, P., Donkin, D., Brown, S.D., Heathcote, A. (2010) Multidimensional scaling 

methods for absolute identification data In S. Ohlsson & R. Catrambone (Eds.), 

Proceedings of the 32nd Annual Conference of the Cognitive Science Society. Portland, 

OR: Cognitive Science Society. 

 

Pennie was responsible for all data collection, analyses and manuscript 

preparation, with little except advice and feedback provided by the other 

authors. This equated to approximately a 90% contribution.  

 

Brown, S.D., Marley, A.A.J., Dodds, P., & Heathcote, A.J. (2009) Purely relative 

models cannot provide a general account of absolute identification. Psychonomic 

Bulletin & Review, 16, p.583-593 

 

Pennie was responsible for experiment design, data collection and manuscript 

review. Approximately a 30% contribution, with Brown and Marley 

contributing 25% each and Heathcote 20%. 

 

 

  



 

 

Acknowledgements 

For responding to an infinite number of emails and always being willing to 

indulge my questions and concerns, I would like to thank Associate Professor Scott 

Brown. Without such an enthusiastic, infectiously happy and supportive supervisor, I 

would not be in a situation to submit this thesis. I would also like to thank Professor 

Andrew Heathcote for his support and encouragement throughout my years in the 

Newcastle Cognition Lab. 

To the people that have gone through the Cognition Lab in the last few years – 

thanks for the chats and coffee trips that kept me awake and motivated. Without your 

support and friendship the lab would not be the comfortable workplace that it is. I can 

say without doubt I will miss spending each day with every one of you. 

To David Elliott for putting up with my constant questions, for emergency IT 

support and for being a constant source of great stories and wisdom – thank you for 

your time, patience and friendship. A special mention also goes to Bebe Gibbins, a good 

listener, supportive friend and constant bundle of energy and laughs. 

And most of all, thank you to my ever-supportive and incessantly even-tempered 

husband, Ray – no words can thank you enough for putting up with my complaints and 

anxiety over the past few years. I am continually astounded with your patience and 

grace and I am forever grateful for your love and support over the past few years. 

  



 

 

Table of Contents 

 

Abstract ..................................................................................................................... 1 

Benchmark Phenomena ............................................................................................. 3 

Limitation in Learning ...................................................................................... 4 

Bow & Set Size Effect ...................................................................................... 6 

Sequential Effects............................................................................................ 10 

Stimulus Separation ........................................................................................ 12 

Absolute vs. Relative Models ................................................................................. 12 

Psychological Representation of Stimuli ................................................................ 14 

Multidimensional Analysis (MDS) ................................................................. 15 

Structural Forms Algorithm ............................................................................ 16 

Summary and Overview of Main Body .................................................................. 17 

Section One: Empirical Results ...................................................................... 19 

Section Two: Theoretical Implications ........................................................... 20 

References ............................................................................................................... 23 

SECTION ONE: EMPIRICAL RESULTS ................................................................ 27 

CHAPTER ONE (INCREASING CAPACITY: PRACTICE EFFECTS IN ABSOLUTE 

IDENTIFICATION) .......................................................................................................... 28 

Abstract ................................................................................................................... 29 

Experiment 1 ........................................................................................................... 32 

Method ............................................................................................................ 33 

Results ............................................................................................................. 35 

Discussion ....................................................................................................... 39 

Experiment 2 ........................................................................................................... 39 

Method ............................................................................................................ 40 

Results ............................................................................................................. 41 

Discussion ....................................................................................................... 43 

Experiment 3 ........................................................................................................... 43 

Method ............................................................................................................ 44 

Results ............................................................................................................. 44 

Discussion ....................................................................................................... 47 

Experiment 4 ........................................................................................................... 47 



 

 

Method ............................................................................................................ 47 

Results ............................................................................................................. 48 

Discussion ....................................................................................................... 49 

Experiment 5 ........................................................................................................... 49 

Method ............................................................................................................ 50 

Results ............................................................................................................. 51 

Discussion ....................................................................................................... 56 

Experiment 6 ........................................................................................................... 56 

Method ............................................................................................................ 57 

Results ............................................................................................................. 58 

Discussion ....................................................................................................... 60 

Experiment 7 ........................................................................................................... 61 

Method ............................................................................................................ 61 

Results ............................................................................................................. 62 

Discussion ....................................................................................................... 63 

Summary of Results ................................................................................................ 64 

General Discussion ................................................................................................. 67 

Theoretical implications .................................................................................. 71 

Conclusions ..................................................................................................... 77 

References ............................................................................................................... 79 

CHAPTER TWO (STIMULUS-SPECIFIC LEARNING: DISRUPTING THE BOW EFFECT IN 

ABSOLUTE IDENTIFICATION) ........................................................................................ 82 

Abstract ................................................................................................................... 83 

Experiment 1 ........................................................................................................... 89 

Method ............................................................................................................ 89 

Results ............................................................................................................. 91 

Discussion ....................................................................................................... 93 

Experiment 2 ........................................................................................................... 94 

Method ............................................................................................................ 94 

Results ............................................................................................................. 95 

Discussion ....................................................................................................... 97 

Experiment 3 ........................................................................................................... 97 

Method ............................................................................................................ 98 

Results ............................................................................................................. 99 



 

 

Discussion ..................................................................................................... 100 

Response Biases .................................................................................................... 101 

General Discussion................................................................................................ 103 

Previous Results on Unequal Stimulus Presentation Frequency................... 104 

Theoretical Implications................................................................................ 105 

References ............................................................................................................. 108 

SECTION TWO: THEORETICAL IMPLICATIONS ........................................... 111 

CHAPTER THREE (PURELY RELATIVE MODELS CANNOT PROVIDE A GENERAL 

ACCOUNT OF ABSOLUTE IDENTIFICATION) ................................................................ 112 

Abstract ................................................................................................................. 113 

Absolute vs. Relative Stimulus Representations ........................................... 115 

Methods ................................................................................................................. 118 

Participants .................................................................................................... 118 

Stimuli ........................................................................................................... 118 

Procedure....................................................................................................... 119 

Results ................................................................................................................... 120 

An Absolute Account of the Data ................................................................. 122 

The Relative Account .................................................................................... 124 

Lacouture (1997) ........................................................................................... 132 

Rescuing the Relative Account ..................................................................... 135 

Mapping the numeric feedback to stimulus magnitude ................................ 136 

Judgment relative to the last two stimuli....................................................... 138 

Discussion ............................................................................................................. 139 

References ............................................................................................................. 143 

Appendix ............................................................................................................... 145 

CHAPTER FOUR (ABSOLUTE PRODUCTION AND ABSOLUTE IDENTIFICATION) ............ 148 

Abstract ................................................................................................................. 149 

Experiment ............................................................................................................ 155 

Participants .................................................................................................... 155 

Stimuli ........................................................................................................... 156 

Procedure....................................................................................................... 156 

Results ................................................................................................................... 158 

Categorised Responses .................................................................................. 159 



 

 

Sequential Effects ......................................................................................... 160 

Variability of Response Estimates ................................................................ 162 

Discussion ............................................................................................................. 164 

Identification and Production: A Point of Contact for Theoretical Accounts

 ....................................................................................................................... 165 

A Candidate Response Mechanism............................................................... 169 

References ............................................................................................................. 173 

CHAPTER FIVE (MULTIDIMENSIONAL SCALING METHODS FOR ABSOLUTE 

IDENTIFICATION DATA).............................................................................................. 176 

Abstract ................................................................................................................. 177 

Other Stimulus Dimensions .......................................................................... 179 

Method .................................................................................................................. 181 

Participants .................................................................................................... 181 

Stimuli ........................................................................................................... 181 

Procedure ...................................................................................................... 182 

Results ................................................................................................................... 182 

Simulation Study ........................................................................................... 188 

Discussion ............................................................................................................. 191 

References ............................................................................................................. 194 

CHAPTER SIX (PERHAPS UNIDIMENSIONAL IS NOT UNIDIMENSIONAL)....................... 196 

Abstract ................................................................................................................. 197 

Examining Psychological Representation ..................................................... 200 

Data ....................................................................................................................... 203 

Results ................................................................................................................... 205 

Whole Data Sets ............................................................................................ 206 

Effect of Practice ........................................................................................... 210 

Discussion ............................................................................................................. 212 

References ............................................................................................................. 216 



1 

 

Abstract 

Absolute Identification is a seemingly simple cognitive task that provides 

researchers with a number of interesting and complex phenomena. The task provides 

evidence towards an information processing capacity, which Miller (1956) popularised 

with his magical number 7±2 – a number of which he suggested is reminiscent of the 

number of unidimensional items (or chunks in short term memory) that an individual  

should be able to learn to perfectly identify. This limit has long since been accepted as a 

truism of absolute identification research, with much further model development 

accepting this as a known intrinsic “quirk” of absolute identification performance. This 

thesis begins with results that are in stark contrast to Miller’s findings – we find that 

given moderate practice, participants are able to improve their performance 

significantly. The following chapters describe further investigation into this contrary 

result, and provide an overview of current models of AI performance. Through a series 

of published and submitted papers, we investigate the possibility that rather than 

disproving Miller’s theory of an information processing capacity, we might have further 

refined the absolute identification paradigm. Close examination of common stimuli used 

in absolute identification tasks reveals that while common stimuli such as line lengths 

and dot separation are physically unidimensional, the psychological representation of 

these stimuli may be multidimensional. Interestingly, the sole stimulus modality that did 

not exhibit learning effects – tone loudness - did not appear to be represented on 

multiple dimensions. Without the assumption of uni-dimensionality, we cannot suggest 

the results are due to some difference in information processing capacity, but are rather 

more likely an artefact of stimulus perception. These results have significant 

consequences for the future of absolute identification research: it would appear that 
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absolute identification researchers should restrict their use of stimulus modalities to 

only tones varying in loudness. 
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Miller’s (1956) seminal review of short term memory and absolute 

identification popularised the phenomenon of a limitation to our memory. Despite the 

seemingly infinite memory people have for every-day objects such as faces, names and 

letters, Miller highlights a severe and robust limit to the number of items we are able to 

store in short term memory, whether they be chunks of information or specific stimuli 

from a then-common cognitive task called absolute identification. This limit of 7±2 

stimuli was referred to as a bottleneck in information processing capacity – using 

information theory, Miller likened this limit to a narrow pathway in a communication 

channel, creating a bottleneck and resulting in a limit to our processing capacity, or 

creating a capacity limit. In order to examine this limitation to our memory, we can use 

a task called absolute identification, a deceptively simple cognitive memory experiment. 

A typical absolute identification (AI) task uses stimuli that vary on a single 

dimension. For example, tones varying in intensity or frequency, or lines varying in 

length or angle. The participant is first presented with a set of these stimuli, each 

labelled with a unique referent – usually a number from 1 through to n. The participant 

is then presented with randomly selected stimuli from the set, and asked to try and 

remember the label that was previously associated with it. If a participant is incorrect, 

the correct answer is displayed. This seemingly simple task can be used to examine 

something infinitely more complex: human information processing capacity. By 

calculating the amount of information transferred from stimuli to responses, where an 

increase in information transfer is analogous to an increase in memory for stimulus 

items, researchers can infer processing capacity and examine limitations to memory.  

Benchmark Phenomena 

Despite the seeming simplicity of the task, absolute identification provides a 
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plethora of interesting phenomena. A majority of this thesis is devoted to an 

examination of existing benchmark phenomena in absolute identification performance, 

with a further section describing the theoretical implications of these findings. A brief 

description of each of the phenomena encountered is provided below, together with a 

description of how it relates to this thesis. 

Limitation in Learning 

One of the most robust phenomena associated with performance in absolute 

identification tasks is perhaps the fundamental limit to learning: Miller’s (1956) review 

of the absolute identification literature linked this limit to chunking in short term 

memory, suggesting that people are able to only learn to perfectly identify 

approximately 5 to 9 stimuli (his magical number 7±2). This notion was supported by 

volumes of literature and was assumed to be resistant to practice (e.g. Pollack, 1952; 

Garner, 1953; Weber, Green & Luce, 1977; Lacouture, Li & Marley, 1998; Shiffrin & 

Nosofsky, 1994). The accepted doctrine in the field is that people are able to improve 

their performance slightly, but reach a low level asymptote and do not improve any 

more.  

Pollack (1952) and Hartman (1954) both used absolute identification of tones 

varying in pitch and found that even up to eight weeks of testing failed to result in 

perfect performance. This phenomenon has even been replicated in participants with 

perfect (or absolute) pitch: the ability to identify any given musical note (e.g. Hsieh & 

Saberi, 2007). Those fortunate enough to claim this ability find it difficult to identify 

pure tones varying in pitch because musical tones (to which they are accustomed) 

contain overtones and harmonics that increase the number of dimensions to the 

stimulus.  

Garner (1953) also provides evidence for the lack of learning in the absolute 
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identification of tones varying in loudness. Garner found that even when participants 

completed 12,000 trials, maximum information transmission was still low (1.62 bits, 

equivalent to perfect identification of only 3.1 stimuli). Weber et al. (1977) perhaps 

provide the most evidence against substantial learning in absolute identification: they 

also used 12,000 trials, and compared the performance on the initial and last 2,000 trials 

to calculate change in accuracy.  Even with monetary incentives and significant practice 

however, identification accuracy was only shown to improve by an average of 0.06. 

Interestingly, Weber et al. (1977) only used six stimuli, which one would expect could 

facilitate perfect performance.  

The notion of imperfect performance was further popularised by Shiffrin and 

Nosofsky (1994), who provided a humorous anecdote as part of their prominent review 

on the conundrum of absolute identification: as a young graduate student, Nosofsky 

believed that he could surely improve his identification of a set of tones varying in 

loudness. After locking himself up in a sound proof booth for several weeks, he was 

forced to conclude that the only thing that had improved was his need for 

psychotherapy. 

The consequence of literature that supports this notion of imperfect performance 

is that this became a truism of absolute identification performance: people cannot learn 

to perfectly identify beyond nine stimuli. As a further consequence, no current model of 

AI performance takes into account learning effects. At the most, models only account 

for limited trial-to-trial memory, used to create sequential effects (e.g. SAMBA; Brown, 

Donkin, Heathcote & Marley, 2008) or short-term learning of the stimulus-to-response 

mapping (Petrov & Anderson, 2005). More recent research however, questions this 

truism and highlights a need for model revision (Rouder, Morey, Cowan & Pfaltz, 2004; 

Dodds, Donkin, Brown & Heathcote, 2011). 



6 

 

Contrary to the above literature, Rouder et al. (2004) and Dodds et al. (2011a; 

Section One, Chapter One of this thesis) describe situations in which participants are 

able to improve their performance significantly. Rouder et al. (2004) describe an 

experiment where participants are asked to identify a number of different sets of lines 

varying in length. One participant was able to learn to perfectly identify up to 20 line 

lengths – a number significantly beyond Miller’s (1956) limit of 7±2 stimuli. Dodds et 

al. (2011a) replicated this learning effect across several different stimulus dimensions, 

including line length, tone frequency, line angle and dot separation. The one exception 

to this new phenomenon appeared to be tone loudness – performance did not improve 

very much for this stimulus modality, and in general appeared to resemble the same 

low-level performance pattern shown in earlier research. Section One, Chapter One 

(Dodds et al., 2011a) discusses this concept in more detail, and begins the investigation 

into why this phenomenon might be occurring for only some stimulus modalities.  

Bow & Set Size Effect 

Another common benchmark phenomenon in absolute identification is the bow 

effect. The bow effect is so-named because of the shape the curve makes when stimulus 

magnitude is plotted against accuracy or reaction time (RT). These curves are called 

serial position curves. Performance is better and reaction times are faster for stimuli at 

the edges of the stimulus range compared to the centre of the stimulus range, creating a 

bow shape in the curve (e.g. Kent & Lamberts, 2005; Lacouture & Marley, 2004; 

Lacouture, 1997). It has been shown that the bow effect is resistant to numerous 

experimental manipulations, including stimulus spacing (Lacouture, 1997), set size (or 

number of stimuli in the set; Stewart, Brown & Chater, 2005), and is even consistent 

across different stimulus modalities (Dodds et al., 2011a). Figure 1 provides an example 

of the bow effect taken from Dodds et al. (2011a).  
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The set size effect is a related phenomenon, and refers to the increase in the 

prominence of the bow in a serial position curve as set size increases (e.g. Pollack, 

1953; Weber, Green & Luce, 1977). Stimuli in the set are identified more poorly, and 

the bow in the serial position curve increases, as more stimuli are added to the set. See 

Figure 2 for an example of the set size effect. This increase in the bow effect as set size 

increases is interesting, as it is still apparent even when the same stimuli are used for 

each set size in question. For example, an individual  can often perfectly identify a set 

of two stimuli (N = 2), but when N is increased to 4, 8 or more, even if those same two 

stimuli are used as a part of these new stimulus sets, performance for these unchanged 

stimuli decreases markedly, both in accuracy and reaction time. 

Section One, Chapter Two of this thesis examines the bow effect, and discusses 

how apparently simple experimental manipulations influence what was a previously 

assumed to be a robust phenomenon. Dodds, Donkin, Brown, Heathcote and Marley 

(2011b) discuss how a simple within-subjects manipulation of set size can create 

abnormalities in the bow plot. This appears to be due to over-presentation of certain 

stimuli – for example, in a within-subjects manipulation of set size, certain stimuli are 

naturally presented more often than others. Dodds et al. (2011b) demonstrate that we are 

able to learn to identify certain stimuli relatively well, and so for these same stimuli on 

which we are able to learn, we also see this abnormality in the bow effect (Dodds et al., 

2011b), suggesting the ability to learn these stimuli is increasing identification accuracy 

and distorting the serial position curve. Chapter Two (Dodds et al., 2011b) discusses 

this concept further, examining the implications of this for absolute identification 

experimental design and model development. 
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Figure 1 . The bow effect shown in a serial position curve from Dodds et al. (2011a). 

The plot shows improvement in performance for stimuli at the edges of the stimulus 

range, in comparison to those in the centre. Different lines represent the first and last 

sessions of the experiment – the experiment from which this was taken consisted of ten 

sessions of training in the task.  
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Figure 2. An example of the set size effect, from Stewart et al. (2005) Experiment 1 

  



10 

 

Sequential Effects 

Sequential effects refer to the effect that the previous stimuli have on current 

responses (e.g. Garner, 1953; Lacouture, 1997; Petrov & Anderson, 2005; Brown et al., 

1998). There are two main types of sequential effects: assimilation and contrast. 

Assimilation refers to the tendency for the current response to be biased towards the 

stimulus presented on the previous trial. Contrast refers to the tendency for the current 

response to be biased away from stimuli presented on trials further back than n-1. 

Figure 3 shows an idealised version of an impulse plot: a plot that graphs assimilation 

and contrast.  
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Figure 3. An idealised impulse plot taken from Dodds et al. (2011a). In Dodds et al. this 

was created from simulated data. Numbers on the lines refer to stimulus groups present 

on previous trials: 1 refers to low magnitude stimuli, 2 refers to middle range magnitude 

stimuli, and 3 refers to high magnitude stimuli. Assimilation is shown at lag = 1: on trial 

n-1, error rates are likely to be negative when previous stimuli were low in magnitude 

and high when previous stimuli are high in magnitude, because response are bias 

towards the n-1 stimulus. Contrast is shown at lag > 1, and shows the opposite pattern: 

error rates are likely to be high for low magnitude stimuli and low for high magnitude 

stimuli. 
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Sequential effects are a robust phenomenon of AI performance; they appear in 

every data set, albeit in different magnitudes. Some authors propose that these effects 

provide valuable insight into information processing (Stewart et al., 2005). Section One, 

Chapter One (Dodds et al., 2011a) discusses how sequential effects may also provide 

some insight into the mechanisms behind the learning effect – Dodds et al. show that as 

practice increases, contrast substantially reduces. This is adaptive, as contrast 

contributes towards errors in responses.  

Stimulus Separation 

Generally it is assumed that so long as stimuli are perfectly perceptually 

discriminable (that is, they are separated by a value much greater than the Weber 

fraction for that stimulus modality; see Laming, 1986; Teghtsoonian, 1971), increasing 

the spacing between adjacent stimuli in an absolute identification task leads to only 

small improvements in performance (e.g. Pollack, 1952, Lacouture, 1997). For example, 

Pollack (1952) examined the difference between identification of a set-number of tones 

varying in pitch over a small range (400Hz) and a large range (8000Hz) and found little 

difference in performance. This concept is analogous to the concept of channel capacity: 

there appears to be a fixed limit to the amount of information that can be transferred 

from stimulus to response, regardless of both practice (as described earlier) and other 

experimental manipulations such as stimulus spacing. 

Absolute vs. Relative Models 

The manipulation of stimulus separation also provides a unique opportunity to 

distinguish between two broad types of absolute identification models: absolute and 

relative models. The fundamental difference between the two types of models is the use 

of long term memory elements: relative models (e.g. Laming, 1984; Stewart et al., 
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2005) deny the use of any long term memory elements, whereas absolute models (e.g. 

Marley and Cook, 1984; Petrov and Anderson, 2005; Lacouture and Marley, 2004) 

utilise the concept of long term representation.  

Absolute models incorporate long term memory by assuming that individuals 

maintain long term magnitude information. For example, Petrov and Anderson’s (2005) 

ANCHOR model posits that “anchors” in memory are compared to the current stimulus 

in order to generate a magnitude estimation. On the other hand, a purely relative model 

would base stimulus judgments only on the most recently-seen stimuli (the judgments 

of current stimulus magnitude are relative to the previously displayed stimuli). In 

practice however, even relative models require a form of long term memory. For 

example, Stewart et al.’s (2005) Relative Judgment Model (RJM) requires long term 

memory for the spacing between stimulus magnitudes ( ) and for the stimulus set size.  

Lockhead and Hinson’s (1986, Experiment 1) unequally-spaced stimuli 

experiment provides an opportunity to distinguish between absolute and purely relative 

models. This is discussed further in Section Two, Chapter Three, Purely Relative 

Models Cannot Provide a General Account of Absolute Identification (Brown, Marley, 

Dodds & Heathcote, 2009). In summary, we replicated Lockhead and Hinson's (1986) 

design, with three conditions –one condition used evenly spaced stimuli, and two used 

unevenly spaced stimuli. A purely relative model would assume a single value for 

stimulus separation e.g. 2dB, which, in the case of the evenly spaced stimuli, would not 

present a problem for either relative nor absolute models. In unevenly spaced stimulus 

sets however, a memory for a single stimulus separation value is insufficient, hence 

relative models should not predict appropriate patterns of performance. Therefore such 

unevenly spaced stimulus sets provides a unique opportunity to distinguish between 

these two general model categories. 
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Psychological Representation of Stimuli 

Several papers within this thesis have been based on the main findings from the 

Section One, Chapter One Increasing Capacity: Practice Effects in Absolute 

Identification (Dodds et al. 2011a) – that learning is possible in absolute identification 

tasks for certain stimulus modalities. Dodds et al. demonstrate a learning effect for line 

length, line angle, dot separation and tone frequency, but not for tone loudness. These 

results could represent an important theoretical finding, something previous research 

has neglected to observe. Alternatively however, there might be a more simple, 

methodological explanation. For example, in order to examine capacity limitations, 

stimuli must vary on only a single dimension. As more dimensions are added to stimuli, 

they become more easily identifiable – e.g. we have an apparently unlimited memory 

for names, or faces. It is possible that the type of stimuli employed in Rouder et al. 

(2004) and Dodds et al. (2011a) were responsible for the learning effect, rather than 

some higher cognitive process.  

Section Two, Chapter Five Multidimensional Scaling Methods for Absolute 

Identification Data (Dodds et al., 2010) and Chapter Six Perhaps Unidimensional is not 

Unidimensional (Dodds, Rae & Brown, submitted) examine the possibility that those 

stimulus types that support learning effects have more complex psychological 

representations compared to those that do not. In the same way that colour is perceived 

on multiple dimensions, and yet only varies on a single physical dimension, Rouder et 

al.’s (2004) and Dodds et al.’s (2011a) stimuli may give rise to more complex 

psychological representations than originally anticipated. If stimuli are indeed more 

complex, the learning effects found by Rouder et al. and Dodds et al. are unsurprising 

and do not challenge Miller's (1956) fundamental limit – because that it is accepted that 

we have good memories for complex, or multidimensional, stimuli.  
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There are several means of examining the issue of stimulus complexity, two of 

which are discussed in this thesis. The first technique that we examine is 

Multidimensional Scaling (Cox & Cox, 1994; 2001). The second is a structural forms 

algorithm (Kemp & Tenenbaum, 2008). The two will be briefly discussed here, but are 

discussed in more detail in Section Two, Chapters Five and Six. 

Multidimensional Analysis (MDS) 

Multidimensional Analysis (MDS; Cox & Cox, 1994; 2001) refers to a range of 

statistical techniques employed by a variety of fields, designed to examine underlying 

structure in distance or proximity data.  Given a matrix of either true distance data (e.g. 

kilometres, centimetres), or more subjective proximity data (e.g. similarity ratings), 

MDS allows the observer to infer the relationship between the objects in question by 

placing them within a higher-dimensional vector space. It also is possible to infer 

dimensionality with MDS by comparing analyses based on vector spaces with different 

dimensionality. 

The most common example of the application of MDS analyses, is its use for 

geographic data. Say you were given a matrix of distance data that provides the 

distances between three cities: using MDS analyses, a spatial representation of the 

location of each of the cities can be developed, together with a stress value (a goodness-

of-fit measure). There are two main types of MDS analyses: metric and non-metric 

MDS.  Metric MDS is used for the analysis of true-distance data e.g. the distances 

between cities. Non-metric MDS on the other hand, is used for more subjective data, 

such as similarity ratings. The distinction between the two is important: non-metric 

MDS relaxes the metric assumptions placed on the distance measures, and instead 

assumes only that the observed distance measurements are monotonically related to 

some true distance measurement. Non-metric MDS is therefore well suited to 
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psychological data such as similarity ratings, as we can be relatively confident that the 

rank of these ratings is informative, but not their absolute values.  

For this thesis, the purpose of MDS was to examine the dimensionality of our 

stimuli – particularly those stimuli which have previously exhibited learning. In Chapter 

Five (Dodds et al., 2010), we took 16 line lengths used in Dodds et al. (2011a) and 

asked participants for similarity ratings for every possible pair within the set (twice). 

The aim of this was to examine the structure of these stimuli and determine whether 

there were additional, unexpected dimensions. The difficulty with MDS arises in the 

interpretation of results: in order to examine the structure, one must choose a number of 

dimensions to test. For example, for the line lengths used in this experiment, one, two 

and three dimensions were tested. MDS outputs a goodness-of-fit measure (the stress 

value) to indicate how well any particular model fits the data, but does not provide any 

means for comparing between models. The stress value is also highly influenced by 

model complexity – as we increase the complexity of the model, the stress value 

decreases – not necessarily because the model is most appropriate for the data, but 

rather because the lower-dimensional models are nested within the higher-dimensional 

models. In addition, MDS provides no framework for inference, which is necessary 

when attempting to distinguish between several dimensions. Further discussion and 

results can be found in Section Two, Chapter Five Multidimensional Scaling Methods 

for Absolute Identification Data (Dodds et al., 2010). 

Structural Forms Algorithm 

An alternative method for examining the complexity of our stimuli is the 

structural forms algorithm (Kemp & Tenenbaum, 2008). The structural forms algorithm 

is a Bayesian technique based on a universal graph grammar that not only provides a 

framework for inference but also examines the fit of a range of different forms – not just 
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arrangements within a vector space - and the arrangement of objects within this form. 

For example, the technique provides a means of examining the plausibility of a chain, 

ring, cylinder, cluster, tree and hierarchical structure, among others. In these ways it is 

more suitable than MDS for examining dimensionality in our data because it allows 

coherent inferential testing. Importantly, the technique is also flexible in the type of data 

that is used. Kemp and Tenenbaum provide examples using a wide range of data types – 

e.g. feature rating data, distances between cities and colour similarity. In Section Two, 

Chapter Six, Perhaps Unidimensional is Not Unidimensional (Dodds, Rae & Brown, 

submitted), we discuss the use of this technique further, and its application using 

confusion matrices taken from absolute identification experiments. 

 Summary and Overview of Main Body 

Table 1 provides a list of the papers included in my thesis, with section and 

chapter references. Chapters are grouped under two broad sections: empirical results 

and theoretical implications. 
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Table 1. A list of all papers included in my thesis, with chapter references 

Section Chapter Reference 

   
1 1 Dodds, P., Donkin, C., Brown, S. D. & Heathcote, A. (2011) 

Increasing Capacity: Practice Effects in Absolute 

Identification Journal of Experimental Psychology: 

Learning, Memory & Cognition, 37(2), 477-492. 

 2 Dodds, P., Donkin, C., Brown, S. D., Heathcote, A., & 

Marley, A. A. J. (2011) Stimulus-Specific Learning: 

Disrupting the Bow Effect in Absolute Identification. 

Attention, Perception & Psychophysics 

2 3 Brown, S.D., Marley, A.A.J., Dodds, P., & Heathcote, A.J. 

(2009) Purely relative models cannot provide a general 

account of absolute identification. Psychonomic Bulletin & 

Review, 16, p.583-593 

 4 Dodds, P., Brown, S. D., Zotov, V., Shaki, S., Marley, A. A. 

J. & Heathcote, A. (submitted). Absolute production and 

absolute identification. 

 5 Dodds, P., Donkin, D., Brown, S.D., Heathcote, A. (2010) 

Multidimensional scaling methods for absolute identification 

data In S. Ohlsson & R. Catrambone (Eds.), Proceedings of 

the 32nd Annual Conference of the Cognitive Science 

Society. Portland, OR: Cognitive Science Society. 

 6 Dodds, P., Rae, B. & Brown, S. D. (Submitted). Perhaps 

Unidimensional is not Unidimensional 
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Section One: Empirical Results 

Section One of this thesis consists of two papers 

1. Dodds, Donkin, Brown and Heathcote (2011) Increasing Capacity: Practice 

Effects in Absolute Identification 

2. Dodds, Donkin, Brown, Heathcote & Marley (2009) Stimulus-Specific 

Learning: Disrupting the Bow Effect in Absolute Identification 

These papers discuss the broad empirical findings from a series of experiments 

related to absolute identification. Many experiments described in this thesis concentrate 

on the first paper, Increasing Capacity: Practice Effects in Absolute Identification 

(Dodds et al. 2011a), where we discuss a series of experiments that demonstrate 

learning effects in absolute identification. Dodds et al. (2011a) conduct a series of 

experiments that examine learning effects for a range of stimulus types, concluding that 

of several types of stimuli tested, many were able to exhibit strong learning effects: 

tones varying in intensity were the only stimulus modality that presented performance 

patterns consistent with prior literature.  Dodds et al. (2011a) examine this phenomenon 

and promote the further investigation into why this contrast might be found. 

Chapter Two examines another popular and robust absolute identification 

phenomenon – the bow effect. Dodds et al. (2011b) manipulate stimulus presentation 

probability to demonstrate that the learning effect shown in Dodds et al. (2011a) is 

stimulus-specific. This has important consequences both for experimental purposes, and 

also model design: learning effects must be taken into account, but also introduced on a 

per-stimulus basis. In regards to experimental design – Dodds et al. (2011b) show that 

additional presentations of specific stimuli leads to improved performance for these 

stimuli – this means that any design in which additional presentations are naturally 
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introduced (e.g. a manipulation of set size on a within-subjects basis), should be 

avoided.  

Section Two: Theoretical Implications 

Section Two consists of four papers:  

1. Brown, S.D., Marley, A.A.J., Dodds, P., & Heathcote, A.J. (2009). Purely 

relative models cannot provide a general account of absolute identification. 

Psychonomic Bulletin & Review, 16, p.583-593 

2. Dodds, Brown, Marley & Heathcote (submitted). Absolute Identification and 

Absolute Production 

3. Dodds, P., Donkin, D., Brown, S.D., Heathcote, A. (2010) Multidimensional 

scaling methods for absolute identification data In S. Ohlsson & R. 

Catrambone (Eds.), Proceedings of the 32nd Annual Conference of the 

Cognitive Science Society. Portland, OR: Cognitive Science Society 

4. Dodds, Rae & Brown (submitted). Perhaps Unidimensional is not 

Unidimensional 

This section introduces theoretical implications of the empirical results outlined 

in Section One.  This broadly includes discussion on different types of AI models and 

how we might distinguish between them, and also an investigation into alternative 

explanations for the learning effects described in Chapter One.  

Chapter Three provides a discussion of two general types of absolute 

identification models: absolute and relative models. We distinguish between the two 

broad categories of AI models by using unequally spaced absolute identification data. 

This paper provides insight into current model developments. 

Chapter Four in this thesis attempts to find new ways of extending on current 

models of AI performance. In this chapter, we reconcile two similar tasks: absolute 
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identification and absolute production (AP). Absolute production is similar in concept 

to absolute identification, but requires the participant to draw the line in question, rather 

than recalling its label. The continuous nature of responses intrinsic to AP tasks has 

advantages over AI however, as it gives insight into the way models might replicate the 

internal representation of stimuli. We extend on previous work (Zotov, Shaki & Marley, 

2010) and show that AP and AI share similar benchmark data characteristics. Further to 

this, we discuss some preliminary adaptations to a model of AI performance SAMBA 

(Brown et al., 2008), to replicate AP data patterns.  

Chapters Five and Six begin an investigation into an alternative explanation for 

the effects discussed in Chapters One and Two (Dodds et al. 2011a & Dodds et al., 

2011b). Several chapters in this thesis allude to the need to update current models of AI 

performance to accommodation learning effects – in the following two chapters 

however, we discuss the possibility that the learning effects were an artefact of the 

psychological perception of stimuli. In Chapter Five we use Multidimensional Scaling 

techniques to examine the underlying structure in our stimuli. While results were 

consistent with a single underlying dimension, a lack of framework for inference is of 

some concern. We extend upon this in Chapter Six (Dodds, Rae and Brown, submitted) 

Perhaps Unidimensional is Not Unidimensional. We discuss the issue of underlying 

structures again, but instead use a Bayesian algorithm developed by Kemp and 

Tenenbaum (2008), that examines underlying structures in similarity and distance data.  

Absolute Identification provides a number of interesting and intricate 

phenomena – in this thesis we study two of these in detail, and describe how existing 

beliefs about AI performance may be misguided. We describe existing AI performance 

models and methods of distinguishing between them, before returning to examine the 

possibility of other explanations for the empirical findings of Chapters One and Two. 
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Taken together, the chapters in this thesis combine to make a coherent story of the 

development of our understanding of empirical AI phenomena and challenge our 

existing assumptions of AI performance. 
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Abstract 

In most of the long history of the study of absolute identification – since Miller’s 

(1956) seminal paper – a severe limit has been observed on performance, and this limit 

has resisted improvement even by extensive practice. In a startling result, Rouder, 

Morey, Cowan and Pfaltz (2004) found substantially improved performance with 

practice in the absolute identification of line lengths, albeit only for three participants 

and in a somewhat atypical paradigm. We investigated the limits of this effect and 

found that it also occurs in more typical paradigms, is not limited to a few virtuoso 

participants nor due to relative judgement strategies, and that it generalizes to 

some (e.g., line inclination and tone frequency) but not other (e.g., tone loudness) 

dimensions. Apart from differences between dimensions, we also observed two unusual 

aspects of improvement with practice: a positive correlation between initial 

performance and the effect of practice; and a large reduction in a characteristic trial-to-

trial decision bias with practice. 
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Human memory for complex items such as names, letters and faces is seemingly 

infinite. We are able to memorise a great number of these items across our lifespan, or 

even in a one-hour experimental task, with relative ease. For decades, however, a single, 

simple task has provided an exception to this rule: absolute identification. Absolute 

identification (also called “dead reckoning” by Miller, 1956) is the task of identifying 

which stimulus has been shown out of a set of stimuli that vary on only one physical 

dimension. For example, a participant might be given a set of n lines varying in length, 

or tones varying in intensity, labelled from 1 through to n. On each trial of an absolute 

identification task, the participant is then presented with one of these stimuli and asked 

to recall its label. Empirical research into absolute identification has a long history, with 

Miller’s summary of early work identifying a surprisingly small capacity limitation – 

people are generally unable to accurately identify more than 7±2 stimuli in an absolute 

identification task. Miller noticed a similar limitation in short term memory 

performance, and the two limitations have often been treated as manifestations of a 

single phenomenon; that is, absolute identification performance is limited precisely 

because it relies on short term memory capacity, and so the study of absolute 

identification is interesting (in part) because of what it reveals about short term 

memory. 

For decades, the received view has been that this capacity limitation is 

unaffected by manipulations that are otherwise very powerful. For example, Miller 

(1956) showed that the capacity limit was about the same for the absolute identification 

of many different kinds of stimuli including line length, taste, brightness, hue and 

loudness. There are many other stimulus manipulations which one might assume would 

improve performance, but these have all been demonstrated to have little or no effect on 

the capacity limitation (e.g., increasing the number, or separation of the stimuli: Pollack, 
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1952; Garner, 1953). Possibly the most intriguing finding is that the capacity limit is 

highly resistant to practice. For example, Garner’s participants engaged in up to 12,000 

judgements in a single condition, yet even at the end of the experiment they were still 

limited to identifying the equivalent of three or four stimuli correctly. Weber, Green and 

Luce (1977) had participants complete 12,000 trials identifying six white noise signals 

of varying loudness and found an improvement in response accuracy of just 6%. Final 

performance for these participants was well below ceiling, despite the large amount of 

practice, monetary incentives, and the apparently easy task of identifying just six 

separate levels of loudness. Hartman’s (1954) participants also practiced over an eight-

week period, and while they demonstrated substantial improvement, their best 

performance level was still well within Miller’s limit: equivalent to the perfect 

identification of only five stimuli. Such results have established a truism about absolute 

identification – there is a severe limitation in human ability to identify unidimensional 

stimuli, and this limit is largely unaffected by practice. 

In a departure from previous findings, Rouder, Morey, Cowan and Pfaltz (2004) 

demonstrated that substantial learning is possible in an absolute identification task. In 

particular, three participants showed large improvements in the identification of line 

length with practice. One participant, after 11,100 trials of practice, was able to 

correctly identify almost 20 different line lengths. The other two participants, with 

18,740 and 5,040 trials of practice, were able to correctly identify about 13 lines. It is 

not clear what caused the difference between Rouder et al.’s result and earlier studies. 

For example, learning may have been improved because Rouder et al.’s participants 

were given chances to correct incorrect responses. Perhaps also the large improvement 

with practice is unique to the absolute identification of line lengths, and would not have 

been observed with, for example, the identification of tones of varying loudness 
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(consistent with Garner’s 1953, results). This explanation seems especially attractive 

because, although line lengths have been used occasionally in the field (e.g., Thorndike, 

1932; Lacouture, 1997; Rouder, 2001; Kent & Lamberts, 2005), previous 

demonstrations of the null effect of practice have mainly used tones varying in intensity. 

Another important difference between Rouder et al.’s methods and earlier work was the 

use of considerably larger stimulus sets (up to 30 different lines, rather than the more 

typical 8-12 stimuli). 

 These findings are particularly interesting because they might shed light on the 

deeper issue: although we seem to have practically unlimited memory for items such as 

faces and names, unidimensional stimuli have been highlighted as the exception to this 

rule. Through a series of experiments, we investigate whether unidimensional stimuli 

truly represent an exception to this short term memory limitation, and what 

characteristics of such stimuli affect overall learning. As well as identifying which kinds 

of stimulus sets support learning and which do not, we also investigate the mechanisms 

underlying improvement with practice. For example, participants may learn to increase 

the capacity of their short term memory, and so are better able to pair stimuli with their 

to-be-recalled labels. Alternatively, they may learn to avoid some of the well-

documented decision biases that pervade absolute identification (the “sequential 

effects”, see, e.g., Stewart, Brown & Chater, 2005). To foreshadow our conclusions, 

although our data strongly suggest improvements of the latter variety, model-based 

analyses implicate both kinds of learning. 

Experiment 1 

We begin our investigations by examining whether any of the atypical design 

features used in Rouder et al’s (2004) study contributed to the large learning effect. The 
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most novel aspect of Rouder et al.’s design was their response technique, where 

participants were given two opportunities to respond instead of the standard single 

response. If the participant made an incorrect response they were allowed a second 

attempt. If they were incorrect on their second attempt, the correct answer was 

displayed. In Experiment 1a, we aimed to replicate Rouder et al.’s findings of 

significant learning with their response method – to ensure that Rouder et al. did not 

simply have an exceptional sample of participants. In Experiment 1b we investigated 

whether learning persists with a standard response method in a paradigm that is 

otherwise identical.  

Method 

Participants. Six participants took part in Experiment 1a, and a different six in 

Experiment 1b. Each was reimbursed $15 per session, and unless otherwise stated, this 

was the case for all following experiments, with six new participants recruited for each. 

Stimuli. The stimuli were 30 lines of varying length, increasing in size according 

to a power function with an exponent of 3.5 (see Rouder et al., 2004, and see Table 1). 

Stimuli were presented in black on a white background, using a 21inch CRT monitor set 

at a resolution of 1152 x 864 pixels. Each pixel measured .39mm wide by .35 high. 

Images were positioned in the centre of the screen, with 22 x 22 pixel variation in 

position from trial to trial to discourage participants from using the edge of the monitor 

as a size cue.  
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Table 2. Line lengths in pixels for Experiment 1a, 1b and 5a. 

Experiment 1a and 1b 

9 12 14 17 20 23 27 31 36 41 

47 53 60 67 76 84 94 104 115 127 

140 153 168 183 199 217 235 255 276 298 

Experiment 5a 

15 18 22 27 33 41 50 61 74 90 

110 134 164 200 244 298     

 

Procedure. In a brief study phase at the beginning of each session, participants 

were given each stimulus one at a time, labelled with a corresponding number, from 1 

through to 30. In order to proceed through the study phase, the participant had to select 

the number on screen that corresponded to the numerical label. For example “This is 

line number 1. Press 1 to continue”. During each trial in the main phase of the 

experiment, one stimulus was randomly selected and presented, and the participant was 

asked to respond with the numerical label that was attached to the stimulus in the study 

phase. Instructions given to the participants emphasised response accuracy over 

response time. This decision was made in light of our primary interest in how accurately 

participants could perform the task. Responses were made using the mouse to click 

buttons arranged onscreen in increasing numerical order. Three columns of 10 buttons 

were arranged on the left hand side of the screen and these remained onscreen 

throughout the experiment.  

The only difference between Experiments 1a and 1b was the number of response 

opportunities per trial. In Experiment 1a, we replicated Rouder et al.’s two-response 

method. If participants were incorrect on the first response, they were given a second 

response opportunity. If they were incorrect again, the correct answer was displayed for 

500ms. Whenever a correct response was recorded, the text “Correct” was displayed 

and the trial ended. In Experiment 1b, we used the traditional one-response absolute 
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identification feedback system, where participants were only given one opportunity to 

respond. If they were incorrect, the correct answer was displayed for 500ms. If they 

were correct, the text “Correct” was displayed. The stimulus always remained on screen 

until the final feedback was provided. 

Participants took part in ten sessions, each of approximately one hour. Sessions 

were conducted on (mostly) consecutive days. The first three sessions consisted of 6 

blocks of 90 trials, while the remaining seven sessions consisted of seven blocks. This 

resulted in 201 presentations per stimulus per participant. A minimum one minute break 

was enforced between blocks. 

Results 

Analyses were conducted on the first response only, to allow more valid 

comparison of Experiments 1a and 1b (cf. Rouder et al., 2004). Rather than focus only 

on response accuracy, we also calculated the amount of information transmitted from 

the stimulus to the response. Due to a historical focus on information-theoretic accounts 

of absolute identification performance (e.g., Hake & Garner, 1951), information transfer 

has become a standard descriptor for performance, and it is also particularly useful 

when comparing different stimulus set sizes (see Shannon, 1948; also Pollack, 1952; 

Garner, 1953). Information transfer attempts to measure how much uncertainty in the 

identity of the stimulus is removed by considering the observer’s response. The amount 

of information transmitted from the stimulus to the response is measured in “bits”, and 

2
bits

 can be interpreted as the equivalent number of stimuli that could be perfectly 

identified (e.g., 3 bits of transmitted information corresponds to perfectly accurate 

identification of 2
3
=8 stimuli). 

We calculated the amount of transmitted information separately for each 

participant and each practice session. We quantified the amount of improvement 
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induced by practice using the minimum and maximum of these values. Note that these 

extrema did not always occur in the first or last sessions, but analyses based on the first 

and last sessions yield similar results. We employed the minimum and maximum values 

because of a trend for participants to lose some motivation in the final session of the 

experiment – across all experiments and all participants, the proportion of increases in 

performance from one session to the next was 72%, but this was significantly lower for 

the final session, at 41% (
2
=4.2, p<.05). 

 Improvement with practice was apparent in both Experiment 1a and 1b, as 

illustrated in Figure 1. In Experiment 1a, where participants were given two response 

opportunities, the percentage of correct responses (i.e., accuracy) improved from 23% to 

49%, compared to a chance performance level of just 3.3%. In terms of information 

transmission, this corresponds to an average improvement of 0.83 bits from 2.40 to 

3.23. This meant that average maximum performance (across subjects) was equivalent 

to the perfect identification of approximately 9.4 stimuli. A one-way (session) repeated-

measures ANOVA with a Greenhouse-Geisser sphericity correction confirmed that 

these effects were highly reliable for both accuracy (F(1.36,6.63) = 14.84, p=.005) and 

information transfer (F(1.37,6.72) = 26.17, p=.001).  

In Experiment 1b, where participants were not offered a second response 

opportunity, we observed almost identical results. There was again highly significant 

improvement across the ten sessions as measured by accuracy (F(1.38,6.9)=24.58, p 

=.001) and information transfer (F(1.41,7.03)=31.41, p < .001). Accuracy improved 

from 22% to 46%, an average increase of 24%. Information transfer also increased by 

an average of 0.83 bits, from 2.28 to 3.11 bits, which is equivalent to the perfect 

identification of approximately 8.66 stimuli. Even though the subject-average peak 

performance was greater in Experiment 1a than 1b, this difference was not reliable 
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according to an independent-samples t-test (p = 0.71). Naturally, the statistical power of 

this test to identify between-experiment differences is very limited, due to the small 

sample size. Nevertheless, we note that several participants in Experiment 1b showed 

larger practice effects than some participants in Experiment 1a, making it seem unlikely 

that the two-response feedback procedure caused any large differences. 
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Figure 1. Proportion correct, and information transfer as functions of session for 

Experiments 1a and 1b (30 lines varying in length). The right hand axis on the 

information transfer graph shows the equivalent number of stimuli that were perfectly 

identified (2
bits

). The dashed line indicates perfect performance: log2(number of stimuli) 
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Discussion 

Participants in both Experiments 1a and 1b demonstrated significant 

improvements in performance, suggesting that the two response method was not 

responsible for the amount of learning observed. These experiments also confirm that 

Rouder et al.’s (2004) results were not due to unusual, virtuoso, participants. In both 

experiments, performance improved by more than 20% (~0.8 bits) after about 6,000 

practice trials, and three of the six participants in each experiment exceeded Miller’s 

(1956) bound of 7±2 stimuli.  

A possible explanation for the improvement with practice at length judgment 

might invoke the development of a relative (or “referent”) judgement strategy, rather 

than by improving absolute identification processes themselves. That is, participants 

judging line lengths might be able to compare the lines to external magnitude cues, such 

as the edges of the computer monitor or the response buttons that appeared on screen. In 

Experiment 1, and in Rouder et al.’s (2004) design, these strategies were discouraged by 

jittering the absolute location of the stimuli on screen from trial to trial. Nevertheless, 

some small amount of relatively imprecise information might still be gained by 

comparisons against visible reference points, and it might be that this information alone 

supports improvement with practice. In Experiment 2, we investigate this explanation, 

and also the idea that large effects of practice are only possible with large stimulus set 

sizes. 

Experiment 2 

Experiment 2 was conducted in a dark room. The edges of the monitor were 

obscured from view, and response buttons varied in size from trial to trial. Response 

buttons were never on screen at the same time as stimuli. We also included a second 
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condition, Experiment 2b, in which only half of the stimuli were presented, to determine 

whether the learning effect was due to the large amount of available information.  

Method 

Participants. Ten participants took part in this experiment, five in Experiment 2a 

and five in Experiment 2b. They were reimbursed in a similar fashion as the participants 

in the first experiment.  

Stimuli. Each stimulus consisted of a pair of white dots on a black background, 

horizontally separated by intervals that were of the same lengths as the lines in 

Experiment 1. 

Procedure. There were two conditions defined by the number of stimuli: 

Experiment 2a had 30 stimuli while Experiment 2b had only 15 stimuli. The stimuli in 

Experiment 2b were all of the odd-numbered stimuli from Experiment 2a, and so the 

pair-wise stimulus separation was twice as large in Experiment 2b as in Experiment 2a. 

We could have kept stimulus separation equal in the two experiments (e.g., by 

presenting only stimuli #1-#15 in Experiment 2b) but that would have instead 

confounded stimulus range with set size. We acknowledge that both solutions to this 

problem (either confounding stimulus range, or stimulus separation) are imperfect, but 

we chose the latter solution because performance is mostly unaffected by changes in 

stimulus for widely spaced stimulus sets (e.g., see Braida & Durlach, 1972, but also see 

Stewart et al. 2005 and Lacouture, 1997, for alternative findings).  

 The experiment was conducted in a dark room, where the only light was that 

emitted by the computer monitor (which was made as dark as possible). The edges of 

the computer monitor were obscured by black cardboard. To ensure that the response 

buttons could not be used as a cue for relative comparison with the size of the stimuli, 

two precautions were taken: the buttons were never present on screen at the same time 
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as the stimuli, and the size of the response buttons varied from trial to trial. That is, 

when a stimulus was presented the buttons were removed from the screen until the 

participant clicked a mouse button to indicate they were ready to respond, then the 

stimulus was removed and the response buttons were displayed. Participants took part in 

ten sessions, each about an hour in length. Each session consisted of 6 blocks of 90 

trials, resulting in 180 presentations per stimulus in Experiment 2a, and 360 

presentations per stimulus for Experiment 2b.  

Results 

Performance increased significantly across the ten sessions in both conditions. 

Participants in the 30 stimulus condition (Experiment 2a) increased their accuracy from 

25% to 50%; an average improvement of 25% (F(1.76,7.04)=29.74, p<.001). 

Information transfer also increased by 0.93 bits across the ten sessions from 2.44 to 3.36 

bits (F(1.54,6.15)=60.88, p<.001), so the average maximum performance was 

equivalent to perfect identification of approximately 10.3 stimuli.  

Similarly, participants in the 15 stimulus condition also demonstrated highly 

significant improvements in both accuracy (F(1.56,6.24)=22.25, p=.002) and 

information transfer (F(1.71,6.86)=19.43, p=.002). Participants improved 33% from an 

average accuracy of 48% to 81%, and information transfer improved 1.08 bits from 2.07 

to 3.15. Average maximum information transmitted was equivalent to identification of 

8.85 stimuli. Figure 2 provides a comparison of the individual participant results in 

Experiments 2a and 2b. 
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Figure 2. Proportion correct and information transfer as a function of session for 

Experiments 2a (30 stimuli) and Experiment 2b (15 stimuli), using dots varying in 

separation. The right hand axis on the information transfer graph is the equivalent 

number of stimuli that were perfectly identified (or 2
bits

). The dashed line indicates the 

maximum amount of information transfer possible, log2 (number of stimuli) 

   

  



43 

 

The average maximum amount of information transfer reported for the 30 

stimulus condition in the current experiment (M = 3.30) was not reliably different from 

that found in Experiment 1a (M = 3.25, p = 0.86) and Experiment 1b (M = 3.15, p = 

0.50)
 1

. This suggests that any external cues were not responsible for the learning effect 

in Experiment 1.  

 We also observed that, although one participant in the 15 stimuli condition 

reached almost perfect performance (94.3% accuracy), the average maximum 

information transmission for the 15 stimulus condition (M = 3.11) was not reliably 

different from the 30 stimulus conditions in Experiments 1a (p = 0.64) and 1b (p = 0.85) 

or Experiment 2a (p = 0.38). This suggests that maximum performance, in terms of 

information transmission, does not vary with set size.   

Discussion 

Participants in Experiment 2 demonstrated significant improvements in 

performance, and similar information transmission limits and amounts of learning to 

participants in Experiment 1. Once again, half of the participants demonstrated 

maximum information transfer rates that exceeded Miller’s (1956) 7±2 bound. The 

similarity in results between Experiments 1 and 2 suggests that external cues were not 

responsible for the learning effect, and that the amount of available information does 

not determine the extent of learning, at least as long as performance is below ceiling.  

Experiment 3 

So far, substantial learning in absolute identification has only been demonstrated 

using line lengths, with null (or small) effects observed tones varying in intensity or 

                                                 
1
 Estimates of transmitted information are inflated by small sample sizes (see Norwich, Wong & Sagi, 

1998). For this reason, for comparisons between experiments we always calculated information transfer 

using data divided into fairly long (540 trial) segments. 
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frequency. Unfortunately, this difference between stimulus modality has always been 

confounded with a procedural change: tones were only made available to participants 

for a short period of time (typically, one second), whereas lines were made available for 

as long as participants wish. There is some evidence to suggest that stimulus 

presentation time can influence performance. For example, Miller (1956) cites 

unpublished research by Pollack that found significantly smaller information 

transmission for lines varying in length when presented for short periods of time (2.6 

bits), compared to longer presentation times (3.0 bits). Ward and Lockhead (1971) also 

found lower information transfer for a presentation time of 8ms (0.19 bits) compared to 

presentation for 200ms (1.07 bits), although they simultaneously manipulated 

luminance. In an attempt to examine whether unlimited presentation time may have 

encouraged the learning effect, in Experiment 3 line stimuli were masked after one 

second – in line with usual practice for auditory stimuli.  

Method 

Six participants took part in Experiment 3, using the same procedure as used for 

Experiment 2a, with the exception of presentation time. Stimuli were left on the 

computer monitor for only one second, after which they were covered by a mask 

consisting of white dots scattered randomly over a rectangle of dimensions 1024 x 684 

pixels. The white dots were equal in size and luminance to the white dots used to 

construct the line stimuli. The mask remained on the screen until the participant had 

responded.  

Results 

The results are very similar to those in Experiment 1 and 2a, where participants 

were given stimuli with unlimited presentation time. Accuracy increased from 24% to 

42% (F(1.56,7.79)=18.2, p=.002) and information transfer increased from 2.39 to 3.06 
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bits (F(1.54,7.7)=22.27, p<.001). The average maximum performance (3.06 bits) was 

equivalent to the perfect identification of 8.32 stimuli (see  

Figure 3). Although average learning was slightly smaller, one participant still 

learned to identify more than Miller’s (1956) upper limit of 9 stimuli. In addition, the 

maximum amount of information transmitted with masked stimuli was only about 5% 

smaller than the average amount for Experiments 1-2, and this difference was not 

statistically reliable (p = .30). The similar pattern in results for the current experiment 

suggests that long presentation times were not required for the learning effect.  
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Figure 3. Proportion correct and information transfer as a function of session for 

Experiment 3 (dots varying in separation). The right hand axis on the information 

transfer graph is the equivalent number of stimuli that were perfectly identified (or 2
bits

). 

The dashed line indicates the maximum amount of information transfer possible, log2 

(number of stimuli) 
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Discussion 

Even with limited stimulus presentation times there was significant 

improvement in performance with practice, and these results were comparable to earlier 

experiments with unlimited viewing time. The slightly lower performance reached with 

short presentation times was not significantly different from previous experiments. The 

direction of the effect, however, suggests that limited presentation time, or perhaps the 

addition of the mask, may have limited the amount that participants could improve via 

practice, even if our sample sizes provided insufficient statistical power to detect a 

reliable difference. Most importantly, however, participants did still manage to 

significantly improve their performance, and the amount of improvement was not much 

smaller than Experiments 1 and 2.  

Experiment 4 

Experiments 1-3 established that learning was not due to the more unusual 

aspects of Rouder et al.’s (2004) methods, nor to external cues, and that it was not much 

attenuated by a limitation on stimulus presentation time. We now test whether the 

strong practice effects we have observed are specific to visual lengths: lines varying in 

length or dots varying in separation. In Experiment 4 we investigated whether learning 

is possible with lines varying in angle of inclination.  

Method 

The methods were identical to Experiment 3 except that the stimuli were 30 

lines whose angle of inclination varied from 1.5
o
 to 89.5

o
 in increments of 3

o
. The lines 

were 12 x 210 pixel rectangles, and they were blurred by applying Gaussian kernel with 

a 7 pixel standard deviation (to prevent the use of pixel aliasing as a cue for angle). 

Stimuli were white on a black background, and were positioned within a square 300 x 
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300 pixels in size. To help prevent the use of both horizontal and vertical cues for angle 

judgments, lines were rotated around a central pivot point, and the screen position of 

that pivot point was varied randomly from trial to trial within a 22x22 pixel region. 

Each stimulus was presented for one second. If no response was made within one 

second, a mask was displayed and remained onscreen until the participant had made 

their response. Masks were 1024x1024 pixel squares containing a series of randomly 

positioned and randomly oriented lines of the same sort as the stimuli. 

Results 

Results were very similar to the prior experiments. Figure 4 shows that learning 

was highly significant across the ten sessions (accuracy: F(2.05,10.3)=23.6, p<.001; 

information transfer: F(2.17,10.8)=26.37, p<.001). Average accuracy improved by 22% 

from an initial value of 24% to 46%. Average information transfer also improved 0.81 

bits from 2.37 to 3.18 bits, which made average maximum performance equivalent to 

the perfect identification of about 9.05 stimuli. Three of the six participants exceeded 

Miller’s (1956) 7±2 limit after ten sessions practice. Neither initial performance, 

performance improvement, nor maximum performance were significantly different from 

Experiment 1a (p = 0.93, p = 0.68 and p = 0.78), nor Experiment 3, where presentation 

time was identical (p = .87, p = .23, p = .37).   
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Figure 4. Proportion correct and information transfer as a function of session for 

Experiment 4 (angle of inclination). The right hand axis on the information transfer 

graph is the equivalent number of stimuli that were perfectly identified (or 2
bits

). The 

dashed line indicates the maximum amount of information possible, log2 (number of 

stimuli) 

Discussion 

Participants in Experiment 4 demonstrated significant improvement in 

performance across the ten sessions, similar to that observed in the previous 

experiments. This result suggests that the learning effect may generalise to visual 

stimuli other than line length. We further explore whether learning occurs with other 

stimulus types in Experiment 5. 

Experiment 5 

Clearly people are able to substantially improve their performance in an absolute 

identification task when given significant practice, and we have shown that this learning 

is not specific to distance or length judgements. However, so far our investigation has 
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been limited to visual stimuli only. Miller (1956) noted visual modalities led to slightly 

greater information transmission (hence the “plus or minus” in his 7±2). More recent 

research has also suggested differences – Lacouture and Lacerte (1997) found better 

performance for lines varying in length than tones varying in intensity. This is 

particularly interesting here, because most previous studies showing no effect of 

practice used tones varying in intensity. In Experiment 5, we compared the effect of 

practice using tones varying in intensity and lines varying in length in order to 

determine whether it is modality which differentiates our (and Rouder et al.’s, 2004) 

findings from others.  

Method 

Methods were identical to Experiment 1a except that stimuli were either 16 lines 

varying in length (Experiment 5a), or 16 tones varying in intensity (Experiment 5b). 

Though we aimed to replicate our earlier experiments exactly, we found that we were 

limited to the use of just 16 (rather than 30) tones.  This limit was identified through 

pilot testing, with naïve participants. Those tests showed that participants were able to 

make perfectly accurate discrimination judgments (lower/higher) between sequentially 

presented stimuli separated by a one second pause, when the stimulus difference was 

3dB. This stimulus separation implied that range restrictions imposed by ethical 

considerations and the audio equipment itself limited us to 16 tones in total. We 

therefore also ran Experiment 5a using 16 lines (see Table 1 for line lengths in pixels) 

for ease of comparison of results with Experiment 5b. The 16 auditory stimuli were pure 

1000Hz tones, ranging from 61dB to 106dB, in 3dB increments. Loudness was 

measured using a Brüel and Kjaer artificial ear (model 4152) and sound level meter 

(Brüel and Kjaer, model 2260), equipped with a condenser microphone (Brüel and 

Kjaer, model 4144). Tones were played for one second each, and were presented via 
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Sony headphones (model DR-220). For each of the ten sessions, participants in the lines 

condition completed 7 blocks of 80 trials, and those in the tones condition completed 7 

blocks of 90 trials. 

Results 

Participants in the 16 line condition performed similarly to participants in 

previously reported line experiments: average accuracy significantly increased across 

the ten sessions, from 49% to 78% (F(1.82,9.11)=23.43, p<.001), and average 

information transmission increased significantly from 2.34 to 3.15 bits 

(F(1.94,9.7)=20.92, p<.001). Average maximum performance was equivalent to 

identification of 8.86 stimuli, and two of the six participants exceeded Miller’s (1956) 

7±2 limit. The maximum information limit reached in the 16 lines condition was not 

significantly different from those in Experiment 1a (p = 0.58), or from the results in 

Experiment 2b with a similar set size (p=.95). 

Participants in the tone intensity condition, on the other hand, failed to exhibit 

the substantial learning found in all other experiments (see Figure 5). Participants given 

16 tones of varying intensity had a lower average initial accuracy (31%) and only 

improved on average by 12%. Similarly, information transfer only increased on average 

by approximately 0.46 bits, from 1.49 to 1.95 bits, meaning that maximum performance 

was equivalent to the perfect identification of only 3.86 stimuli, and no participant 

exceeded Miller’s (1956) 7±2 limit. In fact, all participants identified less than 5 stimuli 

perfectly correctly. However, the small effect of practice was statistically reliable 

(accuracy: F(2.91,14.2)=4.8, p=.02; information transfer: F(2.08,10.2)=4.9, p=.03).   

Although the improvement for both modalities was reliable, loudness in 

Experiment 5b showed a significantly lower information transfer limit than lines in 

Experiment 5a (Mtones=1.96, Mlines=3.09; t(9.79)=9.51, p<.001). We also observed 
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reliably smaller maximum information transmission (t(9.47)=3.17, p=.01) for tones 

(Mdiff = 0.42 bits) than lines (Mdiff = .74 bits). The findings for loudness were consistent 

with previous findings of a low channel limit (e.g., Miller, 1956, Garner, 1953, Pollack, 

1952) and little improvement with substantial practice (e.g., Weber, Green and Luce, 

1977). It is also interesting to note that, in contrast to the slow increase in performance 

for tones varying in intensity, there was a much faster increase in performance for line 

length (Experiment 5a). This was particularly noticeable between Sessions 1 and 2, 

where participants in Experiment 5a improved their performance significantly more 

(M=.16) compared to the corresponding difference between Session 1 and 2 in 

Experiment 5b (M=.02; t(6.8)=8.85, p<.001). This suggests that participants in 

Experiment 5a (line stimuli) learned quickly to some upper limit, unlike participants in 

Experiment 5b. 
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Figure 5. Proportion correct and information transfer as a function of session for 

Experiment 5a and 5b (lines varying in length and tones varying in loudness 

respectively). The right hand axis on the information transfer graph is the equivalent 

number of stimuli that were perfectly identified (or 2
bits

). The dashed line indicates the 

maximum amount of information transmission, log2 (number of stimuli) 
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To better understand the difference between learning with lines and tone 

intensities, we further examined accuracy for each stimulus type. Figure 6 plots the 

proportion of correct identifications against ordinal stimulus magnitude, separately for 

the two stimulus continua, and separately for data from the beginning and end of 

practice. When practicing with line lengths (Experiment 5a), there was general 

improvement for all stimuli across the range, except where limited by ceiling effects for 

the smallest and largest lines. Although not shown here, corresponding plots for all 

other experiments show the same pattern as Experiment 5a. However, for tone 

intensities, there was no reliable improvement for tones in the middle of the range (#5-

#11). This suggests that the limited amount of learning we observed for tone intensities 

was restricted to tones near the ends of the range. 
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Figure 6. The proportion of correct identifications plotted against ordinal stimulus 

magnitude for Experiment 5a (Lines) and 5b (Tone Intensity), for both the first and the 

last 540 trials. 
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Discussion 

Participants who practiced with either 16 lines varying in length or 16 tones 

varying in intensity both demonstrated significant improvements in performance. Even 

though the improvement for both experiments was statistically reliable, participants who 

practiced with tone intensities showed a much smaller learning effect and a significantly 

lower information transfer limit than those practicing with lines. Participants practicing 

with tone intensities, in contrast to participants who practiced with other continua, also 

failed to improve their performance consistently across the stimulus range (see Figure 

6).  

Experiments 1-5 together suggest an interesting possibility – that the amount of 

improvement through learning is closely related to the initial level of performance, prior 

to practice. For example, initial accuracy with tones of varying intensity (Experiment 

5b) was poorer than for any other stimulus continuum, and so was the amount of 

improvement with practice. Conversely, accuracy with lines of varying length was 

initially very high, and so was the amount of improvement with practice. In 

Experiments 6 and 7, we explore the relationship between initial performance and 

learning, and further investigate the generality of the learning effect across different 

stimulus dimensions, using tone frequency. 

Experiment 6 

Experiment 6 uses tones of varying frequency. Other research (e.g., Pollack, 

1952; Garner, 1953; Stewart, Brown, & Chater, 2005) has shown that pre-practice 

performance with tone frequency is similar to, but slightly better than, that for tone 

intensity. From this, we hypothesize that the amount of improvement from practice will 

be a little more than that observed for tones of varying intensity, but still less than that 



57 

 

observed for lines of different length. 

Method 

Stimuli. Stimuli were 36 tones varying in frequency. The range of frequencies (see 

Table 2) mimicked piano key frequencies, ranging from A3 to G#5 (220Hz to 1661Hz). 

Tones were pure sine waves, generated using Matlab R2008b, and were presented via 

headphones at a constant sound pressure, corresponding to 75dB at 1000Hz. 

 

Table 3. Range of frequencies used in Experiment 6 and 7. Frequencies corresponding 

to musical notes on a keyboard from A3 to G#5 

 

Frequencies 

220.0 233.1 246.9 261.6 277.2 293.7 311.1 329.6 349.2 

370.0 392.0 415.3 440.0 466.2 493.9 523.3 554.4 587.3 

622.3 659.3 698.5 740.0 784.0 830.6 880.0 932.3 987.8 

1046.5 1108.7 1174.7 1244.5 1318.5 1396.9 1480.0 1568.0 1661.2 

 

Procedure. On each trial, a fixation cross appeared for 500ms, before the tone was 

played through the headphones for one second. Participants were free to respond either 

during or after playback. Feedback was as in Experiment 1a; participants were given 

two response opportunities.  Buttons were available on-screen in 3 horizontal rows of 

12, and participants responded using the mouse. The buttons had not only the numerical 

label normally associated with absolute identification (i.e., 1…36), but also the 

corresponding piano key note (i.e., A3…G#5). Three of the six participants had some 

musical training; the other three had none at all.  

In 8 of the 10 sessions, participants practiced for 6 blocks of 108 trials each. In 
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the first and last session however, participants only completed 4 blocks of 108 trials. 

Fewer experimental trials were completed in this first and last session because 

participants also completed a brief pairwise discrimination task. This task consisted of 2 

blocks of 72 trials, during which participants were asked to discriminate between 

adjacent stimuli in the set. Adjacent tones were presented sequentially – the first tone 

was played for one second, followed by 500ms of silence, and then either the next 

higher or lower frequency tone in the stimulus set was played for one second. The 

participant was then asked to indicate which of the two tones was higher. This pairwise 

discrimination task simply confirmed that all participants were perfectly able to 

discriminate between adjacent stimuli, both before and after practice.  

Results 

The added pairwise discriminability task meant that the number of trials in 

Session 1 and Session 10 of Experiment 6 was not equal to those in other sessions. 

Since information transfer is sensitive to sample size, “pseudo sessions” of 540 trials 

each were used for analysis. Two participants were unable to complete all six blocks of 

the experiment within the allotted time frame in each session, and hence completed 

fewer trials (4104 and 3996 trials for each participant respectively, equivalent to 7 

pseudo sessions of 540 trials) than other participants (from 5940 to 6264 trials, or 11 

pseudo sessions). The lines for individual subjects in  

Figure 7 reflect this imbalance in trial numbers.  
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Figure 7. Proportion correct and information transfer for Experiment 6 (tones varying in 

frequency). The right hand axis on the information transfer graph is the equivalent 

number of stimuli that were perfectly identified (or 2
bits

). Each pseudo session is 

equivalent to 540 trials. Two participants completed fewer trials than other participants 

and hence only have data for seven pseudo sessions. The dashed line indicates the 

maximum possible information transmission, log2 (number of stimuli) 
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Those participants who completed 11 pseudo sessions demonstrated a reliable 

improvement in information transfer from 2.21 to 2.59 bits (6.02 stimuli) and in 

accuracy from 19% to 30% (respectively: F(2.47,7.42)=7.18, p=.02; F(1.38,4.13)=9.82, 

p=.03). One participant was quite different from the others, and only this person 

exceeded Miller’s (1956) bound of 7±2 stimuli, identifying the equivalent of 14.4 

stimuli. This exceptional participant was one of three participants in this experiment 

who had several years of musical training (the other two such participants performed 

just like the three untrained participants). 

Discussion 

As expected, the level of performance in the initial session was a little better 

than that for tone intensity (Experiment 5b) but lower than for all our experiments with 

visual stimuli. In line with our hypothesis, the amount of improvement due to practice 

was also greater than for tone intensity, but less than that observed for comparable 

visual experiments. One remarkable participant showed a very large improvement with 

learning, even relative to the experiments with visual stimuli. The exceptional 

participant was the one with the most musical experience, and also the participant who 

began their musical training at the youngest age. These facts agree with findings from 

the absolute pitch literature, suggesting that early and lengthy musical training 

encourage the development of absolute pitch (e.g. see Takeuchi & Hulse, 1993). Newer 

research also suggests that absolute pitch ability exists at a baseline rate in the general 

population of people with little musical training (e.g. Ross, Olson & Gore, 2003). We 

are examining the relationship between absolute pitch and absolute identification, as 

well as the effect of practice on each, in experiments currently underway in our 

laboratory. 
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Experiment 7 

We noted that better initial performance was correlated with greater 

improvement through practice. However, in Experiments 1-6, this correlation was 

observed across different stimulus manipulations. That is, some kinds of stimuli support 

better initial performance than others, and these also tend to support greater learning 

effects. In Experiment 7, we decouple initial performance level from any stimulus 

manipulations, by instead manipulating participants’ motivation. 

Method 

Experiment 7 replicated Experiment 6, with a six new participants and only one 

methodological difference: participant reimbursement was contingent on performance. 

Correct and incorrect responses were rewarded differently (see Table 4), but we 

provided a minimum reimbursement of $150 for ten sessions. The maximum 

reimbursement actually achieved by a participant was just over $220. 

 

Table 4. Method of reimbursement used in Experiment 7. The rows represent the first 

and second attempts made by the participant to name the stimulus, and the columns 

represent the accuracy of these attempts. 

Rate of Reimbursement for Experiment 7 

 Correct One Off Two Off 

1
st
 Response $0.05 $0.03 $0.02 

2
nd

 Response $0.01 Nil Nil 

 

  



62 

 

Results 

Similar to Experiment 6, performance reliably increased across the ten sessions 

for both accuracy and information transfer (see Figure 8: accuracy: F(1.47,7.35)=10.85, 

p=.009; information transfer: F(1.63,8.16)=14.06, p=.003). In line with our hypothesis 

that motivation may be manipulated by monetary incentive, the average amount of 

improvement was larger (t(8.8) = 2.39, p = .04) in Experiment 7 than in Experiment 6 

(an average of 0.38 bits for 11-session participants in Experiment 6, compared with 0.64 

bits in Experiment 7), but the difference in initial performance was non-significant (2.14 

bits 11-session participants in Experiment 6 to 2.15 bits in Experiment 7, p=.87).  

A parametric test of the difference between the improvement seen in Experiment 

6 and 7 is inappropriate, due to the exceptional participant from Experiment 6. 

Consequently we used a nonparametric Wilcoxon test, which takes account only of 

ordinal (rank) information, and so is not unduly distorted by the virtuoso participant. 

The results of this test supported the hypothesis that participants who received 

motivational reimbursements improved their performance more than those who did not 

(W=29, p = .047). 
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Figure 8. Proportion correct and information transfer for Experiment 7 (tones varying in 

frequency, using contingent payment methods). The right hand axis on the information 

transfer graph is the equivalent number of stimuli that were perfectly identified (or 2
bits

). 

The dashed line indicates the maximum amount of information possible, log2 (number 

of stimuli) 

Discussion 

Participants who received extra motivation through monetary reimbursement 

based on response accuracy showed almost twice as much learning as those who 

received reimbursement independent of performance. This result is consistent with 

Rouder et al.'s (2004) suggestion that motivation is required for learning. Experiment 7 

also has implications for the effect of stimulus modality on learning. If stimulus 

modality were the only determining factor for practice effects, we would have expected 

little difference between Experiments 6 and 7. Instead, when participants were suitably 

motivated we observed that they improved by slightly less than those in the visual 

modality experiments, but much more than in the two other auditory experiments.  

While the amount of improvement observed in Experiment 7 compared with 

Experiment 6 emphasizes the importance of motivation, there was no significant 
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difference between initial (first session) performance levels in the two experiments. 

This makes it difficult to directly evaluate the hypothesis that initial performance 

predicts overall improvement. Future research could produce a more direct test of the 

hypothesis by experimentally manipulating the initial performance level. However, we 

note that our initial attempts at such experiments have proven unsatisfactory, because 

almost all manipulations that influence initial performance level involve manipulations 

of the stimuli, thus confounding the critical hypothesis with other hypotheses regarding 

stimulus-driven effects.  

Regardless of the motivational manipulations in Experiment 7 however, no 

participant came close to performing as well as the one exceptional participant in 

Experiment 6 (who performed better than the majority of participants across all 

experiments). This finding speaks to the strength of individual differences in absolute 

identification performance, both in initial performance and amount of learning. We 

analyse these individual differences across experiments below. 

Summary of Results  

Table 4 contains a summary of information transmission results from the 10 

conditions in our 7 experiments. Through these experiments we have shown that the 

learning observed for lines of varying length in Rouder et al. (2004) was not due to 

virtuoso participants or atypical methodological aspects of their design: Experiment 1 

showed that learning was not due to the two-response method and Experiment 2 showed 

that learning was not due to external visual cues. Experiment 3 showed that the 

extended stimulus presentation time associated with lines compared with auditory 

stimuli was not required for learning. In Experiment 4 we showed that substantial 

learning also occurred for another visual stimulus – lines of varying inclination. 
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Experiment 5 showed very small practice effects for tones of varying intensity, 

consistent with the conventional wisdom about absolute identification (e.g., Shiffrin & 

Nosofsky, 1994) participants reached a low information transmission limit after a few 

sessions. Experiments 6 and 7 demonstrated that learning was possible for another 

auditory continuum, particularly when participants were well motivated. Participants 

practicing with tones of varying frequency were able to learn much more than those 

with tones of varying intensity, but not as much as those who practiced with most of our 

visual stimuli.  



66 

 

Table 5. Summary of Results. Note that all results are calculated based on pseudo session, or every 540 trials, for ease of 

comparison. Note also that for Experiment 6 the averages in brackets represent those participants who completed eleven pseudo 

sessions. 

Experiment Stimulus Continuum Set Size 

 Average Information (bits) 

First Session Minimum Improvement Maximum 

1a Lines (Length) 30 2.38 2.37 0.88 3.25 

1b Lines (Length) 30 2.28 2.28 0.87 3.15 

2a Dots (Separation) 30 2.45 2.45 0.85 3.30 

2b Dots (Separation) 15 2.08 2.08 1.03 3.11 

3 Dots (Separation) 30 2.39 2.39 0.64 3.03 

4 Lines (Angle) 30 2.37 2.37 0.80 3.17 

5a Lines (Length) 16 2.35 2.35 0.74 3.09 

5b Tones (Intensity) 16 1.56 1.53 0.42 1.96 

6 Tones ( Frequency) 36 2.14 (2.21) 2.14(2.21) 0.59 (0.38) 2.73 (2.59) 

7 Tones ( Frequency) 36 2.15 2.15 0.64 2.78 
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Rouder et al.’s (2004) results were surprising because they violated two truisms 

of absolute identification: that practice has little effect on performance, and that there is 

a severe limitation in performance, equivalent to 7±2 stimuli. Our results confirm and 

generalize Rouder et al.’s observation that practice can have a substantial effect on 

performance. However, the last column in Table 5 shows that on average, participants 

did not greatly exceed Miller’s limit of nine stimuli after 10 hours of practice. Indeed, 

the equivalent number of stimuli perfectly identified after practice, averaged across 

visual stimuli, for which performance was best, was 9.88 stimuli, not much above 

Miller’s upper limit.  

Individual subjects, however, tell a different story. Of the 58 participants that 

took part in all experiments, 22 exceeded Miller’s limit. Indeed, two participants (in 

Experiment 1a and 6) reached a maximum rate of information transfer over 4 bits in 

their last session (16.1 and 17.5 stimuli respectively). These results are reminiscent of 

participant RM in Rouder et al. (2004), who was able to perfectly identify 

approximately 20 stimuli. Given that Rouder et al. looked at the effect of practice for 

only three participants, it is possible that their participants are best thought of as 

equivalent to the better performers in our experiments. Indeed, given that two of their 

three performers were authors, we expect their results are also consistent with our 

findings regarding improvements due to increased motivation. It seems, therefore, that 

Miller’s (1956) magical number 7±2 may be best interpreted as not being too far wrong 

for the average participant, even if this is not true for some individuals.  

General Discussion 

The deeper question our work has provoked is: what produces differences in the 

ability to increase capacity in absolute identification? Table 4 shows that the 
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experiments in which there was a large amount of improvement with practice were also 

the same experiments in which performance during the very first practice session was 

high. Figure 9 shows that this result extends, at least approximately, to the individual-

participant level. That is, participants who performed well in their first practice session 

– no matter which experiment they were in – also tended to be those who showed large 

learning effects. Although far from perfect, the correlation between initial performance 

and improvement was substantial both for experiments with larger set sizes (r(39)=.609, 

for experiments with 30 or 32 stimuli) and smaller set sizes (r(15)=.653, for 

experiments with 15 or 16 stimuli, both p<.001). Participants’ levels of initial 

performance were highly correlated with the stimulus modality used for their 

experiment (r(54)=.94, p<.001), but a partial correlation confirmed that individual 

differences in initial performance still explained unique variance in the amount of 

improvement with practice, even after removing the effects of stimulus modality 

(r(53)=.40, p<.01).  

  



69 

 

 

 

 

 

 
 

Figure 9. Improvement as a function of accuracy in the first 540 trials for experiments 

with larger set sizes (30 or 32 stimuli; left panel) and smaller set sizes (15 or 16 stimuli; 

right panel). Each point represents a single participant from a single experiment. The 

number denoting each participant on the graph is the experiment in which they took 

part.  
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The correlational analyses suggest that two important determinants of learning 

are (a) stimulus continuum (modality) and (b) individual differences between 

participants, at least partly caused by motivation, and that the effects of both factors are 

well described by performance during the first hour of experimental trials. Rast and 

Zimprich (2009) also found both strong individual differences and a positive correlation 

between participant’s initial performance and learning rate in paired associate learning. 

This task bears some resemblance to absolute identification, where participants must 

learn stimulus-label associations (Siegel & Siegel, 1972). Note that the observed 

positive correlation between initial performance and learning need not have occurred. 

For example, a naïve expectation might have been a negative correlation, as higher 

initial performance leaves less room for improvement. Indeed, such a result seems 

assured in extreme cases where ceiling effects arise, such as for participants with almost 

perfect initial performance levels. 

Our results do not uniquely identify the mechanism through which increased 

initial performance might be associated with greater overall improvement. However, 

several mechanisms seem likely candidates. For example, an exemplar model may 

naturally account for such improvement if information about the magnitude of a 

stimulus is stored only when the response is correct. A second possible explanation for 

the differences between experiments is that they depend on the pairwise discriminability 

of the stimulus sets, which might similarly vary between subjects. The Weber fractions 

for length and loudness are approximately 2% and 4.8%
2
 respectively (Laming, 1986; 

Teghtsoonian, 1971), suggesting that people are less sensitive to changes in tones of 

varying loudness than lines of varying length. Such explanations seem implausible, 

                                                 
2
 Laming (1986) observed that the Weber fraction for pure tones improves as intensity increases 

according to the function 0.23A
-0.14

, where A is the amplitude. The magnitudes used in the current study 

(61dB-106dB) are sufficiently large to make Laming’s function well approximated by the constant Weber 

fraction reported. 
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however, because in all of our experiments, stimulus separation was well above the 

Weber fraction, and research has shown that increasing separation between stimuli 

either has no effect at all (e.g., Pollack, 1951; Gravetter & Lockhead, 1973) or results in 

a quite small improvement in performance (e.g., Stewart et al. 2005; Lacouture, 1997).  

Theoretical implications 

Recent years have seen the development of several comprehensive models for 

performance in absolute identification (e.g., Petrov & Anderson, 2005; Kent & 

Lamberts, 2005; Stewart, Brown & Chater, 2005; Brown, Marley, Donkin & Heathcote, 

2008). Our findings present severe challenges for these theories on several fronts, 

challenges which may require substantial re-development of the models. Such 

development is beyond the scope of this paper, and so we limit ourselves to delineating 

the problem, and providing an example of the direction that model development could 

take. 

All theories of absolute identification respect the received wisdom in the field. 

No modern theories include any mechanism by which sustained practice can improve 

performance, and all theories take pains to treat all stimulus continua identically, as long 

as pairwise discrimination is perfect. Both of these assumptions are challenged by our 

results, and those reported by Rouder et al. (2004) – theories must predict learning with 

practice, and this learning should be different for different stimulus continua. The third 

major challenge for theoretical accounts is to accommodate the correlation we observed 

between initial performance and the amount of improvement with practice. It is not yet 

obvious to us how to develop a theory for absolute identification that accommodates our 

results in a natural way. However, as a proof-of-concept, we illustrate that it is possible 

to build learning effects into the SAMBA model for absolute identification (Brown et 

al., 2008). Similar illustrations are likely able to be constructed for other models.  
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Most theoretical accounts of performance in absolute identification agree that 

incorrect responses arise from two separate sources - systematic biases, and capacity 

limitations – and it is reasonable to posit that learning may improve performance by 

acting on either source. Contrast is one important systematic effect for the former type 

where decisions are biased away from stimuli observed a few trials earlier (e.g., if one 

observed a large-magnitude stimulus two or three trials previously, the current decision 

is likely to be biased towards smaller responses). Like all systematic biases, contrast 

reduces accuracy, but Triesman and Williams (1984) showed how contrast can be 

viewed as an adaptive mechanism that helps the observer track changes in a non-

stationary stimulus environment. For example, SAMBA (Brown et al., 2008) attributes 

contrast effects to the re-direction of selective attention towards recently-seen 

magnitudes. This improves performance in a changing environment, by keeping 

attention directed towards relevant stimulus magnitudes. Although this mechanism is 

adaptive in general, and particularly when the stimulus set is unfamiliar, our 

experiments employed a fixed set of stimulus magnitudes for thousands of trials, 

making tracking unnecessary. In this case contrast impedes performance without any 

benefit, and so it would be rational to reduce contrast with practice.   

Analysis of the data from Experiment 1a support this notion. Figure 10 

illustrates sequential effects in the data from Experiment 1a, using an “impulse” plot 

(Ward & Lockhead, 1971). It shows average error as a function of the number of trials 

since stimulus presentation for data from the first and last sessions of Experiment 1, 

averaged over participants and over groups of ten adjacent stimuli (i.e., line #1 

represents stimuli #1-#10, line #2 represents stimuli #11-#20 and line #3 represents 

stimuli #21-#30). The data from the first session of practice (left panel) show standard 

bias effects: assimilation of the responses towards the stimulus from the previous trial, 
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and contrast of responses away from stimuli from earlier trials. For example, when a 

small stimulus (line #1) was shown on the previous trial (lag=1), average errors were 

negative, meaning that responses tended to be smaller than the correct response (i.e., 

errors are biased towards the previously presented small stimulus). When the same 

small stimulus was presented a few trials previously (lag > 1), the data show contrast, 

where errors tend to be too large when the stimulus presented two or more trials ago 

was small (i.e., biased away from the previously presented small stimulus). Data from 

the final session of practice (right panel) are unusual - the magnitude of the contrast 

effect decreased markedly with practice, while the assimilation effect did not change 

much. 
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Figure 10. Impulse plots for data from Session 1(left panel) and Session 10 (right panel) 

in Experiment 1a. The different lines represent the magnitude of the stimulus presented 

1..5 trials previously: line 1 = stimuli #1:#10, line 2 = stimuli #11:#20 and line 3 = 

stimuli #21:#30. The x-axis (lag) shows the number of trials since the occurrence of the 

stimulus used to condition the three lines. 

Theoretical considerations, and the data, both suggest that one way to include 

learning effects in absolute identification is by reducing the magnitude of model 

parameters governing contrast, without altering assimilation. This approach fits 

naturally with the SAMBA model because SAMBA attributes contrast effects to a 

selective attention process, but assimilation effects to a more automatic, lower-level 

inertia in the decision process. To simulate this process in SAMBA, we began by setting 

all parameters at values estimated by Brown et al. (to fit a data set from Lacouture, 

1997, parameters reported in Brown et al.’s Table 2). Then, to match the data from the 

first session of Experiment 1a we adjusted three parameters: we reduced the size of the 

assimilation parameter (D=.035), increased the size of the contrast parameter (M=.25), 

and we adjusted the rehearsal capacity ( =.872) to match the overall accuracy level of 
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the data. The predicted impulse plot for the model using these parameters is shown in 

the left panel of Figure 11. To simulate the result of learning by reducing contrast 

magnitude, we steadily reduced the contrast parameter to M=0, over the course of 

learning, which removes almost all contrast effects from the model’s predictions for the 

final session, as shown in the right panel of Figure 11. 

 

 

Figure 11. Impulse plots for SAMBA simulations for Session 1 (left panel) and Session 

10 (right panel) with decreasing contrast. 

 

When the effect of learning is modelled by the reduction of contrast magnitude, 

the impulse plots predicted by SAMBA match the data quite well. However, this way of 

modelling learning fails to capture the large improvement in accuracy. To match the 

large accuracy gains made by subjects, the model also needs to have its rehearsal 

capacity parameter changed with practice (from = .875 to 10). This version of the 

model, with both contrast and rehearsal capacity influenced by practice, matches both 

the impulse plots and the accuracy data from Experiment 1a. The left panel of Figure 12 

shows the proportion of correct responses in Experiment 1a as a function of ordinal 



76 

 

stimulus magnitude separately for the first and last session of practice, and the right 

panel shows the same calculations for the predictions of SAMBA given the 

aforementioned parameter values. Although the model parameters were not adjusted to 

accommodate all effects (such as the tendency in the empirical data for better 

performance with small than large line lengths), SAMBA accounts well for the effect of 

practice. As in the data, the model predicts a substantial increase in performance over 

practice, and this increase is approximately equal in magnitude across the range of 

stimuli. SAMBA also predicts an increasing U-shape in this plot with practice, and the 

data appear to confirm this prediction. 

 

 

Figure 12. Response accuracy versus (rank) stimulus magnitude for Experiment 1a (left 

panel) and SAMBA’s predictions (right panel). Open and filled symbols correspond to 

data from the beginning and end of practice, respectively. The data are averaged over 

participants, and over groups of three consecutive stimuli (e.g., the left-most point on 

each line represents average accuracy for stimuli #1, #2 and #3). 
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Similar accounts could be implemented in other comprehensive models of 

absolute identification, as they all include separate contrast and capacity parameters that 

can be manipulated as above. This approach advances theoretical understanding because 

it delimits the mechanisms by which practice improves performance, greatly 

constraining model development. However, there are three important questions that are 

left unaddressed: 

1. By what mechanism(s) are rehearsal capacity and contrast magnitude 

changed by practice? 

2. Why are there differences in the effect of practice when using different 

stimulus continua? 

3. Why should pre-practice performance correlate strongly with the amount of 

improvement from practice? 

Conclusions 

Rouder et al. (2004) demonstrated that practice dramatically improved 

performance in absolute identification. We have shown that this effect generalises 

across most participants, and many different procedural manipulations. We also found 

reliable effects of some stimulus manipulations, a surprising correlation between initial 

performance and the gains from practice, and a dissociation between the effects of 

practice on assimilation and contrast magnitude. We showed that the fundamental result 

(improved accuracy with practice) as well as the dissociation, can be accommodated 

quite naturally within an existing comprehensive theory of absolute identification. The 

remaining findings stand as a challenge for the field: to develop a theory that naturally 

predicts improved performance and decreased contrast with practice, as well as 

providing a link between initial and final performance. A theory that provides such a 

link might then also explain the differences observed between stimulus continua, 
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because many of the differences in amount of learning between continua were captured 

by differences between initial performance on those continua. 
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Abstract 

The “bow effect” is ubiquitous in standard absolute identification experiments - stimuli 

at the centre of the stimulus-set range elicit slower and less accurate responses than 

others. This effect has motivated various theoretical accounts of performance, often 

involving the idea that end-of-range stimuli have privileged roles. Two other 

phenomena (practice effects, and improved performance for frequently-presented 

stimuli) have an important but less explored consequence for the bow effect: standard 

within-subjects manipulations of set size could disrupt the bow effect. We found this 

disruption for stimulus types that support practice effects (line length and tone 

frequency), suggesting that the bow effect is more fragile than thought. Our results also 

have implications for theoretical accounts of absolute identification, which currently do 

not include mechanisms for practice effects, and provide results consistent with the 

literature on stimulus-specific learning.  
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The absolute identification paradigm explores a fundamental limit – that the 

number of separate categories that can reliably be identified along a single physical 

dimension is very small (about 7±2, according to Miller, 1956). In a typical absolute 

identification experiment, a participant is presented with a set of stimuli that vary along 

only one dimension (e.g., lines varying in length, or tones varying in intensity). These 

stimuli are labelled with the numerals #1 to #N in order of increasing magnitude. The 

participant is then shown one stimulus at a time in a random order and asked to respond 

with its label. Despite the task’s apparent simplicity, absolute identification data reliably 

exhibit a great many phenomena, some of which are quite complex (for reviews see 

Petrov & Anderson, 2005, and Stewart, Brown & Chater, 2005).  

In this paper we focus on one of the most fundamental of these phenomena: that 

performance is better for stimuli at the outer edges of the stimulus range, and worse for 

those in the centre. This phenomenon is called the bow effect because a U-shaped curve 

is observed when accuracy is plotted against stimulus magnitude and an inverted U-

shaped curve when plotting response time (RT). These bow effects are robust 

phenomena that are consistent across manipulations of stimulus magnitude (Lacouture, 

1997), the number of stimuli (“set size” - Stewart et al., 2005), and sensory modalities 

(Dodds, Donkin, Brown & Heathcote, 2011).  

However, recent evidence that practice improves absolute identification 

performance (Dodds et al., 2011; Rouder, Morey, Cowan & Pfaltz, 2004) implies that 

the bow effect could be disrupted by practice when the effects of practice are stimulus-

specific. Previously, it was widely believed that even extended practice did not lead to 

much improvement in absolute identification (see, e.g., Miller, 1956; Shiffrin & 

Nosofsky, 1994) but recent research has shown that improvements can be made for 

some types of stimuli. For example, Dodds et al. demonstrated that practice improved 
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performance a great deal when the stimuli were lines varying in length or tones varying 

in frequency, but very little when the stimuli were tones varying in loudness. Using 

tones varying in frequency, Cuddy (1968, 1970) found that presenting some stimuli 

more often than others resulted in an overall improvement – for all stimuli. This effect 

was limited however, to trained musicians, and to a task more akin to categorization 

than standard absolute identification. Using a more standard paradigm, and untrained 

participants, Cuddy, Pinn and Simons (1973) demonstrated improved performance 

across the entire stimulus range when one stimulus was presented more often than the 

others (but see Chase, Bugnacki, Braida & Durlach, 1982, for conflicting results). 

We generalize these earlier findings in several ways. We examine more than one 

kind of stimulus dimension (not just tones varying in frequency), and we also use a 

more standard paradigm in which – during each block of trials – all stimuli were 

presented equally often. This latter constraint is important because presenting some 

stimuli more frequently than others encourages participants to bias their responses. 

Instead of using unequal presentation frequency within blocks, we employ a different 

experimental manipulation that encourages stimulus-specific learning; changing the 

stimulus set size on a within-subject basis between blocks of trials. In our design, a 

participant would first be asked to identify two stimuli (“set size two”, denoted “N=2”), 

and, in a later phase, be asked to identify these two stimuli along with six others, in an 

N=8 condition. The stimulus set for the smaller set size is created from the middle 

stimuli of the larger set size (e.g., the two stimuli for N=2 are the same as the middle 

two stimuli from N=8). 

In many other paradigms practice has stimulus-specific effects, that is, extensive 

practice with some stimuli does not confer a benefit upon other similar stimuli. For 

example, there is an extensive literature on perceptual learning that has almost 
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uniformly shown poor generalization (for a review see Petrov, Dosher & Lu, 2005). 

This background makes Cuddy's (1968, 1970) results (general improvement in absolute 

identification after practice with just one stimulus) quite surprising. However, this 

contrast is complicated because of Cuddy's non-standard identification paradigm. If we 

find, using a standard absolute identification paradigm, that practice improves 

performance in a stimulus-specific (rather than task-wide) manner, and if the 

improvements persist across changes in set size, prior exposure to the N=2 condition 

might improve performance on the middle two stimuli for the N=8 condition. This 

performance boost would disrupt the bow effect for the larger set size. 

Re-examination of existing AI data lends some preliminary support to this 

hypothesis. As a baseline comparison, first consider Stewart et al.’s (2005) Experiment 

1, in which set size was manipulated between-subjects - some participants performed an 

absolute identification task with six tones of varying frequency, others with eight tones, 

and still others with ten tones (i.e., N=6, 8 or 10). The data from this experiment (Figure 

1a) exhibit the standard bow effect in each set size, with poorest performance for the 

middle stimuli. 
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Figure 1. (a) Between-subjects data from Stewart et al.'s (2005) Experiment 1 and (b) 

within-subjects data from Kent and Lamberts’ (2005) Experiment 2. Each line on each 

graph represents a different set size. All set sizes in Figure 1 (b) are in grey except set 

size n=8, for ease of comparison. Both plots show accuracy, measured by the percentage 

of correct responses, averaged over participants, for different set sizes. Stewart et al. 

“symmetrized” their data by averaging responses to small and large stimuli in 

corresponding pairs; we additionally averaged their data over stimulus spacing (wide vs. 

narrow). 
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In contrast, Kent and Lamberts (2005) had three participants perform absolute 

identification with dots varying in separation, using four different set sizes (N=2, 4, 6, 

and 8), manipulated within-subjects.  Each participant experienced all set sizes, one 

after the other
3
, and each participant showed a disruption (flattening) of the bow effect. 

Figure 1b illustrates a disrupted bow effect, with much shallower bows than in Stewart 

et al.'s data. Most pertinent for our study is the result for set size N=8 (bold in Figure 

1b). Kent and Lamberts' data from this condition display a much shallower bow effect 

than before. Identification of the middle stimuli is enhanced to the point where response 

accuracy for the central stimuli (#4 and #5) is just as good as response accuracy for the 

next-to-extreme stimuli (#2 and #7). In comparison, the standard effect (as in Figure 1a) 

exhibits a deep bow, so that there is a large difference between these pairs of stimuli. 

Our statistical analyses are motivated by this pattern, and test for a standard bow effect 

by assessing performance differences between the central stimuli and the next-to-edge 

stimuli
4
. 

Although the data in Figure 1 are suggestive, they must be interpreted with 

caution. There were many differences between Stewart et al.'s (2005) and Kent and 

Lamberts' (2005) experiments beside the between- vs. within-subject manipulation of 

set size: for example, different stimulus modalities, different amounts of training per 

participant, and different set sizes. Further, the W-shape in Figure 1b is quite clear in 

                                                 
3
 Set size was partially counterbalanced between subjects. Participant 1 saw N=10, 4,2,8 

then 6, participant 2 saw N=10,6,8,2 then 4 and participant 3 saw N=4,8, 2 then 6. We did not 

include set size N=10 in the figure because not all participants experienced this condition. 
 

4
 Comparing the central stimuli (#4/#5) against their neighbours (#3/#6) provides little 

power to detect a standard bow effect, because the bow curvature is smallest in the centre (as in 

Figure 1a). On the other hand, comparing the central stimuli (#4/#5) against the edge stimuli 

(#1/#8) will classify all but the most severe disruptions of the bow effect as “standard bows” - 

e.g. the disrupted bow effect in Figure 1b still has better performance on edge stimuli than 

central stimuli. 
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Kent and Lamberts' data when averaged over their three participants, but further 

examination reveals large differences between participants; differences that do not 

uniformly support the hypothesis that pre-training on smaller set sizes will disrupt the 

bow effect for larger set sizes. Our Experiments 1 and 2 were an attempt to clarify the 

evidence that stimulus-specific practice can disrupt the bow effect, and to test our 

hypothesised explanation of this disruption that it is due to stimulus-specific practice 

effects caused by unequal stimulus-presentation frequencies.  

Experiment 1 

Dodds et al. (2011) found that practice can improve identification of line length 

but not of tone loudness.  Hence, our hypothesis makes a clear prediction: if stimulus-

specific practice disrupts the bow effect, a within-subjects manipulation of set size 

should disrupt the bow effect when the stimuli are lines varying in length but not when 

they are tones varying in loudness. 

Method 

Twenty-three participants were randomly allocated to either an absolute 

identification task using tone loudness (12 participants) or line length (11 participants). 

The stimuli for the line length task were eight pairs of small white squares, varying in 

horizontal separation. Each square had sides of length 3.3mm, and was shown at high 

contrast. The stimuli are referred to as lines varying in length because the participant is 

essentially making a judgment of length. The eight horizontal separations were 23.5, 

26.0, 29.1, 32.2, 35.6, 39.3, 43.4, and 47.4 mm. The viewing distance was not 

physically constrained, but was approximately 700mm (so the stimuli subtended visual 

angles ranging from 3.3
o
 to 6.7

o
). For the tone loudness condition, the stimuli were eight 

1000Hz pure sine tones with loudness varying from 79db to 100db, in increments of 
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3db. Tones were generated using Matlab 2009a, with stepped onsets and offsets 

(although, by definition, the sine waves started and finished at zero amplitude because 

their duration was an integer-multiple of their frequency). 

Before beginning the experiment, participants were presented with each of the 

eight stimuli, one at a time, along with the corresponding label. On every trial, 

participants were first shown a fixation cross for 300ms, which was removed when the 

stimulus was presented. In the line-length condition, the stimulus remained on screen 

for 1 second, after which a mask appeared. The mask consisted of approximately 50 

white squares of the same size used for the stimuli, randomly scattered across the 

screen. In the tone loudness condition, the tone played for 1 second followed by silence. 

In both conditions, participants were able to respond at any point after the stimulus 

presentation onset. Responses were made by pressing the appropriate numeral key 

(from 1-8) on the top line of the keyboard. Participants were given one opportunity to 

respond, after which feedback was provided. 

Each participant took part in two one-hour sessions, on separate days, for a total 

of 20 blocks of 80 trials each. The first five blocks in the first session used only the 

middle two stimuli (N=2) and all subsequent blocks used all stimuli (N=8). When the 

participants were presented with only the middle two stimuli in the first 5 blocks in the 

first session, they responded to these with the numerals 4 and 5. In total, every 

participant received 200 presentations each of stimuli #4 and #5 when N=2 and 150 

presentations of each of the eight stimuli when N=8. This meant that, across the whole 

experiment, each participant received 350 presentations each of stimuli #4 and #5 and 

150 presentations of each of the other stimuli.  
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Results 

Responses in the N=2 condition were quite accurate and rapid in both the length 

and loudness conditions: mean accuracy was 78% for length and 86% for loudness, and 

mean RT was 1.03 sec for length and 0.84 sec for loudness. Figure 2 shows mean 

response accuracy and the mean RT for correct responses, both conditional on stimulus 

rank, for the N=8 condition, separately for line length and tone loudness. Across all 

stimuli, average accuracy was very similar for loudness and line length (46.8% and 

47.1%, respectively), but the pattern of performance was quite different. A typical, 

deep, bow effect was observed for tone loudness: the mean accuracy was significantly 

higher for stimuli #2 and #7 (M#2/7=46%) than for stimuli #4 and #5 (M#4/5=33%) and 

the mean RT was significantly faster (M#2/7=1.25 sec., M#4/5=1.37 sec.). These 

differences were statistically reliable according to linear contrasts comparing the two 

group means (for accuracy, F(1,77)=31.4, p<.001 and for RT, F(1,77)=10.9, p=.001). 
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Figure 2. Accuracy and mean RT as functions of ordinal stimulus magnitude for 

Experiment 1. The lines represent different stimulus sets – line length or tone loudness. 

Error bars are 95% confidence intervals calculated in the repeated-measures manner 

described by Loftus and Masson (1994), separately for the two between-subjects 

conditions. 

 

For the line length condition, however, the bow effect was clearly disrupted, with 

stimuli in the middle of the range (#4 and #5) eliciting faster and more accurate 

responses than for some other stimuli. In particular, linear contrasts showed that neither 

the mean accuracy nor the mean RT for stimuli #2 and #7 (Macc=48%; MRT=1.64 sec.) 

was significantly different than the mean accuracy or mean RT for stimuli #4 and #5 

(Macc=48%, MRT=1.68 sec.; both Fs<1). 

The above analyses show a standard bow effect for tone loudness but not for line 

length. Nevertheless, these results do not directly support the conclusion that the bow 

effect was shallower in the line length condition than the tone loudness condition (since 

“the difference between 'significant' and 'not significant' is not itself statistically 

significant”; Gelman & Stern, 2006). To directly test this hypothesis, we calculated an 
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interaction contrast comparing the depth of the bow effect between the two conditions, 

by taking the difference of the two contrasts reported above and testing it against the 

appropriate error variance term from the mixed ANOVA. These contrasts confirmed 

that there was a deeper bow effect for tone loudness than for dot separation response 

accuracy data (F(1,147)=10.7, p<.001). For RT data, the comparison was not significant 

(F(1,147)=1.63, p=.10).  

Discussion 

Participants in Experiment 1 first practiced the identification of two central 

stimuli (in an N=2 condition) and then the identification from the full set of eight 

stimuli. Data from those participants who identified tone loudness were quite standard, 

with the poorest performance for middle stimuli, and deep bow effects. However, for 

those participants who identified line lengths, performance for the central stimuli 

improved, to the point where it was not significantly poorer than performance on the 

next-to-edge stimuli. A potential weakness of this result is that null findings may be due 

to limited statistical power. To foreshadow, Experiment 2 addresses this concern, and 

obtains similar differences to Experiment 1, using a different design with the same line 

length stimulus set. 

The results of Experiment 1 suggest that the effects of pre-exposure to the central 

stimuli can, for certain stimulus dimensions, persist for long time intervals on the order 

of hours, rather than minutes as other authors have observed for the effects of stimulus 

presentation frequency (e.g., Petrov & Anderson, 2005). The performance bonus that we 

found in the line length condition persisted into the second experimental session, which 

was, on average, a full day after the extra presentations of the two central stimuli (in the 

N=2) condition. This was true even when we limited analyses to data from session two, 

during which the N=2 condition was not experienced. 
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Performance curves similar to those obtained here have also been observed by 

Kent and Lamberts (2005; Experiment 2) and Lacouture, Li and Marley (1998; 

Experiment 1), each of whom observed relatively flattened bow effects even when 

stimuli were presented equally often in each condition. The main difference between 

those experiments and those yielding a typical bow effect (e.g., Stewart et al., 2005) 

appears to be the within-subjects manipulation of set size. This manipulation results in 

more frequent presentations of centre stimuli than others, across the entire experiment, 

which could explain the corresponding performance benefit. Experiment 2 tests a 

potential confound to this presentation-frequency hypothesis present in Experiment 1. 

Experiment 2 

In Experiment 1, the two central stimuli were both presented before the others and 

presented more often than the others. Either, or both, of these factors could be the cause 

of the disrupted bow effect observed for line length stimuli in Experiment 1. In 

Experiment 2, using only line lengths, we balanced the number of presentations per 

stimulus over the entire experiment. Thus, if the bow effect is disrupted in Experiment 

2, then the results of Experiment 1 may be explained by some stimuli being presented 

before others. Alternatively, if the typical bow effect re-appears in Experiment 2, then 

the results may be explained by the differences in presentation frequency. 

Method 

We used the same procedure and stimuli as in the line length condition of 

Experiment 1, with 21 new undergraduate participants from the University of 

Newcastle. The experiment was divided into three sections. Participants, however, were 

only told of the first two sections. In section 1, participants completed two blocks of 100 

trials each with just the central two stimuli (N=2). In section 2, participants completed 
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1000 trials in ten blocks, with all stimuli (N=8). However, the central two stimuli in this 

section were presented only 50 times each, while the other stimuli appeared 150 times 

each. Thus, at the end of the first two sections, each stimulus had appeared exactly 150 

times. Participants were not explicitly told that the presentation of certain stimuli would 

be reduced in the second section. The third section reverted to five blocks of 80 trials 

each with all eight stimuli appearing equally often. Altogether, the three sections took 

participants approximately two hours, which they completed in a single testing session. 

One-minute breaks were provided regularly throughout the experiment. Participants 

were also given a single, extended five-minute break at the halfway point. 

Results 

The data from two participants were removed from analysis due to low accuracy 

(< 25% correct across the entire experiment, which was much lower than other 

participants in the experiment, M=48%). Mean accuracy and mean RT for the N=2 

condition were 80% and .99 sec., respectively. Figure 3 shows mean accuracy and mean 

RT for the N=8 condition. The final section of the experiment, during which each 

stimulus was presented equally often, is shown in black, and the unequal-frequency 

(middle) section is shown in grey. Accuracy was poorer, and mean RT longer, for the 

central two stimuli than all others in the critical third section of the experiment (when 

all stimuli were presented equally often). 
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Figure 3. Accuracy and mean RT as functions of ordinal stimulus magnitude for 

Experiment 2. Each line represents a different section of the experiment. Grey lines 

represent the Section 2 (unequal presentation), black lines represent Section 3 (equal 

presentation). Error bars are as in Figure 2. 

 

Repeated measures ANOVAs on accuracy and mean RT from the final phase of 

the experiment confirmed main effects of stimulus magnitude (accuracy: 

F(7,126)=9.37, p<.001; RT: F(7,126)=4.56, p<.001). As would be expected in a 

standard bow effect, linear contrasts showed that the mean accuracy for stimuli #2 and 

#7 (M=44%) was significantly greater than for the mean accuracy of stimuli #4 and #5 

(M=31%; F(1,126)=17.9, p<.001), and mean RT was significantly faster (M#2/7=1.23 

sec., M#4/5=1.35 sec.; F(1,126)=11.2, p=.001). Furthermore, this effect was even evident 

when comparing middle stimuli with their immediate neighbours (stimuli #3 & #6; 

Macc=45%, F(1,126)=21.2, p<.001; Mrt=1.24, F(1,126)=8.59, p=.004) 

Figure 3 shows very little difference in accuracy between section 2 and section 3 

in Experiment 2 (F<1). Our hypothesis about over-presentation of certain stimuli would 

suggest the occurrence of a W-shape in accuracy in early trials of section 2, due to the 

over-presentation of the two central stimuli in section 1; however, we do not see such a 
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pattern, likely due to a lack of power. There was, however, a clear reduction in RT in 

section 3 relative to section 2 (paired samples t-test: t(7) = 5.54, p<.001), which is likely 

due to a general improvement by practice, with participants trading the possibility of 

improved accuracy for improvements in speed. 

Discussion 

When the number of presentations per stimulus was manipulated so that 

participants were eventually exposed to an equal number of presentations of all stimuli, 

performance on the central stimuli was poorer than on all other stimuli, as in a standard 

bow effect, for both accuracy and for RT. This suggests that it is the over-presentation 

of certain stimuli, not presentation order, which leads to improvement in performance 

for those stimuli. 

Experiment 2 also provided an estimate of the difference that might be expected 

between the central pair of stimuli (#4 and #5) and the next-to-edge stimuli (#2 and #7), 

when a standard bow effect is observed. In particular, the central stimuli were correctly 

identified 13% less often than the next-to-edge pair. A power analysis shows that, if 

such a difference had been present in the line length condition of Experiment 1, the 

corresponding linear contrast would have detected a significant difference with almost 

perfect power (>99%). Indeed, even if the true difference was only half as large (6.5%) 

the power would still have been close to perfect (>99%). This suggests that the 

combined null results for both accuracy and RT from the line length condition of 

Experiment 1 were very unlikely to have been caused by a lack of statistical power. 

Experiment 3 

Experiment 1 confirmed a prediction arising from Dodds et al.'s (2011) 

investigation of learning effects in absolute identification: if the bow effect is disrupted 
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in within-subjects designs because of differential stimulus-specific practice, this effect 

should be modulated by the susceptibility of the stimulus type to learning. As predicted, 

Experiment 1 showed a standard bow effect when tone loudness (which does not show 

strong learning) was judged, but not when line length (which does show a strong 

learning effect) was judged. A necessary weakness of such an experiment is the 

comparison of performance on different stimulus types, as these will often have 

different pairwise discriminability and other characteristics. Experiment 3 remedies this 

weakness by comparing results for two conditions that both use the same stimulus type; 

tones varying in frequency. The conditions differ only in the order in which different set 

sizes are practiced, testing the prediction that one order enhances the advantage for the 

central pair and other reduces it (i.e., it disrupts the bow effect).  

This design enables a confirmation of the findings of Experiment 2 and supports a 

direct comparison of the bow effects from the two conditions, avoiding the problem of 

confirming a null hypothesis. It also tests a subtler version of a prediction from Dodds 

et al.'s (2011) work. Dodds et al. showed that learning effects for tones varying in 

frequency were smaller than those for line length, but larger than those for tones varying 

in loudness. Thus, if the bow effect is disrupted by practice, this disruption should also 

appear for tones varying in frequency, but the disruption should be less marked than for 

line lengths. 

Method 

We used the same procedure as Experiment 1, with 25 participants randomly 

assigned to one of two conditions that differ only in presentation order. Participants 

were given stimulus sets of either set size N=2 then N=8, or the reverse, which we will 

refer to as the 2-then-8 and 8-then-2 conditions (with 13 and 12 participants, 

respectively). Each participant took part in 20 blocks of practice, over two hours. 
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Regular one-minute breaks were provided between blocks with a compulsory five-

minute break after approximately one hour. Each block consisted of 80 trials. The N=2 

condition was practiced for five blocks, and the N=8 condition for 15 blocks. In the 2-

then-8 condition, the N=2 condition was practiced first, followed by 15 blocks of the 

N=8 condition. This was reversed in the 8-then-2 condition. The stimuli were eight one-

second, 67db tones with frequencies taken from Stewart et al. (2005; wide spaced 

condition): 672, 752.64, 842.96, 944.11, 1057.11, 1184.29, 1326.41, and 1485.58hz. 

Tones were generated as pure sine waves using Matlab 2009a and were presented 

through Sony headphones (model MDR-NC6), with the noise cancelling function turned 

off.  

Results 

As before, the data from the N=2 condition showed high accuracy and fast mean 

RT, both for the 2-then-8 condition (98% and .65 sec.) and the 8-then-2 condition (98% 

and .58 sec.). Figure 4 shows mean accuracy and RT as functions of stimulus rank for 

the N=8 conditions. We extended the linear interaction contrasts employed in 

Experiment 1 to directly test the difference between conditions by comparing the linear 

contrast from the two groups (against the appropriate pooled error term from a mixed 

ANOVA with factors stimulus rank  and experimental condition). This contrast showed 

that the difference between the mean accuracy for stimuli #2 and #7 and stimuli #4 and 

#5 was significantly larger in the 8-then-2 condition compared to the 2-then-8 condition 

(F(1,161)=3.86, p=.03). The corresponding test for the RT data was not significant 

(p=.07). Separate linear contrasts for each condition (as in the analysis of Experiment 1) 

further confirmed these trends for the accuracy data: in the 2-then-8 condition, the mean 

accuracy for stimuli #2 and #7 was not significantly different than for stimuli #4 and #5 

(p=.20), but this comparison was significantly different in the 8-then-2 condition 
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(F(1,77)=10.3, p<.001).  The corresponding tests for the mean RT data did not reach 

significance.  

 

 

Figure 4. Accuracy and RT as a function of stimulus magnitude for Experiment 3. Note 

that there are two conditions: some participants experienced the N=2 set size first, then 

N=8 (condition 2-then-8) and others experienced the reverse order (condition 8-then-2). 

Error bars are as in Figure 2. Note: error bars in left panel are too small to be visible. 

Discussion 

Experiment 3 demonstrates a significant difference in the bow effects observed in 

the 8-then-2 vs. the 2-then-8 condition. The bow effect for response accuracy (but not 

RT) was deeper in the 8-then-2 condition than in the 2-then-8 condition, which is 

consistent with the hypothesis that the bow effect was disrupted (flattened) by pre-

exposure to the central stimuli in the 2-then-8 condition. The null effects for the RT data 

are surprising, given the large RT differences in the corresponding test in Experiment 1. 

This null effect might be due to low power, because the variability we observed in RT 

data was much larger than for accuracy data (e.g., see the very slow mean RT peaks for 

some stimuli in Figure 4). Alternatively, the null effect might have been caused by a 
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speed-accuracy tradeoff. If performance is improved for frequently-presented stimuli, 

participants can choose to exhibit that improvement either as improved decision 

accuracy, or as improved response time (or both). Such tradeoffs are complex, and often 

accompany improved performance in simple decision tasks (see, e.g., Dutilh, 

Vandekerckhove, Tuerlinckx, & Wagenmakers, 2009). 

Response Biases  

In most categorization paradigms, increasing the presentation frequency of some 

stimuli relative to others alters participants' a priori response biases in such a way as to 

improve performance for the frequently-presented stimuli (for a general review, see 

Healy & Kubovy, 1981; or see Petrov & Anderson, 2005, for an example in absolute 

identification). It is possible that the tendency for our participants to demonstrate 

improved accuracy for stimuli in the centre of the range is due to such response biases. 

Here, we attempt to rule this explanation out, leaving open the possibility that practice 

improved discrimination performance itself.  

Results from Experiment 1 provide an initial insight into this issue. Experiment 1 

provided a direct comparison between the identification of tone loudness and line 

length. Performance was improved for over-presented lines, but not for over-presented 

tones and one would expect that if results were caused solely by response biases 

towards over-presented stimuli, performance should have increased for both stimulus 

modalities. However, there are difficulties comparing such results across different 

stimulus modalities, in our case because the dimensions studied do not have identical 

Weber fractions (i.e., the minimum separation required between adjacent stimuli so that 

each are equally perceptually discriminable). 
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To address this issue, we further analyse the results from Experiment 3, which are 

ideal for examining issues of response bias. In Experiment 3, both conditions use the 

same stimuli, so the pairwise discriminability of the stimuli is identical by design. 

Additionally, Experiment 3 did not include any blocks with unequal stimulus 

presentation frequencies, so participants were not given any a priori reason to employ 

unequal response bias. Figure 5 shows the marginal response probability – that is, the 

probability that each stimulus label is used as a response.  Response probability 

typically demonstrates similar phenomena (including the bow effect) to accuracy and 

RT (Petrov & Anderson, 2005), but allows examination of bias. Given that the stimuli 

were presented equally often, increased marginal response probability for a stimulus 

indicates a response bias towards that stimulus on the part of the observer.   For 

consistency with earlier analyses, and because of the similarity between patterns in 

response probability and patterns in response accuracy and RT, we have used the same 

inferential analyses for these data as used above. Linear contrasts comparing the central 

stimuli for both conditions with the next-to-edge stimuli (#2 and #7), using the 

appropriate mixed ANOVA error term, showed that there were no significant 

differences between conditions in the amount of bow observed in response probability 

(p=.22). A power analysis showed that a relatively small difference between conditions 

(e.g., a difference in the depth of the bow effect for the two conditions of just 2% in 

marginal probability) would have been detected with probability 76%, using a Type I 

error rate of .05. These results suggest that differences in response biases are unlikely to 

be a contributing factor to the significant improvements in performance found for 

participants in the 2-then-8 condition.  

 

 



103 

 

 

Figure 5. Response probability for Experiment 3 

General Discussion 

Experiments 1 and 2 indicated that the bow effect can be disrupted by design 

factors, such as within-subject manipulations and stimulus presentation probabilities, at 

least when the stimuli are line lengths. In Experiment 1, we found that, following the 

presentation of the N=2 condition, the stimuli in the middle of the range were identified 

more accurately compared to the surrounding stimuli for line lengths but not for tone 

loudnesses. Experiment 2 indicated that the disrupted bow effect for line lengths in 

Experiment 1 was due to unequal stimulus presentation frequency across the 

experiment, induced by a standard within-subject manipulation of set size. Experiment 3 

suggests that the modulation of the bow effect depends on stimulus modality, as would 

be expected from Dodds et al.'s (2011) results. 
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Previous Results on Unequal Stimulus Presentation Frequency 

Petrov and Anderson (2005) manipulated the presentation frequency of stimuli 

(dots varying in separation) in an absolute identification experiment and found that 

correct responses were more likely for stimuli presented more frequently. However, 

Petrov and Anderson’s presentation frequency manipulation was counterbalanced over 

short time scales, such that long-term learning effects (as we observed) would not be 

expected in longer time-scale averages. Cuddy (1968, 1970) found that training 

participants on just one particular stimulus, out of a set of nine tones varying in 

frequency, resulted in improvement for the entire set. However, this result was limited 

only to highly trained musicians – regular participants showed little improvement. In the 

most similar work to our own, Cuddy et al. (1973) found that regular participants were 

able to greatly improve their performance when trained by presenting three tones out of 

a set of nine more frequently than others. However, Chase et al.  (1983) replicated 

Cuddy et al.'s experiment and found very small improvements (8%, as opposed to 

Cuddy et al.'s 50% improvement). 

Our experiments extend these earlier findings in several ways. Firstly, we 

examined performance in conditions where all stimuli are presented equally often (after 

having manipulated presentation frequency earlier). This more faithfully represents 

performance in standard absolute identification tasks. Cuddy (1968, 1970) used a 

similar procedure, but found changes in performance only for musically trained 

participants. Secondly, we demonstrated effects of the presentation frequency for 

stimuli across the entire experiment. That is, stimuli that were presented more often 

over the entire experiment were identified more accurately, even when every block of 

trials contained equal presentation frequencies for all stimuli in the block (Experiments 

1 and 3). This manipulation mirrors standard within-subject manipulations of stimulus 
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set size, and avoids creating a situation that rewards response biases in favour of more 

frequent stimuli. Thirdly, our experiments systematically examine different stimulus 

types, which have predictable and large effects on the results. 

Absolute identification can be thought of as a variant of categorization, in which 

each stimulus defines its own category. In standard categorization tasks, where many 

different stimuli are mapped to the same response (a single category), there have been 

many investigations of the effect of unequal stimulus presentation frequency, with 

results that are consistent with ours. For example, Nosofsky (1988) found that 

frequently-presented category exemplars were classified more accurately and rated as 

more typical of the category than less-frequently-presented exemplars. This effect 

generalized to unseen exemplars that were very similar to the more-frequently-presented 

exemplars, but not to less similar ones; analogous to our stimulus-specific findings. 

Theoretical Implications 

Our results are indicative of long-term learning. This adds weight to recent 

findings that practice can improve performance in absolute identification (e.g., Rouder 

et al., 2004) and that these effects are larger for line length and tone frequency than for 

tone loudness (Dodds et al., 2011). An additional theoretical implication from our 

results is that learning is stimulus-specific. For example, suppose learning effects were 

instead driven by time-on-task (or the total number of absolute identification decisions). 

Under that assumption, additional presentations of some stimuli would not lead to 

improved performance for those particular stimuli above others, contrary to our results. 

Further, improved performance for frequently presented stimuli was observed to last for 

hours or days, long after uniform presentation frequencies were re-established. This 

suggests that theoretical accounts of improved performance for frequently presented 
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stimuli based on short-term biasing mechanisms (e.g., Petrov & Anderson's, 2005, 

ANCHOR model) are not sufficient. 

Although current theories for absolute identification do not include mechanisms 

by which practice can improve performance, there are several obvious candidate 

mechanisms. Some of these candidates seem better suited to meeting the challenges 

described above than others. For example, exemplar-based models (e.g., Kent & 

Lamberts, 2005) naturally predict that increased exposure to some stimuli enriches the 

representation of those stimuli above others. Kent (2005, Chapter 9) suggests a precise 

mechanism that would have this effect - a particular relationship between the number of 

exemplars and the associated psychological distances. 

The selective attention component of the SAMBA (Brown, Marley, Donkin & 

Heathcote, 2008) and ANCHOR (Petrov & Anderson, 2005) models, both explain the 

phenomenon known as “contrast” (the tendency for a response on the current trial to be 

biased away from those presented more than one trial previously) by assuming that 

recently-presented stimuli have privileged representations in memory – psychological 

space effectively expands around these representations, increasing their distances from 

other stimulus representations. Such mechanisms might naturally accommodate 

improved performance due to extra stimulus presentations, because extra presentations 

of a stimulus usually lead to a higher probability of that stimulus having been presented 

in the recent past. However, both SAMBA and ANCHOR assume that these changes are 

very short-lived (lasting only a few trials, or perhaps on even shorter time scales – see 

Matthews & Stewart, 2009). This assumption would have to be altered to allow the 

contrast mechanisms to explain our results. 

One further theoretical constraint – the observed differences between stimulus 

types – has interesting implications for these possible accounts based on contrast 
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mechanisms. Standard contrast effects occur for all stimulus types (e.g. Ward & 

Lockhead, 1971), so it is not immediately clear why a contrast mechanism (in SAMBA 

or ANCHOR) should allow for disrupted bow effects using line length and tone 

frequency, but not for tone loudness. An intriguing possibility was raised by Dodds et 

al.'s (2011) finding that, when extended practice improves performance, the standard 

contrast effect disappears. It is possible that extra practice with frequently presented 

stimuli alters the contrast mechanism, to the extent that learning occurs, by fixing in 

place the expanded psychological representation.  

It is a matter for future research to identify why this might occur for some 

stimulus sets (such as line lengths and tone frequencies) but not others (such as tone 

loudness). This account might be tested in future work by examining contrast effects in 

paradigms that, as in ours, involve differential stimulus presentation frequencies. 

Existing experiments, including ours, are not suitable for such analyses because the 

frequently presented stimuli have always been the central stimuli, and contrast effects 

are not observed for those stimuli (Ward & Lockhead, 1971). 
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Abstract 

Unidimensional absolute identification  – identifying a presented stimulus from an 

ordered set – is a common component of everyday tasks. Laboratory investigations have 

mostly used equally spaced stimuli and the theoretical debate has focused on the merits 

of purely relative vs. purely absolute models. Absolute models incorporate substantial 

knowledge of the complete set of stimuli, while relative models allow only partial 

knowledge and assume that each stimulus is compared to recently observed stimuli. We 

test and refute a general prediction made by relative models, that accuracy is very low 

for some stimulus sequences when stimuli are unequally spaced. We conclude that, 

although relative judgment processes may occur in absolute identification, a model must 

incorporate long term referents in order to explain performance with unequally spaced 

stimuli. This implies that purely relative models cannot provide a general account of 

absolute identification.       
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Absolute identification requires participants to identify which stimulus has been 

presented from a pre-specified set. In general, people are unable to accurately identify 

more than about 8-10 stimuli that vary on a single psychological dimension, which is 

surprising when comparative judgments with the same stimuli (i.e., judging whether one 

stimulus is less than, equal to, or greater than another stimulus) are completely accurate. 

For over 20 years, theories of absolute identification have been divided along a 

continuum from purely absolute accounts to purely relative accounts (see Brown, 

Marley, Donkin & Heathcote, 2008, and Stewart, Brown & Chater, 2005, for reviews). 

Absolute models assume some form of memory for the magnitude of each stimulus in 

the set – a set of long term “referents” that represent the stimuli. Relative models make 

a more parsimonious assumption by representing the stimuli using a limited set of 

partial information. Usually, relative models assume that the only long term memory is 

for a single scale factor related to the “spacing” of the stimuli, that is, to the magnitude 

differences between adjacent stimuli. The relative approach has proven successful in 

magnitude estimation tasks (e.g., Luce & Green, 1974; Marley, 1976), and the 

superficial similarity between the tasks suggests that the same approach may work in 

absolute identification. 

The theoretical debate has progressed mainly by pairwise comparison of 

particular absolute and relative models, for example: Marley and Cook (1984) vs. 

Laming (1984); Petrov and Anderson (2005) vs. Stewart et al. (2005); and Stewart et al. 

(2005) vs. Brown et al. (2008). There have been one or two attempts at a more general 

comparison, but these have proven less diagnostic than hoped (see, e.g., Brown, Marley 

& Lacouture, 2007; Stewart, 2007; or Experiment 2 of Stewart et al., 2005). Here, we 

present a classwise comparison based on key differences in the way absolute and 

relative models map from the stimulus to the response space. Rather than relying on 
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small differences in quantitative goodness-of-fit, we identify a qualitative failure of 

relative models, caused by their core structure. In particular, we show that relative 

models make very strong and surprising predictions for experiments using unequally 

spaced stimuli. We then test these predictions with a new experiment that addresses a 

potential limitation of past research.  

We focus on absolute identification experiments with unequally spaced stimuli 

presented with feedback, which means that participants are informed of the correct 

response after each trial. Feedback is almost always presented in numeric format (e.g., 

as a digit on a computer screen), and so researchers have used the term numeric 

feedback (Holland & Lockhead, 1968, p. 412).  The numeric nature of feedback is 

important in our discussion of relative models, especially of the relative judgment 

model (RJM, Stewart et al., 2005). In fact, we show that relative models – including the 

RJM – are unable to account for certain aspects of data from experiments with 

unequally spaced stimuli. Although it is not the model described by Stewart et al., an 

extended version of the RJM can account very accurately for unequally spaced designs
5
. 

However, the extension contradicts the very core assumptions of the relative account of 

absolute identification, transforming the relative judgment model into an absolute 

judgment model, or at least into a hybrid absolute-relative judgment model. 

Absolute vs. Relative Stimulus Representations 

 Absolute and relative models of absolute identification assume fundamentally 

different psychological representations. All absolute models include a flexible long-

term memory representation of the entire set of stimuli used in an experiment. For 

example, Marley and Cook (1984) assume end anchors and an attention mechanism that 

                                                 
5
 Stewart et al. used this extended model to fit Lockhead and Hinson's (1986) unequal spacing data, but 

did not specify the nature of the extension. 
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together yield a long-term representation of the stimulus context and, indirectly, of 

stimulus magnitude. Petrov and Anderson (2005) posit explicit “anchors” which provide 

referents for the magnitude of each stimulus. Theories based on Lacouture and Marley’s 

(1995) bow mapping (including Brown et al., 2008, and Lacouture & Marley, 2004) use 

both end anchors and a referent for each stimulus.  

By contrast, a fundamental property of relative models is that they explicitly 

deny the use of memories for stimulus magnitudes. Instead, they use only magnitude 

differences between stimuli presented on successive trials, and assume that equal 

stimulus differences are mapped to equal differences on a response scale. Relative 

models have enjoyed considerable success, and have been able to account for almost all 

of the data accounted for by the more complex absolute theories (see, Stewart et al., 

2005; Stewart, 2007). However, our analyses suggest that this success is a product of 

the way in which researchers have traditionally designed their experiments: almost 

always using designs where the stimuli are equally spaced and the feedback respects 

this equal spacing. This matches the assumption underlying relative accounts, but runs 

the risk that they will not generalize to absolute identification in the real world, where 

stimuli are often not equally spaced. There have been isolated investigations into the 

effects of unequally spaced stimuli (Lockhead & Hinson, 1986; Lacouture, 1997). 

However, these experiments have always used a within-subjects design to compare 

equal and unequal spacing conditions. This may have prompted participants to take 

particular note of the stimulus structure and encouraged them to use an absolute, rather 

than relative, processing mode – whether or not that mode was their default. Our 

experiments address this possibility by manipulating unequal spacing conditions 

between-subjects.  
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The representations used by relative accounts of absolute identification make a 

powerful and surprising prediction, that unequally spaced stimuli should result in very 

poor accuracy for certain trial sequences. On the other hand, absolute accounts predict 

that data from experiments with unequally spaced stimuli should not be radically 

different from standard data. To illustrate the point, consider the relative judgment 

models of Laming (1984), Holland and Lockhead (1968), and Stewart et al. (2005), and, 

for simplicity of the example, ignore sequential effects.  These models depend critically 

upon a single estimate for the difference between adjacent stimulus magnitudes. This 

“spacing” estimate is used to scale the psychological difference between the current and 

previous stimulus into a difference in response units. The resulting estimate of the 

response difference between the current and previous stimulus is then added to the 

numeric feedback for the previous trial
6
. This numeric feedback informs the participant 

of the correct response for the previous stimulus, and so when the estimated response 

difference between the previous and current stimulus is added, a response can be 

generated for the current stimulus. 

When the stimuli used in an experiment are unequally spaced, this process 

breaks down in the obvious manner. The single estimate used for the spacing between 

adjacent stimuli cannot capture all of the different spacings that exist between different 

stimuli. The relative model is forced into a compromise when scaling from stimulus 

differences to response differences, using some average estimate of the spacing between 

stimuli. This average estimate leads to errors whenever the current and prior stimuli are 

separated by spacings that are different from the average estimate. We develop the 

above argument more formally in the Appendix. There, we set out a very basic model 

                                                 
6
 Laming’s (1984) model differs from the other two in that it assumes the response scale is the log of the 

numeric responses. This approach retains the core problems of relative models for unequally spaced 

stimuli when the numeric responses are 1,…,N.  
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that captures the core elements of relative judgment, but includes no extra components, 

such as random variability or sequential effects. We show that when stimuli are 

unequally spaced, the basic model predicts very low accuracy for certain combinations 

of current and prior stimulus magnitudes, regardless of the values given to the model’s 

parameters. Below, we test this prediction using data from an experiment with 

unequally spaced stimuli, replicating Lockhead and Hinson’s (1986) design. The simple 

model we analyze in the Appendix does not include many of the extra components used 

in cutting-edge relative models, so our analyses will not apply perfectly to those 

accounts. Therefore, we also show that the leading relative model (the RJM) cannot 

account for our data, or those from one of Lacouture’s (1997) unequal spacing 

experiments. These analyses confirm that the same problems are observed in cutting 

edge relative models as are found in the basic architecture analyzed in the Appendix.  

Methods 

Participants 

Introductory psychology students from the University of Newcastle took part in 

the study, receiving course credit as compensation: ten participants in the low spread 

condition, and eight in each of the other two conditions. 

Stimuli 

There were three spacing conditions: low spread, even spread and high spread. 

In each condition the stimuli were three 1000Hz tones of different intensities. The range 

of tone intensities was different in each condition, as illustrated in Figure 1. In the even 

spread condition the tones were equally spaced at 79dB, 82dB and 85dB. Stimuli in the 

other conditions were identical, except that in the low spread condition, stimulus #1 was 
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made less intense (73dB), and in the high spread condition stimulus #3 was made more 

intense (91dB).  

 
 

Figure 1. Schematic illustration of the stimuli used in the three different conditions. 

 

Procedure 

Each participant was randomly assigned to either the low, even or high spread 

condition. Each condition had three phases: digit identification, practice, and a test 

phase. The digit identification block was 90 trials in length, during which participants 

responded to a series of electronically pre-recorded numbers (1, 2 or 3). They were 

asked to press the corresponding number key on a regular keyboard; each number was 

played via headphones thirty times, in random order. This phase was intended to 

examine baseline reaction times for unambiguous stimuli, so that differences in mean 

response times for the three different response buttons (and fingers) could be identified. 

During practice, each of the three tones was played once, in ascending order of 

intensity. Each tone was labeled with the number 1, 2 or 3, which appeared on screen 

while the tone was played. Participants were required to press the corresponding key to 
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continue. For example, “This is tone number 1, if you think you have heard this tone, 

press 1 to continue”. The test phase had 10 blocks. In each block, each stimulus was 

presented 30 times, with the order of the 90 trials being randomized. On each trial, a 

visual cue (+) was displayed for 500ms, then the stimulus was played for 1000ms, and 

the participant had up to 20 seconds to respond. If no response was made, the next trial 

was presented and a missing value recorded.  If a response was incorrect, the correct 

answer was displayed on the screen for 1000ms. If the response was correct, “Correct” 

was displayed on screen for 1000ms. Participants were required to take a minimum 30 

second break between each block. 

Results 

Response times faster than 180msec or slower than 5sec were removed from the 

analysis, which accounted for fewer than 1% of trials in each condition. Results from 

the digit identification block showed there were no substantial differences in response 

speed across stimuli #1-#3, on average response times were 642msec, 678msec and 

635msec respectively, and this pattern was maintained within the three experimental 

conditions. Figure 2 illustrates the absolute identification results. Results in the even 

spread condition were typical of traditional absolute identification tasks. Mean response 

time (top row, middle panel) was slower for the middle stimulus than the edge stimuli, 

although the mean difference was slight (59msec). Response probabilities (bottom row, 

middle panel) show the correct response was most frequent for each of stimuli #1-#3 – 

78%, 79% and 87%, respectively. There was a slight asymmetry, with the softest 

stimulus identified less accurately, and more slowly, than might be expected relative to 

the loudest stimulus. 
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Figure 2. Mean response time (top row) and response probabilities (bottom row) for the low spread, even spread and high spread conditions. Triangle, 

circle and inverted triangle symbols depict data associated with responses #1, #2 and #3, respectively. Error bars are +/-1 standard error, calculated 

across participants, assuming normal distributions of means in the population. The dashed lines join predictions from the SAMBA model, discussed 

later. 
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Figure 2 replicates the key aspects of Lockhead and Hinson (1986). In the low- 

and high-spread conditions, responses to the privileged stimuli (the ones with greater 

separation) are more accurate than in the even spread condition (t(16)=3.7, p=.001 and 

t(14)=4.4, p=.001 respectively). Mean response times for the privileged stimuli were 

also faster, although the differences were not significant (t(16)=0.9, p>.05 and 

t(14)=1.4, p>.05 respectively). These advantages are unsurprising, as in each case the 

stimulus itself is different, either much louder or much softer.  

What is more interesting is that the remaining two stimuli in the low- and high-

spread conditions are more often confused than in the even spread condition, even 

though these two stimuli are physically identical across pairs of conditions. For 

example, stimuli #1 and #2 are physically identical in the even spread and the high 

spread conditions (79dB and 82dB in both cases), yet they are more often confused in 

the high spread condition than the even spread condition. In the even spread condition, 

response #1 is given on 11% of presentations of stimulus #2, and but this rises to 19% 

in the high spread condition, and the difference is significant (t(14)=2.6, p=.014). 

Similar patterns occur (with smaller magnitudes) for the other identical 

stimulus/response pairs.  

An Absolute Account of the Data 

 Theories using absolute processes naturally account for data from unequally 

spaced stimuli because they include complete knowledge of the stimulus set, including 

long-term memories for the magnitudes of all stimuli in the set. When the spacing of the 

stimuli changes, so do these referents. The tracking process that carries out these 

changes may be specified in great detail (e.g., Petrov & Anderson, 2005; Treisman & 

Williams, 1984), or not (e.g. Brown et al., 2008), but nevertheless all absolute models 

include the necessary components. We use Brown et al.’s model (SAMBA) to illustrate. 
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SAMBA assumes that the magnitude of a stimulus is estimated in a noisy and error-

prone fashion, which is then compared against long-term memories (referents) for each 

stimulus. When the physical spacing of certain stimuli is small, relative to the average 

spacing of stimuli in the entire set, so too is the difference between their referents. Since 

decisions are based on comparison with these referents, greater confusion is predicted 

between stimuli that are closer together, relative to the overall context of the experiment 

– just as observed in the data. 

In Figure 2, the dashed lines join predictions from SAMBA, for both response 

times (top row) and response probabilities (bottom row). SAMBA’s account of the data 

is very parsimonious – exactly the same parameter values are used to generate 

predictions for all three experimental conditions. The different predictions arise without 

parameter changes because the different stimuli in the three conditions provide different 

long-term referent values. These referents capture the critical qualitative patterns in both 

response times and response probabilities. The quantitative fit to the data is quite good, 

with all predicted response probabilities falling within .05 of the corresponding 

observed probabilities (root-mean-squared error, RMSE=.026).  

SAMBA’s predictions were generated by adjusting the parameters used by 

Brown et al. (2008) to fit data from the equally spaced condition of Lacouture’s (1997) 

experiment. To fit the current data set, four parameters were changed. One parameter 

was adjusted to fit the overall level of accuracy ( =16); larger values of  endow the 

model with improved memory for the context of the experiment, allowing more precise 

estimates of stimulus magnitudes. A second parameter was adjusted to fit the overall 

level of response times (C=447); larger values of C correspond to more caution in 

evaluating evidence for the different responses. Finally, two anchor values (L and U) 

were changed to accommodate the asymmetry in the data; these anchor values describe 
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the range of stimuli that the observer sets as relevant for this experiment. Response 

accuracy is maximized if the range is set identical to the range used in each particular 

stimulus condition, but observers typically do not quite manage this. We fixed L to be 

6dB quieter than the quietest tone in each condition, and U to be 3.3dB louder than the 

loudest in each condition. An even better fit to the data – particularly the response time 

asymmetry – could have been obtained by allowing differences in the anchors between 

conditions. Such differences are plausible, given the between subject manipulation, but 

our arguments do not rely on small differences in quantitative fit, and so the extra 

complexity is not necessary. 

SAMBA estimates stimulus magnitudes using a selective attention mechanism 

based on Marley and Cook’s (1984) rehearsal model. The details are in Brown et al. 

(2008), but the important point is that the averages of these magnitude estimates serve 

as referents. Magnitude estimates are expressed as ratios in the interval [0,1], with zero 

representing the lower anchor (L) and one representing the upper anchor (U). With the 

parameters above, in the even spread condition the average magnitude estimates for the 

three stimuli are {.4, .59, .78}, and these estimates capture the even spacing of the 

physical stimuli. In the low spread and high spread conditions, the average magnitude 

estimates are {.29, .71, .85} and {.29, .43, .85}, respectively. The latter two sets of 

estimates capture the relevant three-to-one stimulus spacings without the need for 

changes in parameters between conditions. 

The Relative Account 

 Relative models make the strong prediction that response accuracy for certain 

stimulus sequences will be very low when stimuli are unequally spaced. For example, 

consider the relative models proposed by Laming (1984) or Stewart et al. (2005). Both 

models depend critically on a memory for the average spacing between adjacent 
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stimulus magnitudes (  in Stewart et al.’s model,  in Laming’s). Throughout this 

paper, we will use the symbol Zi to represent the physical magnitude of the stimulus 

presented on trial i, measured on a logarithmic scale. The symbol Si is used for the rank 

of that stimulus within the entire set of stimuli experienced by a participant. In the even 

spread condition of our experiment, we used three stimuli with physical magnitudes 

79dB, 82dB, and 85dB. Relative accounts of absolute identification operate using the 

knowledge that 3dB separates adjacent stimuli, as follows. Suppose that the stimulus 

presented on the previous trial was Zn-1=79dB (Sn-1=1) and the stimulus presented on the 

current trial is Zn=82dB (Sn=2). The core elements of a relative model would operate 

by: 

1. Estimating the magnitude difference between the current and previous 

stimulus (in this case, 82dB-79dB = +3dB difference). 

2. Transforming the difference estimate into the numerical response scale, using 

the knowledge that adjacent stimuli are separated by 3dB, so that the +3dB difference is 

transformed to a difference of +1 response. 

3. Converting the response difference into a response by adding it to the correct 

response from the previous trial, which is known by feedback. Thus, the response on the 

current trial would be the +1 difference added to the previous correct response (1), 

yielding the response 2 (which is correct). 

When the stimuli are unequally spaced, this process breaks down. Our high 

spread condition used three stimuli with intensities 79dB, 82dB and 91dB – the loudest 

stimulus is much louder than before, but the other two are unchanged. Participants 

performed quite well in this condition, with better than 84% accuracy for each of the 

three stimuli. However, consider the relative judgment account of the same trial 

sequence as above, when stimulus Zn-1=79dB (Sn-1=1) is followed by stimulus Zn=82dB 
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(Sn=2), the magnitude difference is the same as before, +3dB. However, if the 

observer’s long-term memory is based on the average difference between adjacent 

stimuli, they will use =6dB. This causes the observed magnitude difference to be 

transformed into a numerical response difference of only +½. When this response 

differences is added to the numeric feedback from the previous trial (1) the model 

predicts that the response given for the current trial should be equally likely to be 1 

(incorrect) as 2 (correct). Manipulating  can solve this particular problem, for example 

by using =3dB. However, this simply shifts the problem to other stimulus sequences 

(e.g., then all trials in which stimulus #2 follows stimulus #3 are classified incorrectly). 

This type of reasoning is formalized in the Appendix. 

 Figures 3 and 4 illustrate that this exact problem arises even in the fit of a much 

more complicated relative model, the RJM of Stewart et al. (2005). In this section, we 

focus on the RJM as described by Stewart et al.’s text and equations. Personal 

communication has revealed that Stewart et al. actually implemented a different version 

of their model, at least when dealing with experiments using unequally spaced stimuli. 

We call that model the extended RJM, and consider it carefully in the next section. 

Figure 3 shows that the global fit of the RJM is quite good, with RMSE=.042, which is 

in the same ballpark as SAMBA’s fit (RMSE=.026). When fitting the RJM, we adjusted 

four parameters: one for the scaling of stimulus differences to response differences ( ); 

one for the effect of the prior trial on the current decision ( 1); a variance parameter ( ); 

and a decision threshold ( 1). We had to allow the RJM to have different parameter 

values for the equally-spaced ( =0.786dB, 1=.312, =.208, 1=0.702 and 2=4- 1) and 

unequally spaced ( =2.016dB, 1=.087, =.092, 1=1.36 and 2=4- 1) conditions. The 

different values of the spacing parameter, , reflect the very different stimulus spacing 
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conditions in the equal versus the unequal spacing conditions
7
. These extra parameters 

(eight, as opposed to the four used by SAMBA) provide the RJM with some extra 

flexibility, which may concern some readers; however we were unable to find a 

common set of parameters that gave a reasonable fit to all three conditions. We also 

explored even greater parameter freedom for the RJM, by allowing independent 

parameters for the two response thresholds ( 1 and 2) – this version of the model 

performed only marginally better than the symmetric version described above. Note that 

the RJM does not make predictions for response times, so Figure 3 shows only response 

probabilities. 

                                                 
7
 Our parameter estimate of =0.786dB agrees with the corresponding estimate from Stewart et al.’s 

(2005) fit to Lockhead and Hinson’s (1986) experiment. When converted to units of dB, they found 

=0.746dB. 



128 

 

 

 

Figure 3. Data (points) and predictions (dashed lines connecting 

predicted values) from the RJM. For an explanation of the format, see Figure 2. 
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The previous discussion suggests that relative accounts predict very low accuracy 

for particular stimulus transitions, such as between stimuli #1 and #2 in the high-spread 

condition and stimuli #2 and #3 in the low-spread condition. Figure 4 graphs the 

accuracy associated with each stimulus (shown using different symbols) conditional on 

the previous stimulus (given by the x-axes). The three columns of Figure 4 show these 

graphs separately for the low-spread, even-spread and high-spread conditions. The top 

row shows just the data, the second row shows corresponding predictions from 

SAMBA, and the bottom row shows the predictions made by the RJM.  
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Figure 4. Response accuracy for each stimulus (shown by different symbols – 

see legend) conditioned on the previous stimulus (x-axis). Top row shows data, 

lower two rows show predictions from SAMBA and the RJM. The three 

columns correspond to the low spread, even spread and high spread 

experimental conditions. 
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The top row of Figure 4 show that participants performed quite well on all 

stimulus transition sequences – even the very worst accuracy was still 71% (when 

stimulus #1 followed stimulus #3 in the even spread condition). SAMBA’s predictions, 

shown in the second row, match the data quite well (RMSE=.059), and the greatest mis-

match between the data and SAMBA’s predictions is only .12. In contrast, the 

predictions for the RJM, on the third row, are very different from the data. Just as 

expected, the predicted accuracy for some stimulus transitions is around 50%. The 

overall RMSE for RJM’s fit to the sequential data is more than three times that of 

SAMBA (.19), as is the greatest mis-match between the sequential data and predictions 

(.41). These analyses demonstrate that the apparently adequate account of the data 

provided by the RJM in Figure 3 was really a consequence of averaging together large 

over-predictions for some conditional accuracy values together with large under-

predictions for others. We tried to remedy this mis-fit by adjusting the free parameters 

of the RJM solely to optimize the fit shown in Figure 4, ignoring the overall mean 

response probabilities shown in Figure 3. This analysis resulted in a slight improvement 

in fit, but not enough to change the conclusions to be drawn, nor did it change the 

predictions of extremely poor performance for certain stimulus transitions. When the 

model was endowed with almost double the number of free parameters (an extra two for 

asymmetric response criteria, plus independent free parameters for all three conditions) 

and when all of those parameters were adjusted to optimize fit for Figure 4, the overall 

RMSE for the RJM was still double that of SAMBA (at .12) and the worst mis-fit was 

still very large (.31). 
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Lacouture (1997) 

 Lacouture (1997) also studied absolute identification with unequally spaced 

stimuli. He used a larger stimulus set, which has the consequence that relative models 

are less able to trade off under-prediction and over-prediction of the conditional data in 

order to provide an apparently adequate fit to the unconditional data. In one of his 

simplest conditions, he used a standard design with ten lines of increasing length that 

were equally log-spaced except for a large gap between the central pair of lines that was 

6 times as large as the other gaps – using arbitrary units
8
 for log-length, the lines’ 

lengths were: {1, 2, 3, 4, 5, 11, 12, 13, 14, 15}. The data from this condition were very 

similar to those observed under standard conditions, except for improved response 

accuracy and latency for stimuli adjacent to the large gap. Figure 5 illustrates these data 

following Lacouture’s analysis: plotting accuracy conditioned on the response, rather 

than the customary conditioning on the stimulus. Similar effects are observed with 

either analysis, but they are somewhat clearer in the response-conditioned version.  

  

                                                 
8
 The RJM is insensitive to arbitrary linear transformations of the psychological stimulus magnitudes, 

though the numerical value of some parameters in data fits may depend on the particular representation 

selected. 
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Figure 5. Response accuracy from Lacouture’s (1997) large central gap condition 

(points), and predictions from the RJM (dashed lines). Error bars show +/-1 standard 

error, assuming binomial distributions. 
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Donkin, Brown, Heathcote and Marley (in press) demonstrate that SAMBA fits 

these data well (RMSE=.08), while simultaneously accounting for the associated 

response times, and for both types of data for Lacouture’s other stimulus spacing 

conditions, all using the same set of parameters. Our analyses (see Appendix) show that 

the core architecture that underlies relative models makes inappropriate predictions for 

the choice data. To confirm that these problems are not limited to the basic relative 

architecture, we also fit the RJM to Lacouture’s data. We optimized the RJM’s 

parameters to fit only the data of Figure 5 ( =0.074, =1.75 and C=.136; we could not 

obtain a better fit by adjusting the five sequential effect parameters 1-5). Other 

parameter settings allow the RJM to capture the accuracy values for responses 2-4 and 

7-9 somewhat better, but always at the expense of far worse predictions for other 

responses. As expected from our analytic results, the RJM fits the data very poorly 

(RMSE=.18).  

The relative account of Lacouture’s (1997) data fails in exactly the manner 

predicted by our analysis in the Appendix. There is a tension in the model between 

transforming the small spacing between stimuli #1-#5 and #6-#10 (just one stimulus 

spacing unit) to numerical differences on the response scale, and transforming the large 

gap between stimuli #5 and #6 (six stimulus spacing units) to a numerical difference on 

that scale. The RJM settles on a compromise solution, estimating the spacing parameter 

at =1.75 spacing units. Of course, this compromise fails for certain stimulus 

transitions. For example, it makes inappropriate predictions whenever the current and 

previous stimuli lie on opposite sides of the large gap (i.e., when the current stimulus is 

between #1 and #5 and the prior stimulus was between #6 and #10, or vice versa).  
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These predictions are confirmed by the predicted response probabilities from the 

RJM fits – for example, when the stimulus given on the previous trial was the largest 

one (#10) and the current stimulus is the smallest (#1), the RJM always predicted an 

incorrect response (#3). Lacouture’s participants did not show such behavior. Stimulus 

#10 was followed by stimulus #1 a total of 21 times, but not once did this elicit response 

#3. Instead, 17 responses were correct (#1), and the other four were all just one response 

away (#2). Similar patterns are observed for many other stimulus sequence pairs that 

involve either very large or very small jumps between successive stimuli, and these 

result in near chance prediction of the conditional accuracy values by the RJM 

(RMSE=.44). In contrast, SAMBA fits these same values with RMSE=.17 (Donkin et 

al., in press), with the misfit due mostly to a failure to capture the asymmetry in the data 

due to the responses to stimuli #4 and #5 being less accurate than those to stimuli #6 

and #7). 

Rescuing the Relative Account 

 The analyses above suggest that purely relative accounts of absolute 

identification must fail when stimuli are unequally spaced. In this section, we present 

two ways by which the relative account can better address data from unequally spaced 

stimuli. However, a side effect of both approaches is an increase the amount of long-

term stimulus magnitude information used by the model. In each case, this changes the 

theoretical account from “purely relative” to either “purely absolute” or a hybrid 

account which falls somewhere in between the two poles. 
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Mapping the numeric feedback to stimulus magnitude 

In our analysis of the RJM above, Zn and Zn-1 are the physical magnitudes of the 

current and previous stimuli, measured on a log scale. The difference between these 

magnitudes is scaled to a difference on the response scale by the parameter . Finally, 

this response-scale difference is added to the feedback given to the participant on the 

previous trial. This feedback is invariably numeric (one of the digits 1, 2, … , N). For 

example, in the low-spread condition of our experiment the physical stimulus 

magnitudes were 73dB, 82dB and 85dB. When stimulus #3 was given, the feedback 

provided to the subject after their response was the label #3, not the physical magnitude 

of the stimulus (85dB). Stewart et al. (2005) extend the RJM to accommodate 

unequally-spaced data from Lockhead and Hinson’s (1986) experiment by assuming 

that the feedback provided to the model about the correct answer for the previous trial 

(i.e., the label #1, #2 or #3) is transformed by the observer back into a physical stimulus 

magnitude (e.g., they assume that the observer transforms the label #3 back to the 

magnitude 85dB, or some representation of that).  

There are two problems with this extended RJM. The first problem is that the 

extension is never mentioned in print. The reader naturally assumes the conventional 

definition of “feedback”: the numeral associated with the correct response. Stewart et al. 

(2005) reinforce this assumption in three ways. Firstly, they cite Holland and 

Lockhead’s (1968) model – which explicitly uses numeric feedback – as a basis for their 

own. Secondly, Stewart et al. carefully define a different symbol for feedback than the 

one used for stimulus magnitude. Thirdly, and most explicitly of all, the text above 

Stewart et al.’s Equation 8 clearly uses numeric feedback (equivalent in this case to 

stimulus rank Sn-1) while simultaneously using psychological magnitudes – different 
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from stimulus ranks – for stimulus differences (written as Aln(r)Sn-1, which is equal to 

Zn). This clearly shows that the model Stewart et al. describe is the one we have 

implemented, not the “extended RJM”. It is surprising that the unusual definition of 

feedback required for the extended RJM is not discussed by Stewart et al.. This 

omission is particularly surprising because the extended RJM makes a very powerful 

assumption about the psychological processes in question – that the observer can 

somehow transform numeric feedback about the stimulus into information about 

absolute stimulus magnitude. 

The second, and more serious, problem with Stewart et al.’s (2005) assumption 

is that it violates the very heart of their work. On p.892, Stewart et al. write
9
: “What is 

admitted to the decision process on trial n is not some representation of the magnitude 

of Sn but a representation of the difference between Sn and Sn-1”. Allowing the 

assumption that the feedback label (Fn-1) can be transformed by the observer into the 

stimulus magnitude (Zn-1) perfectly solves the problem of fitting the data for unequally 

spaced stimulus sets. However, making this assumption directly contradicts the core of 

their model – that stimulus magnitudes are not admitted to the decision process. On a 

deeper level, assuming that the observer can transform numerical feedback into a 

stimulus magnitude is equivalent to assuming that the observer is able to rely on long-

term referents that encode the absolute magnitude of each stimulus used in the 

experiment. This assumption goes against the very core of all purely relative accounts 

                                                 
9
 Recall that the RJM is insensitive to arbitrary linear transformations of the psychological 

stimulus magnitudes, except for the numerical estimates of some parameters. So even though Stewart et 

al. make this statement in terms of ranks (Sn and Sn-1) for the equally spaced case, it also applies to (log) 

stimulus magnitudes (Zn and Zn-1) in the unequally spaced case. 
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of absolute identification. Even if the assumption that feedback labels are replaced by 

stimulus magnitudes can be motivated in some way (e.g., by assuming optimization of 

performance via learning), the resultant effect is still a code of the absolute magnitude 

of each stimulus in the experiment. 

The use of absolute referents might be justified as an exceptional case for 

Stewart et al.’s (2005) account, appropriate for Lockhead and Hinson’s (1986) 

experiment because of its within-subjects design. When Lockhead and Hinson’s 

participants experienced the unequally spaced conditions, they may have noted the 

difference from the equally spaced condition, and stored this information in the form of 

a set of long-term referents that accurately capture the spacing of the stimuli. Thus, a 

within-subjects design for unequally spaced experiments may encourage participants to 

adopt an absolute, rather than relative, approach, mirroring the approach taken by 

Stewart et al. to modelling these data. Although this is implicitly the theoretical 

approach taken by Stewart et al., they do not acknowledge that this necessarily makes 

their model absolute. Of course, the same explanation does not apply to our between-

subjects experiment, nor to situations beyond the laboratory where absolute 

identification is accomplished with unequally spaced stimuli. 

Judgment relative to the last two stimuli  

A variant of relative models (implemented in the RJM by Stewart, 2007) 

assumes that sometimes the magnitude of the current stimulus is judged relative to the 

stimulus that occurred two trials previously. If the model uses either the previous or 

next-to-previous stimulus as a referent, depending on which is closer in magnitude to 

the current stimulus, a better fit can be obtained to data from both of the experiments we 

analyze above. The improvement in fit comes about by avoiding the problematic 
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stimulus sequences described earlier. For example, in Lacouture’s (1997) experiment, 

relative models have difficulty when there is a very large difference between the current 

and previous stimulus, such as when a stimulus from the smaller sub-group of lines 

(stimuli #1..#5) follows a stimulus from the larger sub-group of lines (stimuli #6..#10), 

or vice versa. In Lacouture’s experiment, 50% of trials fit this description. On these 

trials, a model allowed to use the two-back stimulus as a referent can avoid the 

problematic situation half of the time, because the two-back stimulus has a 50% chance 

of being from the same sub-group as the current stimulus. Thus, a model using either 

the prior or two-back stimulus as a referent strikes a problematic stimulus sequence on 

only one quarter of trials. The model still makes unreasonable predictions for that 25% 

of trials, but the global average fit is much improved. 

The relative account could be even further improved by allowing the access to 

the previous three stimuli as referents (or four, or five …). However, the core problem 

would still remain for particular trial sequences. When given a run of stimuli all from 

the same sub-group of lines (e.g., several trials in succession all using stimuli #1..#5) a 

relative model will predict very low accuracy if the next stimulus is drawn from the 

other subgroup. Such runs of stimuli are sufficiently common in data from large 

experiments that they cannot be ignored. 

Discussion 

 Relative models of absolute identification (e.g., Laming, 1984; Stewart et al., 

2005) have explicitly denied the use of long-term memories for stimulus magnitudes. 

Instead, they are based on a more parsimonious representation of the stimulus 

magnitudes which uses just a single value that maps differences in stimulus magnitudes 
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to differences on the response scale. The scaled difference between the stimulus 

magnitude on the current and previous trial (plus the distortions due to previous 

differences) is added to the numeric feedback from the previous trial to generate a value 

on the response scale. We have shown that this approach fails when the spacing 

between stimuli is unequal. We also explored ways in which theories based on relative 

judgment can be modified to alleviate the observed problem. These solutions allow 

relative models to fit the data very well, but they do so by violating the core assumption 

of relative accounts. Our analyses (see Appendix) show that these problems are not 

simply due to poor parameter estimates, or to the particular details of the detailed 

relative model we tested – instead, the problem arises from the core architecture that 

underlies all relative judgment models.  

The success of absolute models and the failure of relative models is due to the 

fact that the former have a quite complete representation of the stimulus magnitudes and 

a flexible mapping from the stimulus to the response space, whereas the latter have a 

representation of differences in stimulus magnitudes and a restrictive mapping from the 

stimulus to the response space. The long-term referents used in absolute models allow 

them to flexibly represent different stimulus magnitudes. On the other hand, relative 

models have explicitly denied such long-term memory elements. Without such 

referents, relative models are forced to use a greatly simplified stimulus-to-response 

mapping based on the assumption of a linear relationship between psychological 

stimulus magnitudes and the numeric feedback values (1, 2, 3, … N). With this 

assumption, relative models succinctly summarize the stimulus-to-response mapping 

with just one parameter, for the spacing between psychological stimulus magnitudes 

from stimuli with adjacent responses. This summary works very well when the 
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experimenter uses a design with N equally spaced stimuli and the numeric feedback set 

(1, 2, 3, … N), but breaks down for other stimulus spacing’s with the same feedback set. 

Absolute models do not use such a limited framework. For example, SAMBA does not 

treat the responses as numbers that can be added and subtracted, but rather as 

independent labels applied to response accumulators.  

It may be possible to escape the above limitation of relative models by using a 

non-numerical mapping of the type used in SAMBA. A simple version would map the 

difference between the current and prior stimulus magnitudes, (Zn-Zn-1), to some 

response label that was not necessarily a real number. This response label could then be 

combined with an appropriate transform of the numeric feedback for the previous trial 

(Fn-1) in a cognitive operation that mimics the mathematical operation of addition. 

Unfortunately, the same problems we have identified above apply even to such 

extensions of relative models. In order to appropriately accommodate unequally spaced 

stimuli, such a model would still require the additional assumption that participants can 

transform the labels they are given as feedback (e.g., 1, 2, or 3) into stimulus 

magnitudes (e.g., 58dB, 60dB, 66dB). This transformation can be accomplished by 

assuming that a long-term referent is maintained for the magnitude of each stimulus, but 

of course that makes the model absolute, rather than relative. Equivalently, the 

transformation can be accomplished via a look-up table that remembers the correct 

response associated with each pair of possible values of {Fn-1 , (Zn-Zn-1)}. As with all 

the other versions of relative models that can successfully accommodate data from 

unequally spaced designs, this is just an absolute referent model by another name. All 

modifications to relative models that allow them to operate with unequally spaced 

stimuli work by including in the model a representation of the absolute magnitudes of 



142 

 

 

the stimuli. This representation can be incorporated in many forms, such as in the look-

up table above, or in an assumed transformation between numeric feedback and 

stimulus magnitude, or even in the location of response criteria. In all cases, the 

modification includes in the model a very complete representation of the stimulus 

magnitudes, which runs counter to the basic tenets of relative judgment. 

Our results make it clear that relative judgment based on a single scale factor 

and numeric feedback cannot provide a general account of absolute identification. 

However, it is possible that absolute identification is accomplished, at least in some 

cases, via a cognitive process of relative judgment that relies on a set of absolute 

referents. Indeed, the SAMBA model incorporates just such a relative process, although 

it was not used in any of the fits presented here, and was required to account for only 

one of the many benchmark phenomena fit by Brown et al. (2008). Similarly, the 

extension of the RJM to unequally spaced designs discussed above uses relative 

judgment in addition to a set of long-term memories for stimulus magnitudes. The 

success of these hybrid models is interesting, and deserves further investigation, 

particularly given the strong case that has been made for the general importance of 

relative judgment in cognition (Chater & Brown, 2008). However, our main point 

remains – that purely relative processes are insufficient to provide a general account of 

absolute identification.  
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Appendix 

 We examine the performance of a canonical relative judgment model for 

absolute identification with correct feedback that is intended as an abstraction of the 

major assumptions of the RJM (Stewart et al., 2005) and the theoretical frameworks of 

Laming (1984) and Holland and Lockhead (1968). One absolute model of absolute 

identification (SAMBA) also includes a local judgment component (see Brown et al., 

2008, p.403-404) that shares some characteristics with relative judgment models. This 

component does not suffer from the problems outlined below, as it operates on absolute 

knowledge (including referents for stimulus magnitude estimates). 

Consider the “large central gap” condition from Lacouture’s (1997) experiment. 

This was an absolute identification experiment using 10 lines whose psychophysical 

magnitudes (Zi) can be represented using arbitrary units as {1,2,3,4,5,11,12,13,14,15}. 

That is, there were 10 stimuli, with a gap equal to five missing stimuli in the middle. 

We examine the performance of a simplified, deterministic relative judgment model for 

this experiment. We require of this model that: 

1. There is a parameter >0 that transforms psychophysical differences to 

numerical differences on the response scale. 

2. On each trial, n, a response magnitude estimate Mn is produced according to 

Mn=Fn-1+(Zn-Zn-1)/ , where Zn and Zn-1 are the log physical magnitudes of 

the current and previous stimuli and Fn-1 is the numeric feedback for the 

previous trial. 

3. The magnitude estimate Mn is partitioned into a response by comparison 

with a set of cut-points C0<C1< C2< … < C9<C10, with C0 -  and C10 . 

Response j is given if and only if Cj-1<Mn<Cj. (For simplicity of exposition, 
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we ignore the case where Mn=Ci for some i. In any case, this event occurs 

with probability measure zero in any probabilistic relative judgment model 

with a continuous response scale.) 

A more complete model might include extra components, such as variability in 

several parameters, and influences from earlier stimulus differences such as Zn-3 - Zn-2. 

We do not concern ourselves with these details, as they serve only to decrease model 

performance. In particular, the magnitude estimate Mn usually has zero-mean noise 

added to it. By considering just the noise-free estimate, we restrict ourselves to 

considering the most probable response for any given sequence of stimuli. 

We require that the model should produce reasonable predictions for absolute 

identification data. For any combination of Zn and Zn-1, the most probable response 

should be the correct one. In our noise-free model, this means that we require Ci-1<i<Ci 

when i, i {1,…,10,} is the correct response for the stimulus presented on trial n .  

Lemma 1: Ci-1<i<Ci for i=1,..,10  

Proof of Lemma 1: Consider the case of a repeated stimulus, where the 

stimulus with rank i is presented on both the current trial (n) and the previous trial (n-1). 

The resulting magnitude estimate will be Mn=i, regardless of the value of . To ensure 

that Mn=i is converted into the correct response #i (the integer i), we require that Ci-1<i 

and Ci>i.  

Lemma 2:  < 4/3 

Proof of Lemma 2: Consider the case Zn=5 and Zn-1=1. Then Mn=1+4/ . For 

the correct response #5 to be issued, we require C4<Mn<C5. From Lemma 1, we know 

that C4>4, so Mn>4. After re-arranging, and with our assumption that >0, we arrive at 

 < 4/3, as required. 
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Theorem: If Zn-1=11 and Zn=5, the predicted response will be incorrect. 

Proof: There is a magnitude difference of -6 units between these stimuli, so the 

resulting magnitude estimate is Mn=6-6/ . Invoking Lemma 2 gives that Mn<1.5. 

Invoking Lemma 1 gives therefore that Mn<C2, so the predicted response is either #1 or 

#2. Both of these are very different from the correct response #5 (the integer 5).  

Various other inconsistencies can be obtained in a similar manner, and these 

inconsistencies can be made arbitrarily large by considering designs with more stimuli 

and more unequal spacing. The intuition for the problem is that a small value of  is 

required to manage the gaps between closely spaced stimulus magnitudes (1-5, and 11-

15) but a large  is required to manage the large gap (5-11).  

 The approach to fixing this problem taken by Stewart et al. (2005), and 

discussed in the text above, is to transform the numerical feedback on trial n-1 to the 

absolute psychological magnitude of the stimulus presented on trial n-1. Thus, with R 

denoting this mapping, the above example requires R(Fi)=Zi, for any i. Step 2 of the 

relative judgment process is then be replaced by: 

2’. On each trial, n, a magnitude estimate is produced according to 

Mn=R(Fn-1)+(Zn-Zn-1)/ , where
 
R is defined above such that R(Fn-1)=Zn-1. 

With this adjustment, Lemma 2 does not hold, allowing the modified model to fit 

the data. 
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Abstract 

In an absolute identification task, participants are shown a stimulus set (e.g., lines 

varying in length) each associated with a unique label. Later participants are asked to 

recall the corresponding label when presented with a stimulus. We studied absolute 

production, a closely related paradigm requiring the inverse response: our participants 

were shown a label and asked to produce the corresponding line length. Absolute 

identification has a long history of study, culminating in comprehensive and detailed 

quantitative models of performance. These models have proven difficult to distinguish 

on the basis of identification data, so we investigate whether an extension to absolute 

production is a fruitful avenue for future development. We demonstrate similarities in 

the data obtained from the two paradigms, and illustrate how a core theoretical element, 

common to all identification theories, provides a basis for a theoretical account of 

production. We develop a mechanistic process based on iterative identification and 

response adjustment, applicable across models, which allows current identification 

models to make predictions about production data. 
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Absolute identification (AI) requires participants to make a stimulus magnitude 

judgment. Participants are first provided with a set of stimuli that vary in magnitude on 

a single dimension (e.g., lines varying in length or tones varying in intensity) and each 

stimulus is given a label. Almost always, the labels are integers, “1” for the smallest 

stimulus, “2” for the next stimulus, and so on. The participant is then presented on each 

trial with a randomly selected stimulus from the set and asked to produce the associated 

label. Despite its seeming simplicity, performance in the task is usually quite poor, with 

perfect identification limited to 7±2 stimuli (Miller, 1956, but see Rouder, Morey, 

Cowan & Pflatz, 2004; Dodds, Donkin, Brown & Heathcote, 2011a).  

Absolute identification exhibits many complex and interesting phenomena; two 

that are important here are sequential effects and edge effects. Sequential effects refer to 

the tendency for decisions to be predictably influenced by stimuli from previous trials. 

Usually, the response on the current trial is biased towards the stimulus from the 

previous trial (“assimilation”), but away from stimuli from earlier trials (“contrast”). 

These phenomena are usually illustrated with impulse plots (Ward & Lockhead, 1970; 

see Figure 1 for an idealized example) and they provide powerful constraints for 

theoretical accounts of AI. 
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Lag 
 

Figure 1. An idealized impulse plot.  Lag on the x axis refers to the number of trials 

previous to the current trial on which either a small, medium, or large stimulus was 

presented (in the figure, lines 1, 2, and 3, respectively).  

  

Edge effects (or bow effects) refer to the tendency for stimuli at the ends of the 

stimulus range to be identified faster and more accurately than those in the middle of the 

range. These phenomena are resistant to almost all experimental manipulations, 

including changes to stimulus spacing (Lacouture, 1997), set size (Stewart, Brown & 

Chater, 2005), practice, and modality (Dodds et al., 2011a; but see Dodds, Donkin, 

Brown, Heathcote & Marley, 2011b, for a recently-discovered exception). Figure 2 

illustrates a bow effect plot for accuracy from Stewart, Brown and Chater (2005). 
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Figure 2. Bow plots for proportion correct, from Stewart, Brown and Chater (2005). 

The figure shows the resistance of the bow effect to manipulations of the number of 

stimuli in the set: 6, 8 or 10 stimuli, shown by circles, squares and diamonds, 

respectively.  

 

The rich variety of reliable empirical phenomena in AI has spurred the 

development of comprehensive quantitative models of performance. One example, 

SAMBA (Brown, Marley, Donkin & Heathcote, 2008), combines components of three 

prior modelling approaches to simultaneously account for many of the standard effects 

in AI. The first stage of SAMBA involves selective attention, and results an internal 

estimate of the stimulus magnitude, judged relative to the smallest and largest stimuli. 
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Later stages of SAMBA transform this magnitude estimate into an identification 

response.  

Like some other current models of AI, SAMBA makes predictions about 

identification accuracy, the latency of responses, sequential effects on both of these 

measures, and several other dependent variables. However, it has proven difficult to 

discriminate between these models on the basis of existing data (e.g., Petrov & 

Anderson, 2005; Brown et al., 2008; Stewart et al., 2005;  Kent & Lamberts, 2005; 

Brown, Marley, Dodds & Heathcote, 2009). We propose that examination of tasks 

similar to AI might shed light on the underlying cognitions, as long as the new tasks can 

be shown to share core elements with AI. Absolute production (AP) may provide such 

an opportunity. The participants’ task in AP is the inverse of AI – they are required to 

produce a stimulus (e.g., a line) when prompted with a label, rather than producing a 

label when prompted with a stimulus. Similar stimulus production tasks have been used 

in studies of semantic categorization (Rosch, 1973), memory distortion (Zangwill, 

1937), prototype representation (Busemeyer & Myung, 1988), magnitude scaling 

(DeCarlo & Cross, 1990) and classification (Zotov, Jones & Mewhort, 2011). Related 

work in psychophysics (e.g., Petrusic, Harrison & Baranski, 2004) has found end effects 

similar to those in absolute identification, including decreased Weber fractions for 

extreme stimuli. Relationships between AP and classification tasks similar to AI have 

revealed good correspondence between production and estimation tasks (DeCarlo & 

Cross, 1990) and between classification accuracy and category production (Zotov et al., 

2011). The continuous nature of AP responses potentially provides benefits over the 

discrete responses collected in AI experiments. In particular, continuous responses map 
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more directly onto a crucial element in all AI models – the internal magnitude 

representation.  

Zotov, Shaki and Marley (2010) present the first data to directly examine links 

between AI and AP. Using lines varying in length, their participants performed a 

memory and a perception based AP task. Before each task, participants were presented 

with nine lines of different lengths, labelled 1...9 from shortest to longest. The memory 

task was absolute production: participants were presented with a randomly selected 

numeral from 1 to 9, and asked to produce the associated line. The perception task was 

intended as a control condition, to measure the variability in responses when long term 

memory was not required. In the perception condition, participants were presented with 

a randomly selected line from the same set, and asked to reproduce it very soon after it 

had been removed. Importantly, in both tasks, the response was the inverse of the 

standard AI task; participants produced (memory task) or reproduced (perceptual task) 

lines in response to labels. Zotov et al. found that performance for the memory 

condition, but not the perception condition, closely resembled typical AI performance, 

consistent with the hypothesis that AI and AP share underlying performance 

mechanisms. 

We propose three extensions to Zotov et al.’s (2010) work. First, we address a 

methodological issue regarding the stimulus set, which allows for better comparison of 

our results against standard absolute identification data. Second, we extend Zotov et 

al.’s data analyses to more fine-grained measures of performance. Finally, we develop a 

theoretical account of absolute production based on an iterative adjustment mechanism 

that can be applied generally to existing models of absolute identification.  
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Experiment 

In their absolute production experiment, Zotov et al. (2010) used linear spacing 

between their stimuli: the difference in length between adjacent lines was constant. 

Weber’s Law asserts, however, that the just noticeable difference between adjacent 

stimuli is proportional to stimulus magnitude, and so traditionally stimuli are spaced 

logarithmically in absolute identification tasks: the ratio of the lengths of adjacent lines 

is constant. Some investigations have also used power-spaced lines, to respect Stevens 

Law (e.g., Rouder et al., 2004), but linearly spaced stimuli are almost never used. To 

examine whether the unusual stimulus spacing affected Zotov et al.’s (2010) results, we 

manipulate stimulus spacing as a between-subjects factor. We also manipulate the 

stimulus probe as a within subjects factor – each participant was asked in one half of a 

2-hour session to reproduce a line from long term memory when prompted with a label, 

and in the other half asked to reproduce a line that had been shown immediately 

previously (“memory” and “perception” conditions, respectively). Zotov et al. also 

manipulated an element of the production method (allowing participants to either start 

with a random-sized line, or a zero-length line). They concluded this made little 

difference to the data, so we have used only one of these conditions (zero-length start 

line). 

Participants 

Twenty participants from the University of Newcastle took part in this task. The 

task took about two hours to complete, for which each participant was reimbursed $30.  



156 

 

 

Stimuli 

Stimulus spacing was manipulated between-subjects. In each condition, the 

stimuli were nine line lengths. In one condition, the lines had lengths from 50 to 850 

pixels in 100 pixel increments. In the other condition, lines had lengths from 100 to 900 

pixels in 32% increments (100, 132, 174, 228, 300, 394, 520, 684, 900 pixels). The lines 

were black on a white background. Each was labelled with a number from one through 

to nine, in order of increasing magnitude. Each participants took part in one line length 

condition (equal spacing or log spacing). Monitors were 19 inch LCDs with resolution 

set to 1280 x 1024. Participant viewing distance was not constrained, but was 

approximately 60 cm from the screen. 

Procedure 

Participants took part in two different tasks, a perceptual task and a memory 

task. The order of the tasks was randomized, and they were completed consecutively in 

a single two-hour testing session (Figure 3 summarizes the experimental conditions). 

Before each task, all stimuli were presented to participants with labels. The perceptual 

and memory tasks were identical except for the stimulus that was presented to 

participants. In the perceptual task, a randomly selected line was presented. In the 

memory task, a randomly selected label was presented. In each case, the stimulus was 

presented for one second, followed by a 200ms blank screen. For the perception 

condition, this was thought to be sufficient time for the decay of visual short-term 

memory (e.g. Westwood, Heath & Roy, 2003). Then participants were asked to draw 

on-screen, using a mouse, the line that was associated with the stimulus (namely, a label 

or a line). The location of the response line was jittered within 10 pixels of the screen 

centre on every trial. To produce a line, participants used a mouse to enlarge a 3-pixel 
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by 3-pixel black dot that appeared in the middle of the screen.  To enlarge the dot, 

participants clicked on one edge of the dot and dragged it to the right.  Dragging the 

edge to the right extended the dot in both directions creating a horizontal line; the line 

was 3 pixels high.  When satisfied with their production, the participant clicked a button 

labelled “Confirm”.  

No response deadline was imposed. Feedback was presented for one second 

after production had ceased by displaying the correct stimulus line. The next trial began 

after another 200ms. Participants took part in 7 blocks of 82 trials in each condition for 

a total of 1134 trials per testing session. Short breaks were provided in the middle of 

each block, and at the end of each block. An extended break was provided in the middle 

of the two conditions.  

 

 

 

 

 Experimental Task 

(Within Subjects – Task Order Counterbalanced) 

  Perceptual Task Memory Task 

    

L
in

e 
S

p
ac

in
g

 

(B
et

w
e
en

 S
u

b
je

ct
s)

 

L
o
g

 

Task: Perceptual Task 

Spacing: Log Spacing 

Task: Memory Task 

Spacing: Log Spacing 

   

L
in

ea
r 

Task: Perceptual Task 

Spacing: Linear Spacing 

Task: Memory Task 

Spacing: Linear Spacing 

 

 

Figure 3. Experimental conditions: Line spacing (between subjects) and Experimental 

task (within subjects).  
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Results 

Data from one participant in the log-spaced condition were lost due to computer 

failure. For the remaining participants, produced magnitudes were very close – on 

average – to the correct lengths in all four conditions. Average produced line lengths 

(calculated across participants), deviated by an average of only 9.6 pixels from the 

actual response. Figure 4 shows average deviation from the correct response, and 

illustrates a clear difference between the memory and perception conditions. For both 

linear and log spacing groups, in the perception condition there was a tendency to 

overestimate the size of small stimuli and underestimate the size of large stimuli. This 

tendency was not evident in the memory condition for either group of participants.  

 

 

Figure 4. Mean produced line lengths for each stimuli in the Log and Linear conditions, 

separately for each of the memory (M) and perception (P) tasks. Error bars show Loftus 

and Masson (1994) standard error across participants for each condition. 
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Categorised Responses 

One way to compare AP data with AI data is to categorise the produced 

magnitudes according to which prototype stimulus they fall closest to. When 

categorized this way, production responses can be identified with stimulus labels and 

therefore treated as identification responses. Figure 5 shows the accuracy of these 

pseudo-identification responses for each condition, plotted against stimulus magnitude. 

A three-way mixed design ANOVA (stimulus spacing x experimental task x stimuli) 

showed that there was no main effect of the spacing conditions (p=0.16). The data for 

the memory condition are quite similar between the linear and log spacing groups, and 

also exhibit one of the fundamental phenomena from AI: a bow shape, in which the 

edge stimuli elicit better performance than central stimuli.  

We tested the statistical reliability of this bow shape using linear contrasts that 

compared the difference in proportion correct for the two shortest lines (1 and 2) against 

that  for the two longest lines (8 and 9), using the mixed ANOVA error term for the 

effect of stimulus (all p-values reported for linear contrasts are two-tailed). This was 

used in anticipation of contrasting gradients: that is, a bow shaped curve should result in 

opposite gradients between stimuli 1 and 2, and stimuli 8 and 9. These contrasts 

confirmed the bow shaped curve, demonstrated by a significant difference in probability 

correct between stimulus 1 and stimulus 2, and stimulus 8 and stimulus 9, for the 

memory task in both linear and log spacing conditions (F(1,136) = 21.8, p <.001; 

F(1.136) = 9.68, p = .002). There was no evidence for a bow in the data from the 

perception task in the log spaced condition (p = .9), but there was a marginally 

significant difference for the linear condition (p = .06). These results are consistent with 

the hypothesis that the memory condition elicits performance similar to AI.  
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Figure 5. Mean proportion correct for linear and log spacing conditions for each of the 

memory (M) and perceptual (P) tasks. Error bars are as reported in Figure 4. 

 

Sequential Effects 

Returning to the raw data, two other benchmark phenomena from AI are often 

examined together using impulse plots (see the earlier discussion of Figure 1). In a 

typical absolute identification task, responses are biased toward the stimulus from the 

previous trial (assimilation) and away from stimuli experienced 2-6 trials previously 

(contrast).  
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Figure 6. Impulse plots for the memory and perception tasks, for the log and linear 

spaced conditions combined.  

Figure 6 shows impulse plots for the absolute production responses, separately 

for the memory and perception conditions, collapsed over stimulus spacing. We did not 

observe the standard AI pattern of sequential effects. Rather, there is little systematic 

response bias at lag = 1, and then assimilation at lag = 2. The assimilation decays by 

lag = 3 in the perception condition, but persists to at least lag = 3 in the memory 

condition. There was no evidence of contrast effects at any lag. These sequential effects 

are intriguing, but should be interpreted with some caution due to the very high overall 

task accuracy. As discussed regarding Figure 5, mean error was only a few pixels, and 

the bias effects in Figure 6 are similarly small, around 4 pixels at their strongest.  

The difference between the sequential effects in our data and those in standard 

absolute identification paradigms (see Figure 1) is striking, but we also note that similar 

sequential effects have been observed in identification tasks with non-standard designs. 

For example, Ward and Lockhead (1971) collected data in an absolute identification 
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paradigm in which participants were not given feedback, and they found two effects 

similar to ours: no evidence of contrast effects, and also assimilation effects persisting 

for several trials. Dodds et al. (2011a) also found no contrast effects in the data 

collected from participants after extensive task practice (thousands of trials). In the 

current experiment, of course, participants were provided with feedback, and did not 

experience thousands of trials of practice, so it is unclear exactly how our results from 

absolute production should be related to the earlier results from identification. 

Variability of Response Estimates 

One of our goals is to relate participants’ magnitude estimates more directly to 

the internal magnitude representations assumed by most major theories of absolute 

identification (although Stewart et al., 2005, assume an internal representation of the 

response magnitude, rather than the stimulus magnitude). A key property of all such 

theoretical representations is their variability.  They predict, or assume, that the 

variability of the internal representation across repeated presentations of the same 

stimulus is larger for stimuli in the middle of the range than near the ends of the range. 

It is this assumption that is primarily responsible for producing the bow effects in the 

models. A major advantage of AP over AI is that it yields the possibility of directly 

studying such variability in the (internal) representations through the distribution of 

produced stimuli (here, line lengths) to each label. 

To check the properties of the variability in our AP data, we calculated standard 

deviations separately for each subject and each line length, and separately for each of 

the four experimental conditions. Figure 7 shows these data averaged over subjects. 

Note that we trimmed the upper and lower 5% of the data before calculating standard 
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deviation, to reduce sensitivity of variance measures to extreme outliers produced by 

some subjects.  

 

Figure 7. Mean trimmed standard deviation for each of the linear and log spacing 

conditions and the memory (M) and perception (P) task. Error bars show standard error 

across participants for each condition. 

 

Mixed ANOVA results showed no significant difference in performance for 

linear vs. log spacing conditions (p=.43). The same type of linear contrasts applied to 

pseudo-identification responses (i.e., produced line lengths, categorized as described 

earlier) confirmed a bow shaped curve in trimmed standard deviation for the memory 

task in the log spaced condition (F(1,136) = 5.55, p = .02) but not for the remaining 

conditions (ps >.1). The non-significant linear contrast for trimmed standard deviation 

in the linear-spaced group’s memory condition is most likely due to the unexpected up-
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tick in variability for the largest stimulus label: in that condition, variability in responses 

decreases steadily from stimulus #5 to #8, but then increases for the largest stimulus 

(#9). This up-tick might well be due to the higher probability of long outlier responses 

to the largest stimuli – in support of that notion, we note that further analysis showed 

that the linear contrast in the linear-spaced group’s memory condition approached 

significance as the proportion of trimming in the standard deviation calculation 

increased, but the linear-contrasts in the perception conditions remained non-significant. 

Two participants in particular may have been responsible for outlying data – these two 

participants showed performance rates considerably lower than other participants (49% 

and 57%, compared to an average performance of 79%). 

Discussion 

In several important ways, the absolute production (AP) data in the memory 

condition closely resembled data from standard absolute identification (AI) 

experiments. Bow shaped curves were found for accuracy, and for estimates of the 

standard deviations of line length responses. Just as in typical AI, there was improved 

performance for stimuli at the edges of the stimulus range, and greater variability in 

responses, and poorer overall performance, for those in the centre.  

Consistent with results from Zotov et al. (2010), data from the AP perception 

condition were less similar to typical AI performance – accuracy changed 

monotonically with stimulus magnitude, and the standard deviation measures showed 

smaller bow effects. As might be expected given the consistent results, there were 

generally small differences between stimulus sets that were linearly spaced (as used by 

Zotov et al.) and logarithmically spaced (as is typical in AI).  



165 

 

 

The data produced by subjects in our perceptual conditions were more complex 

than would be expected if those responses were influenced only by psychophysical 

variability in perceived stimulus magnitude. Rather, we suspect that much of the 

variance in those data might be due to response adjustment mechanisms, which we 

model below. 

Identification and Production: A Point of Contact for Theoretical Accounts 

Our experiment suggests some similarities, and also some clear differences, 

between absolute production and absolute identification. Therefore, although absolute 

production responses show promise in providing a new source of constraint for 

modelling, an account of the differences is also required. As a first step, we attempt to 

quantitatively link absolute production data with the internal magnitude representation 

of an AI model (SAMBA: Brown et al., 2008). All current models of AI assume such an 

internal representation – of either stimulus or response magnitude – and these estimates 

share key properties between the models, most importantly greater variability of the 

estimates for central than for edge stimuli. Thus, even though our analyses below 

concern just one model, the results likely have more general implications. 

The internal magnitude representation generated by SAMBA in response to a 

stimulus measures magnitude against a long-term memory for the range of stimuli 

encountered in the experiment. The magnitude representation is later used to produce an 

identification response, but this estimate might also be directly compared to responses 

in an absolute production task. We examine correspondence between the internal 

magnitude representations from SAMBA and the magnitudes produced by participants 

in the memory conditions of our experiment. SAMBA’s internal magnitude 

representation takes values on the unit interval, so for comparison with data we re-
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scaled its values using the inverse of the logarithmic function used to represent the 

stimuli in SAMBA’s inputs. To more tightly constrain the model, we set several of 

SAMBA’s parameters to values estimated from previous data (those of Lacouture, 

1997, and Brown et al., 2008). The precise values of these fixed parameters were not 

important for the current analyses because they primarily influence data patterns not of 

interest here, such as response time effects. The free parameters we adjusted to fit the 

current experiment are reported in Table 1. Different parameters were used for the log-

spaced and linear-spaced conditions, as these data came from different groups of 

participants.  

 

Table 6. SAMBA parameters 

SAMBA Parameter 
Linear 

Spacing 

Logarithmic 

Spacing 

Lower Anchor Position (L) 50 pixels 25 pixels 

Upper Anchor Position (U) 950 pixels 990 pixels 

Perceptual Noise (σP) .005 .008 

Rehearsal Capacity (ƞ) 250 150 

 

 

Figure 8 compares the predictions from SAMBA’s (transformed) magnitude 

representation against the production data. The top two panels show that, when the 

magnitude estimates from SAMBA are categorized into identification pseudo-

responses, as we did previously, SAMBA reproduces response accuracy results from the 
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memory conditions. The lower two panels show that SAMBA also very accurately 

captures the variability in those magnitude estimates. 

 Our intent with the perceptual AP task was to provide a referent for the memory 

AP task. We hypothesised that the perceptual task data would be less influenced by the 

context of the stimulus set than the memory task data, allowing us to identify any extra 

AI-like variability in the memory data. Consistent with added variability, the memory 

task was performed worse than the perceptual task, with lower categorisation accuracy 

and higher response variability. Perhaps surprisingly, the perceptual task also showed 

some clear context effects, including improved performance for end stimuli. We are not 

aware of other perceptual AP data, or theoretical accounts of this task, so it is not clear 

what should be made of these results. Given our aim of using production to understand 

AI, we leave further consideration of perceptual AP to future work.  
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Figure 8. The lines with symbol M reproduces memory condition data on response 

accuracy (from Figure 5) and variability (from Figure 7). Solid black lines show 

predictions from an absolute identification model (SAMBA).  
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A Candidate Response Mechanism 

Our analyses suggest that the internal magnitude representation from at least one 

model (SAMBA) provides a link between absolute identification and absolute 

production, at the conceptual level. This link potentially holds for all comprehensive 

models of absolute identification, because all such models assume an internal 

magnitude representation, of either stimulus or response magnitude, with similar 

properties to SAMBA’s. However, missing from our simulations above is a detailed 

process describing how the internal magnitude representation might be transferred to a 

physical magnitude produced by participants. We propose a response mechanism that 

applies generally across identification models to aid the future goal of discriminating 

theories on the basis of their identification architecture alone. 

The response mechanism we propose is based on iterative identification and 

refinement. For concreteness, suppose an observer in the memory condition of our 

experiment, with linearly spaced stimuli, was prompted with the stimulus label #7, in 

which case their goal is to produce a line 650 pixels in length. Our proposed process 

begins with the production of an initial guess. For our simulations, we assumed an 

arbitrary initial guess uniformly distributed between the smallest and largest stimulus. 

This initial guess is then submitted for identification using the standard SAMBA AI 

model. Although we use SAMBA to model the identification process, any other 

identification model could be used.  

Continuing our example, suppose the initial guess corresponded to a line of 

length 320 pixels, and the identification process classified this as stimulus #4. The 

observer then deduces that the initial guess magnitude must be made longer, because the 

identified label (#4) is smaller than the goal label (#7). An estimate of the required 
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adjustment to the physical line length can be obtained from the numerical difference 

between the goal and identified labels, after appropriate scaling. We assume that 

participants make an adjustment equal to some proportion (a parameter) of the 

magnitude difference suggested by the goal and identified labels. The scaling parameter 

for the adjustment procedure is the only free parameter of the response process. We 

estimated its value at .022 for the subjects in the linearly spaced group and at .037 for 

subjects in the logarithmically spaced group. Iterative adjustments followed by 

identifications continue until the candidate magnitude is identified with the goal label. 

This response production process also allows AI models to predict the number 

of adjustments that participants make. Further, AI models that predict AI response times 

(such as SAMBA; Brown et al. 2008, and EGCM-RT; Lamberts, 2000) will 

automatically make predictions for response times in absolute production experiments, 

based on the summed response times for the successive identification processes. Figure 

9 shows SAMBA’s predictions for the distribution of produced line lengths, along with 

the data. The predictions and the data are shown using box plots to illustrate that the 

model does a reasonable job of capturing many aspects of the data – not just the mean. 
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Figure 9. Fits of a iterative version of SAMBA to absolute production data. Box plots 

show distributions of the response magnitudes over all subjects and trials (data – 

unfilled) and over an equal number of pseudo-trials simulated from the iterative version 

of SAMBA (filled). The dotted line is y=x. 

 

The proposed response production mechanism offers an insight into why the 

sequential effects observed in our AP data were so different from those observed in 

standard AI data. Assimilation effects in AI have sometimes been explained by appeal 

to response processes. For example, SAMBA explains assimilation by assuming slow 

decay in the response production mechanism (ballistic evidence accumulators). The 

radical change we have proposed to the response production mechanism for absolute 

production will naturally change the predicted sequential effects. For example, 

SAMBA’s account of assimilation effects is mediated by correlations between starting 

values for response accumulators between trials. The repeated identification processes 



172 

 

 

required in our production model will remove these correlations, eliminating SAMBA’s 

previous prediction of assimilation at lag = 1. It is an open question as to whether those 

predicted changes agree with data. 

Apart from its relationship with absolute identification, our investigation 

suggests that absolute production is an interesting task in its own right. This task 

parallels cognitive components of everyday activities such as drawing and construction. 

Methodologically, one of the most attractive aspects of absolute production is that it 

avoids the artificial coarseness induced in data when identification (classification) is 

required. This benefit potentially allows more direct access to the cognitions underlying 

the psychological representation of magnitude, which is an important and active 

research question of its own. For example, investigation of the internal representation of 

magnitude dates back at least to Teghtsoonian’s classic (1971) theory of a common 

magnitude representation for all stimulus types, and has a very active counterpart in 

modern research on the mental representation of numbers and the number line (Dehaene 

& Brannon, 2010). 
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Abstract 

Absolute identification exposes a fundamental limit in human information 

processing. Recent studies have shown that this limit might be extended if participants 

are given sufficient opportunity to practice. An alternative explanation is that the stimuli 

used – which vary on only one physical dimension – may elicit psychological 

representations that vary on two (or more) dimensions. Participants may learn to take 

advantage of this characteristic during practice, thus improving performance. We use 

multi-dimensional scaling to examine this question, and conclude that despite some 

evidence towards the existence of two dimensions, a one dimensional account cannot be 

excluded. 

Keywords: absolute identification; unidimensional stimuli; multidimensional 

scaling; MDS; learning 
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A typical Absolute Identification (AI) task uses stimuli that vary on only one 

physical dimension, such as loudness, brightness, or length. These stimuli are first 

presented to the participant one at a time, each uniquely labeled (e.g. #1 through to n). 

The participant is then presented with random stimuli from the set, without the label, 

and asked to try and remember the label given to it previously.  

This seemingly simple task exhibits many interesting benchmark phenomena. 

The one of most concern for the current paper is the apparent limitation in performance. 

The maximum number of stimuli that people were previously thought to be able to 

perfectly identify was only 7±2 (Miller, 1956). Performance was thought to improve 

slightly with practice and then reach a low asymptote (Pollack, 1952; Garner 1953).  

This finding was particularly surprising given that this limit appeared to be 

resistant to practice (Garner, 1953; Weber, Green & Luce, 1977), and was generally 

consistent across a range of modalities (e.g. line length: Lacouture, Li & Marley, 1998; 

tone frequency: Pollack, 1952; Hartman, 1954; tone loudness: Garner, 1953; Weber, 

Green & Luce, 1977). In addition, this limitation appears to be unique to 

unidimensional stimuli. For example, people are able to remember hundreds of faces 

and names, and dozens of alphabet shapes. It is generally accepted that this is because 

objects such as faces, names, and letters vary on multiple dimensions. Performance 

generally increases as the number of dimensions increase (Eriksen & Hake, 1955). This 

makes intuitive sense when one considers the individual dimensions on a 

multidimensional object. For example, if people are able to learn to perfectly identify 7 

lengths, and 7 widths, they could potentially learn to identify 49 rectangles formed by a 

combination of lengths and widths.  
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Despite decades of research confirming this limit in performance for 

unidimensional stimuli, more recent research has suggested that we may be able to 

significantly increase this limit through practice (Rouder, Morey, Cowan and Pfaltz, 

2004; Dodds, Donkin, Brown & Heathcote, submitted). For example, given 

approximately 10 hours of practice over 10 days, Dodds et al.’s participants learned to 

perfectly identify a maximum of 17.5 stimuli (out of a possible 36), a level significantly 

beyond the 7±2 limit suggested by Miller (1956). From 58 participants that took part in 

a series of AI tasks, 22 exceeded the upper end of Miller’s limit range (nine stimuli).  

Other Stimulus Dimensions 

The results from Dodds et al. (submitted) were not limited to the identification 

of lines varying in length. Dodds et al. also used a wide range of other stimuli, and 

found similar learning effects. For example, dots varying in separation, lines varying in 

angle and tones varying in pitch all demonstrated similar results. Participants learned to 

perfectly identify a maximum of 12.6 stimuli using dots varying in separation, 10.4 

using lines varying in angle and 17.5 using tones varying in frequency, all exceeding 

Miller’s (1956) upper limit of 9 stimuli.  

The learning effects from Rouder et al. (2004) and Dodds et al. (submitted) may 

be attributed to the type of stimuli employed. The existence of severe limitations in 

performance is unique to unidimensional stimuli, and since multiple dimensions are 

commonly associated with improved performance (Eriksen & Hake, 1955) it may be 

argued that the stimuli vary on multiple dimensions. Tones varying in frequency for 

example, are generally viewed as multidimensional. While Dodds et al. employed pure 

tones, leaving the stimuli to vary on only one physical dimension (wavelength), our 

perception of loudness increases as a function of increasing frequency.  Therefore as 
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frequency increased, participants would perceive the tones as being of different 

loudness, creating a greater number of perceived dimensions. This is not an uncommon 

phenomenon, as a similar effect is found in colour perception.  Different colours are 

generated by a manipulation which is physically unidimensional (wavelength change), 

but the psychological representation of colour is generally considered to consist of three 

dimensions (e.g., MacLeod, 2003). Therefore it may be possible that the internal 

psychological representation of different line lengths used in both Rouder et al. (2004) 

and Dodds et al. (submitted) varied on more than one dimension. 

In order to examine this theory using the same stimuli employed by Dodds et al. 

(submitted), we use Multidimensional Scaling (MDS) methods to examine the structure 

of similarity ratings generated using these stimuli. MDS refers to a broadly used range 

of statistical techniques, designed to allow the examination of relationships between 

objects of interest. Given a matrix of proximity data, MDS uncovers a spatial 

arrangement of objects in a manner that best reconstructs the original proximity data. 

For example, given a matrix of data with the distances between n cities, MDS analysis 

would present a spatial ‘map’ that would arrange the cities in the most likely location, 

given the distances provided by the data. Because we use subjective “similarity ratings”, 

rather than actual measured distances, we employ non-metric MDS, which does not 

assume a linear mapping between similarity ratings and distances. 

Typically, MDS is employed after one has already assumed the number of 

dimensions on which the stimuli might vary. In the current experiment however, we use 

MDS to determine the number of dimensions that best describe Dodds et al.’s 

(submitted) stimuli.  
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Method 

Participants 

The 27 participants, recruited from an introductory psychology course at the 

University of Newcastle, Australia, took part in exchange for course credit. 

Stimuli 

Stimuli were 16 lines varying in length (Figure 1). See Table 1 for pixel lengths. 

Lines were 11 pixels in width and were black, presented on a white background. Stimuli 

were log spaced, and were separated by a distance substantially greater than the Weber 

fraction for length (2%; Laming, 1986; Teghtsoonian, 1971). 
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Figure 1. Unidimensional stimuli (line lengths) used in the Experiment. On any single 

trial, two of these stimuli were presented consecutively. All possible pairs of stimuli, 

including identical stimuli, were presented twice during the Experiment. 
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Table 1. Pixel lengths of the 16 lines used as stimuli 

Pixel Lengths 

15 18 22 27 33 41 50 61 

74 90 110 134 164 200 244 298 

 

Procedure 

Participants were instructed to rate the similarity of two stimuli that appeared on 

a computer monitor, on a scale of 1 to 100. On each trial, a single line would appear on 

the screen for 1 sec, followed by another line for 1 sec. The position of each line was 

jittered randomly on every presentation. After the two stimuli had been removed from 

the screen, a slider panel appeared at the bottom of the screen, allowing the participant 

to move a scrolling bar along a scale of 1 to 100 (where 1 = dissimilar and 100 = 

similar). Every possible pair of stimuli from the set, including identical pairs were 

presented twice. This resulted in 8 blocks of 64 trials, or a total of 512 trials (i.e., where 

n=16 stimuli and r=2 replications, number of trials = rn
2
). A mandatory 30 sec break 

was taken between each block. 

Each participant was given five practice trials at the beginning of the 

experiment, where they were asked to complete an identical task to the one above, with 

the exception that the stimuli were circles varying in diameter. The purpose of the 

practice trials was only to familiarize the participant with the response method. 

Different stimuli were used to prevent additional exposure to experimental stimuli. 

Results 

The main objective of our analysis is to determine whether the stimuli used by 

Dodds et al. (submitted) are represented internally by one or multiple dimensions. Initial 
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descriptive analysis suggested that the data were consistent with a one-dimensional 

explanation: Figure 2 shows the average similarity ratings across participants, plotted as 

function of stimulus magnitude for each stimulus in the rating pair. Note that identical 

stimuli are rated as very similar (along the central diagonal), and rated similarity 

decreases monotonically with the rank-distance between the stimuli (at the left and right 

corners).  

 

 

 

Figure 2. 3D structure of similarity ratings of all 16 stimuli. 
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Although Figure 2 indicates that the similarity ratings are consistent with a 1D 

psychological representation, they could nevertheless hide very subtle effects in the 

data, or large effects for individuals that average out in the group. In order to test this, 

we calculated non-metric MDS analyses for individual data. Each participant’s data 

were transformed into a single symmetric dissimilarity matrix by subtracting the 

average similarity rating for each pair of items from 100 and averaging across reversed 

presentations (e.g., stimulus pair #1-#7 with stimulus pair #7-#1). This matrix was 

submitted for MDS analyses using both 1D and 2D representations for the data. 

Deciding which of the 1D and 2D MDS analyses provides the best account of 

the data is not trivial. Various ad hoc methods have been used, including examining a 

goodness of fit measure, or examining the spatial arrangement the points in proximity 

plots. We applied both methods to our data. In MDS, goodness of fit between the 

reconstructed and observed dissimilarity matrices is typically measured by sum-squared 

error, which is called the stress value. Smaller stress indicates a better fit; however the 

MDS models are nested meaning that stress must always decrease as more dimensions 

are included. This means that stress must always be smaller for the 2D than the 1D 

model. Statistical tests on the magnitude of decrease in stress are not easily constructed, 

because the key properties of non-metric MDS make it difficult to assume a 

distributional model for the data. Figure 3 graphs the average stress value, across 

participants, for MDS fits with dimensions from 1 to 10 (a scree plot).  
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Figure 3. Scree plot showing the decrease in stress value as the number of dimensions 

increase. 

 

Some authors recommend determining the number of dimensions from a scree 

plot by finding its “elbow”; a sharp drop in stress value, followed by a relatively flat 

continuation. Such a pattern could suggest that the latter dimensions fail to provide 

sufficiently better fit to warrant adding more dimensions to the model. Unfortunately, 

this method fails to provide any insight into the number of dimensions that best describe 

the stimuli, as there is no obvious elbow in the scree plot. This is a common problem 

(e.g., Grau & Nelson, 1988; Lee, 2001). In addition, the use of such methods has been 

criticized as placing unreasonable emphasis on a numerical measurement. Such methods 

to determine dimensionality are often used to the exclusion of other, more meaningful 

aspects of analysis, such as simply the interpretability of results (Shepard, 1974).  
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A more appropriate method to determine whether a two dimensional model 

provides a sensible description of the stimuli might be to examine the spatial 

relationship between objects in the purported 2D psychological space. This can be 

investigated with a “proximity plot”, where each of the points provided in the similarity 

matrix are physically arranged in a manner that best satisfies the distances (or 

similarities) provided in the original data. Figure 4 shows two examples of these 

proximity plots, for two participants, from MDS analyses with two dimensions.  

The philosophy of using MDS to recover internal structure relies on the 

assumption that, if the psychological representation of the stimuli was truly two 

dimensional, these 2D MDS proximity plots should reconstruct the internal 

representation. Because of the nature of the models under consideration (e.g. of 

categorization and absolute identification), this internal representation should have some 

relatively smooth and systematic shape. On the contrary, if the internal representation of 

the stimuli is truly one dimensional, these 2D MDS proximity plots should illustrate the 

1D structure (a straight line) possibly along with some meaningless noise. 
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 a b 

Figure 4. Two proximity plots of individual fits of a two dimensional model. Each of 

these graphs is the resulting proximity plot from a single participant in the Experiment. 

Each point represents a single stimulus in 2D space. Lines connect adjacent stimuli in 

the set. The value at the top of each graph is the stress value, a goodness of fit measure. 

 

However, these interpretations of the proximity graphs are only appropriate 

when examining the results of metric MDS analyses (using true, quantitative distances). 

In the current case, where non-metric MDS analyses must be used, patterns that may 

normally suggest a two dimensional internal representation, might actually arise from 

data that are truly one dimensional. This problem stems from the monotone 

transformations allowed by non-metric MDS, between the observed similarity data and 

the internal psychological distances (as noted originally by Shepard, 1974). Since non-

metric MDS analyses only preserve the rank order of the similarity ratings, leaving the 
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exact similarity values to vary in systematic ways that best suit the data, there is 

considerable flexibility in the spatial arrangements that might arise from a single 

underlying dimension. Therefore both Figure 4a and Figure 4b could be construed as 

evidence favouring a single underlying dimension. Whilst the two proximity plots 

demonstrate distinctly different patterns, both provide evidence to suggest that our 

stimuli vary on only a single dimension. 

Even though smooth C- or U-shaped proximity plots are consistent with one 

dimensional internal representations, they are also consistent with two dimensional 

internal representations – that is, truly C- or U-shaped underlying structures. We 

attempt to resolve this ambiguity using a simulation study comparing MDS outputs 

from 1D and 2D fits to truly 1D data, in the presence of noise. These simulations 

provide a metric for interpreting the stress values from our fits to data. 

Simulation Study 

We investigated this problem of dimensionality with a simulation study. We 

generated synthetic data from a similarity matrix that was truly one dimensional (the 

rated distance between each stimulus was a linear function of their ranked difference in 

the set). We scaled this generating similarity matrix to be as similar to the observed data 

as possible; we used 16 stimuli, with maximum and minimum similarity ratings of 

95.91 and 6.88, respectively. Similarity between stimuli i and j could then be set as: 

 

simmax – (simmax - simmin)*(abs(i-j)/15) 

 

From this true similarity matrix, we generated synthetic data sets that matched 

the characteristics of the real data. Noise was added to the matrix using a normal 

distribution with standard deviation 12.18, and sampled similarity values outside 
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[0,100] were truncated. These settings resulted in synthetic similarity matrices that were 

nearly identical to the human data, on average, for the range and variance of similarities, 

and also for the variance of similarity values across participants, conditioned on each 

stimulus pair.  

We generated 1000 such matrices, and fit each with MDS using both 1D and 2D 

settings. The lower panel of Figure 5 shows the difference in stress values between 

these two fits for each simulated data set (negative values indicate a better fit for 2D 

than 1D). 
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Figure 5. Difference in stress values for between 2D and 1D fits of the original data (top 

panel) and the true 1D data (bottom panel) 

  

The upper panel of Figure 5 shows the difference between 2D and 1D stress 

values for the fits to our human data. The important thing to take from these graphs is 

that the decrease in stress generated by moving from a 1D to a 2D fit is about the same 

for our human data as it is for our synthetic data. Since the synthetic data were 

generated by a truly 1D process, this means that the stress values calculated for our 

human data are entirely consistent with a 1D account. This provides further support to 
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the evidence provided by the MDS analysis of our own data – that our stimuli may vary 

on only a single dimension. 

Discussion 

The purpose of the current experiment was test line-length stimuli commonly 

used in AI and always assumed to be unidimensional (e.g., Dodds et al., submitted; 

Rouder et al., 2004; Lacouture & Marley, 1995; Lacouture, 1997). Dodds et al. found 

that contrary to previous research, their participants were able to substantially improve 

their performance at the task when given significant practice. Although the stimuli used 

in their experiment varied on only one physical dimension, the results were more 

reminiscent of experiments using multiple dimensions, where it is more common to find 

substantial improvement with practice. 

Although the stimuli used in Dodds et al. (submitted) varied on only one 

physical dimension, it is possible that they may vary on multiple psychological 

dimensions. In order to examine how many psychological dimensions underpin these 

stimuli, we used two methods; 1) using MDS techniques we examined similarity data 

taken using these same stimuli and 2) compared the structure of our data to simulated 

one dimensional data. MDS proximity graphs suggested that the stimuli may vary on a 

single dimension, and our simulation study provided further support for this, showing 

that these fits could be consistent with a one dimensional data generating process, when 

noise is added.  

When examining individual proximity graphs taken from MDS analysis 

assuming two dimensions, a C (or U) shaped pattern often emerged, which is commonly 

assumed to provide evidence towards a 2D solution (Shepard, 1974). While this may be 

appropriate for a metric MDS analysis, the monotonic transformations unique to non-
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metric MDS allow some flexibility in the position of the objects in the final proximity 

graph. Despite this difference required in interpretation of metric vs. non-metric 

proximity graphs, it is possible that the two types of proximity graphs generated by our 

data (Figure 4) were genuinely representative of one vs. multiple dimensions, and that 

the action of specifying the number of dimensions to examine, forces the model to fit, 

sporadically producing evidence for and against a two dimensional solution. In support 

of a one dimensional solution however, our simulated data demonstrate a similar 

structure to our original similarity data, suggesting that the stimuli used in Dodds et al. 

(submitted) vary on only a single dimension.  

Therefore it appears that the interpretation of MDS output for the number of 

underlying dimensions in the data is difficult. While we were able to gather evidence 

using a variety of techniques to suggest that our data were consistent with a single 

dimension, MDS could not provide a definitive answer. Lee (2001) showed that it is 

possible to reliably determine dimensionality from MDS analysis, but only when the 

determination is between larger numbers of dimensions. Like us, he found much poorer 

reliability when the choice was between lower numbers of dimensions. Hence, the task 

of choosing between a low number of dimensions remains very subjective, and users 

should take care not be misled by “overfitting”, where a complex model imitates data 

from a simpler underlying data generating process. Furthermore, in the case of 

determining dimensionality, one should take care not to focus solely on quantitative 

results such as the stress value, but also take into consideration the pattern of data in the 

original similarity matrix (such as in Figure 2) or even simply the interpretability of 

results (Shepard, 1974). 
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Both the MDS analysis of the similarity data for Dodds et al.’s (submitted) lines 

of varying length and our simulation study were consistent with a 1D psychological 

representation. This finding makes it less likely that the substantial improvement with 

practice observed by Rouder et al. (2004) and Dodds et al. (submitted) in absolute 

identification of line lengths was due to participants learning to take advantage of a 

multi-dimensional psychological representation. This finding may also extend to the 

other stimuli that Dodds et al. employed. Similar learning effects to that of lines varying 

in length suggest that modality, or specifically, the number of dimensions that stimuli 

vary within, cannot be the sole cause of the improvement in performance.  Hence, 

investigation of alternative explanations for the improvement they observed seems 

warranted. 
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Abstract 

Miller (1965) identified his famous limit of 7±2 items based in part on absolute 

identification – the ability to recognize stimuli which differ on a single dimension, such 

as lines of different length. An important aspect of this limit is its independence from 

perceptual effects and its application across all stimulus types. Recent research 

however, has identified several exceptions. We investigate an explanation for these 

results which can reconcile them with Miller's work. We find support for the hypothesis 

that the exceptional stimulus types have more complex psychological representations, 

which can therefore support better identification. Our investigation uses data sets with 

thousands of observations for each participant, which allows the application of a new 

technique for identifying psychological representations: the structural forms algorithm 

of Kemp and Tenenbaum (2008). This algorithm supports inferences not possible with 

previous techniques, such as multi-dimensional scaling. 
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Absolute identification (AI) is the fundamental task of identifying stimuli that 

vary only on one physical dimension. For example, tone frequency (e.g. Hartman, 1954; 

Pollack, 1952), tone loudness (e.g. Garner, 1953) or line length (e.g. Lacouture, 1997). 

In a typical AI task, stimuli are first presented to the participant one at a time, each with 

a unique label. In the test phase, the participant is then presented with randomly selected 

stimuli from the set and asked to recall the associated labels. 

Miller’s (1956) classic paper investigated limits in both short term memory and in 

AI, and found that 7+2 was not only the number of chunks that can be held in short-

term memory, but was also the number of items people could learn to perfectly identify 

in such a unidimensional stimulus set. The upper limit of Miller's range (nine stimuli) is 

particularly surprising because it is resistant to many experimental manipulations, 

including extensive practice (e.g. Weber, Green & Luce, 1977), the number of stimuli in 

the set (e.g. Garner, 1953) and stimulus spacing (e.g. Braida & Durlach, 1972). Most 

importantly, this limit appeared to be a fundamental aspect of human information 

processing rather than a sensory limitation, because the same limit applied to a wide 

range of stimulus modalities (from electric shocks to saltiness: e.g., Lacouture, Li & 

Marley, 1998; Pollack, 1952; Garner, 1953) 

Despite this longstanding assumption that uni-dimensional stimuli are unable to 

be learned beyond an upper limit, recent work has identified exceptions. One of Rouder, 

Morey, Cowan and Pfaltz’s (2004) participants was able to learn to perfectly identify 20 

line lengths. Dodds, Donkin, Brown & Heathcote (2011) reported related learning 

effects not only for line lengths, but also for dot separation, line angle, and tone 

frequency. These findings contradict Miller’s theory of a small upper limit to memory 

processing capacity. This could represent an important finding because a small, or null, 
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effect of learning has been included as a central element of many theoretical accounts of 

AI and memory (including: Stewart, Brown & Chater's, 2005; Petrov & Anderson's, 

2004; Marley & Cook's, 1984; and Brown, Marley, Donkin & Heathcote's, 2008). If 

Dodds et al.'s (2011) and Rouder et al.'s (2004) results are taken at face value, they 

might imply that supposedly fundamental capacity constraints can be altered by 

practice.  

There is, however, an alternative explanation. The number of stimuli that can be 

reliably identified increases exponentially as the number of dimensions increase 

(Eriksen & Hake, 1955; Miller, 1956; Rouder, 2001), at least when those dimensions 

can be perceived independently (“separable” dimensions: Nosofsky & Palmeri, 1996). 

For example, people are able to identify hundreds of faces, names and letters, all of 

which vary on multiple dimensions. Or, if an observer could perfectly identify say, 

seven line lengths and also seven angles, they might be able to identify 49 different 

stimuli with these combined features, such as circle sectors. With an additional 

assumption, this line of reasoning might reconcile the learning effects observed by 

Rouder et al. (2004) and Dodds et al. (2011) with the long-standing results of Miller 

(1956). The extra assumption that is required is that some stimulus sets which vary on 

just one physical dimension might nevertheless invoke a more complex psychological 

representation. As with physically multi-dimensional stimuli, more complex 

psychological representations support richer percepts, perhaps allowing multiple ways 

to estimate the magnitude of a stimulus and hence better identification. 

The stimuli used in AI always vary on just one physical dimension, but this does 

not guarantee that the corresponding psychological representations are uni-dimensional 

continua. For example, perceived hue is represented either on a circle or a disc 
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(Shepard, 1962; MacLeod, 2003) and the psychological representation of pitch is a helix 

(Bachem, 1950) even though the corresponding physical stimuli vary on only one 

dimension (wavelength, in both cases). In Dodds et al.'s (2011) and Rouder et al.'s 

(2004) studies, it might have been that those exceptional observers who learned to 

identify stimuli beyond Miller's limit managed this feat by constructing more complex 

psychological representations for the unidimensional stimuli. If these observers had 

access to percepts on dimensions that are even partially independent, this could explain 

their improved performance without challenging Miller's long-standing hypothesis that 

performance on any single dimension is severely limited. 

Examining Psychological Representation 

In the absence of additional evidence, there is an unsatisfying circularity to this 

argument. The only evidence that suggests that these physically unidimensional stimuli 

have more complex psychological representations, is that those same stimuli can be 

learned. The only tested prediction from the hypothesised complex representation is that 

those same stimuli can be learned well. One method of independently probing 

psychological representation is to use multidimensional scaling (MDS; Cox & Cox, 

1993; 2001). MDS determines relationships between objects by examining estimates of 

the perceived similarity of pairs of the objects. In some cases, such as with colour, MDS 

techniques are able to reliably infer the complex psychological representation extracted 

from apparently unidimensional stimuli. This success presumably depends on the clear 

and consistent form of the representation across different people – allowing data to be 

averaged across subjects. In turn, the consistency of the psychological representation 

across subjects is probably an upshot of the basic physiology of the retina. In less clear-
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cut cases MDS is not always sensitive to subtle or inconsistent changes in the form of 

psychological representations.  

Dodds, Donkin, Brown and Heathcote (2010) collected similarity ratings for line 

lengths, which was one of the stimulus types that Rouder et al. (2004) and Dodds et al. 

(2011) identified as an exception to Miller's (1956) limit. Dodds et al. (2010) found that 

MDS was not reliably able to distinguish between one- and two-dimensional 

representations. The problem is that it lacks a framework for inference about these 

arrangements. This means that, if one wishes to recover the number of dimensions that 

best represent a relationship between objects, the conclusions are based on subjective 

judgements. Lee (2001) investigated this problem in detail and found that, for one- or 

two-dimensional representations, MDS correctly identified the number of dimensions 

only 14% of the time. 

A recent advance in estimating the structure of psychological representations 

provides an alternative to MDS. Kemp and Tenenbaum (2008) developed an algorithm 

that to infer the structure of psychological representations based on relational data. 

Their method is based on a universal grammar for generating graphs, and the generality 

of those graphs allows the algorithm to represent structures as varied as trees, 

hierarchies, and points in vector spaces (as in MDS). An important benefit of Kemp and 

Tenenbaum's algorithm is that it includes a coherent framework for inference, allowing 

probabilistic comparison of different structural forms based on penalized likelihood, 

where the penalty term depends on structural complexity. 

 We use Kemp and Tenenbaum’s (2008) algorithm to investigate the 

psychological representation of the stimuli used in AI experiments. We limited our 

search to undirected graph structures only, on the assumption that the similarity of two 
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stimuli should not depend on the order of comparison (or, if it did, that this dependence 

was not of primary interest). We also limited our search to just two of Kemp and 

Tenenbaum's forms – the chain and ring (see Figure 1). Chain structures are the 

standard assumptions for AI stimuli: one-dimensional continua, where the 

psychological distance between stimuli is found by summing the distance from one 

neighbour to the next, and the next again, and so on. Ring structures represent just a 

small increase in complexity from chains, capturing the additional property that stimuli 

near one end of the set might be perceived to have something in common with stimuli at 

the extreme other end. This kind of relationship is found in both of the well-known 

cases of physically unidimensional stimuli having multidimensional psychological 

representations: long wavelength light has a perceived hue (red) which is similar to the 

hue perceived for short wavelength light (violet); similarly, the lowest frequency note in 

an octave (A) is perceived as similar to the highest (G#). 

 

 

Figure 1. An illustration of a (a) chain structure and a (b) ring structure for lines of 

varying length. Note that in the chain structure stimuli 1 and 7 are far apart, while in the 

ring structure they are much closer. 
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Data 

A direct way to investigate psychological structure relies on similarity estimates 

obtained by direct interrogation: participants are presented with two stimuli and asked 

to rate their similarity on some scale. Such ratings have many problems. Firstly, there is 

a severe limit on sample size, because participants find it difficult to give many 

repetitions of these responses. Secondly, the numerical similarity ratings provided by 

participants depend on the experimenter's choices. For example, different ratings would 

be provided if the observers are asked to rate similarity from 1-10 or from 0-100, or on 

a Likert scale, and the precise nature of this dependence is unclear. Even more 

troubling, it is unclear whether similarity ratings obtained by this method are based on 

the particular psychological representation of interest: the one underlying AI 

performance. To circumvent all three problems, we replace similarity judgments with 

confusion matrices calculated from many thousands of AI trials. These confusion 

matrices encode how often each pair of stimuli are confused with each other (e.g., when 

stimulus A is presented, what is the probability that it is identified as stimulus B?). Our 

assumption is thus that the probability of confusing two stimuli is monotonically related 

to their similarity. 

We calculated confusion matrices using the data from four AI experiments 

reported by Dodds et al. (2011; see Table 1). In all four experiments, participants were 

given extensive practice over a series of 10 sessions, leading to around 5,000 

observations per participant. Each experiment included five or six participants. Three of 

the experiments used a smaller number of stimuli (15 or 16) allowing for unconfounded 

comparison between different stimulus types. These three experiments included the only 

one in which participants did not exceed Miller's (1956) limit of 7±2 stimuli (tone 
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intensity) and two in which they did (line length and dot separation). The other 

experiment used 30 line lengths. We included this experiment because it showed some 

of the greatest improvement in performance with practice. We are wary of direct 

comparison between smaller and larger set size experiments because of the varying 

statistical reliability of the data sets. The larger set sizes resulted in one quarter as many 

observations contributing to each element of the confusion matrix – as few as three 

observations per matrix element. The penalized complexity used in Kemp and 

Tenenbaum's (2008) algorithm means that noisier data lead to a preference for simpler 

structures – a bias towards identifying chain structures, in our case. This might extend 

to our smaller set size experiments, because even with 5,000 observations in the smaller 

set sizes, the average number of observations contributing to each confusion matrix 

element was between 16 and 20. We return to this point in the Discussion. 

 We also analysed data from a new AI experiment using tone frequency. For this 

experiment, we gave six musically- trained participants practice with a set of 36 pure 

sine tones varying in frequency – their frequencies matched the fundamental frequency 

of the standard piano notes from A3 to G#6. The procedure for this experiment was 

similar to the procedure outlined for Experiment 6 in Dodds et al. (2011), except that 

responses were labelled not only with a number (1-36) but also the corresponding piano 

note name. There were 10 learning sessions providing 4860 identifications per 

participant.   
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Results 

Table 1. Data sets used from Dodds et al. (2011)  

Experiment* Stimuli Set Size 

1a Line Length 30 

2b Dot Separation 15 

5a Line Length 16 

5b Tone Intensity 16 

* Note: Experiment refers to the experiment number as listed in Dodds et al. (2011) 

 

Confusion matrices were constructed for individual participants, for a) their entire 

10 hours of practice, b) the first 5 sessions of practice and c) the last 5 sessions. Data for 

individual participants were used as opposed to averaged data because of the small 

number of participants and large individual variation (see Table 2 for variation in 

accuracy). As described by Kemp and Tenenbaum (2008), feature data were simulated 

from the confusion matrices. 

We used v1.0 (July 2008) of the Matlab implementation of the structural forms 

algorithm (obtained from the first author's website). For each confusion matrix, we 

identified the best chain and best ring structure, and recorded their penalized 

likelihoods. In all cases, we used default values for the algorithm's parameters. We 

made one modification to the algorithm, for numerical stability, restricting the search 

over edge lengths to disallow lengths that were extremely close to zero (smaller than e
-

10
). Note that this restriction still permits edge lengths of precisely zero, because 

adjacent stimuli can be collapsed into single nodes using the rules of the graph 

grammar. Our restriction only disallows extremely small, but non-zero, separation 
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between stimuli. In Table 2, we report differences in penalized log-likelihood between 

the chain and ring structure fits. To put the likelihood results in statistical perspective, 

differences in log-likelihood can be used to approximate the posterior probability that 

one model out of the pair (chain or ring) was the data generating model. This 

approximation should be interpreted with some care, as it relies upon some strong 

assumptions - for example, that the data generating model was one of the pair under 

consideration (e.g., Raftery, 1995). Nevertheless, using this interpretation, a difference 

in log-likelihood of two units corresponds to about three-to-one odds in favour of one 

model over the other, and a difference of six units in log-likelihood to better than 

twenty-to-one odds. 

Whole Data Sets 

We report the analyses for smaller set sizes (15 or 16 stimuli) separately from the 

larger set sizes (30 or 36 stimuli). This allows cleaner comparison within each group 

because the number of data per entry in the confusion matrices are comparable: about 

18 observations per entry for the small set sizes, and about 4 for the large set sizes.  

Small set sizes. Small set size experiments included those that used 16 tones of 

increasing loudness, 16 line lengths and 15 dots varying in separation. Participants who 

practiced tone loudness did not improve their performance much with practice, and their 

confusion matrices were also unanimously better described by chain structures than ring 

structures (see Table 2, where positive log-likelihood differences imply support for 

chain structures over ring structures). These results are consistent with Miller's (1956) 

original hypothesis that AI is subject to a severe capacity limit when the stimuli really 

are unidimensional. 
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In comparison, the confusion matrices for some of the participants who practiced 

16 line lengths and 15 dot separations exhibited were better described by the ring 

structure than the chain. In these two experiments, the ring structure was deemed more 

likely for only about half of the participants (5 of 11; see Table 2). The support for a 

ring structure is even more surprising when considering the data used in these 

experiments: our use of confusion matrices rather than similarity ratings. For example, 

if asked for a similarity rating, a participant might rate the extreme edge stimuli as very 

similar, but they still might be very unlikely to confuse those stimuli in an identification 

experiment. This presumably biases our results towards the chain structure, and yet 

several participants were still better described by ring structures. 

Those five participants for whom the ring provided a better description in these 

experiments also demonstrated higher initial identification performance, and more 

improvement with practice. At the beginning of practice (first session), their mean 

accuracy was 54%, compared with 44% for the participants better described by chain 

structures, and over the course of practice, those subjects identified as having ring-like 

representations improved their identification performance by 32% compared with 29% 

for the chain-like participants. We are hesitant to calculate inferential tests on these 

differences due to the very small number of participants (five in one group, six in the 

other). 

 Large set sizes. Table 2 shows accuracy and log-likelihood differences for 

experiments with 30 line lengths and 36 tone frequencies. Four of the twelve 

participants demonstrated greater likelihood for a ring structure compared to the chain 

structure. As with the smaller set size experiments, those who demonstrated a ring 

structure demonstrated greater improvement in performance (Mring = 0.36) compared 
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to those that demonstrated a chain structure (Mchain = 0.22) and also greater pre-

practice performance (Mring = 0.36, Mchain = 0.22).
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Table 2. Accuracy and log-likelihood values for each participant in each of the five experiments. 

 

Experiment 

(Stimuli) 
Participant 

Initial 

Accuracy 

Improvement in 

Accuracy 

Overall Log-

likelihood 

Difference * 

Early Log-

likelihood 

Difference * 

Late Log-likelihood 

Difference * 

Tone Loudness 

(16) 

1 0.34 0.1 8.357 19.326 12.25 

2 0.3 0.19 20.092 18.705 25.209 

3 0.33 0.12 12.508 26.442 17.106 

4 0.27 0.09 24.007 27.554 20.384 

5 0.34 0.08 26.205 23.19 22.165 

6 0.31 0.13 19.078 19.527 17.521 

Line Lengths 

(16) 

1 0.58 0.22 -2.542 0.12 -5.116 

2 0.51 0.38 -3.423 0.171 -4.711 

3 0.41 0.31 7.041 12.733 4.816 

4 0.4 0.28 3.344 9.77 -0.223 

5 0.46 0.30 5.143 13.69 -2.046 

6 0.57 0.24 -3.365 -3.874 -4.798 

Dot Separation 

(15) 

1 0.44 0.2 7.852 10.378 8.621 

2 0.51 0.37 -0.877 4.088 -5.481 

3 0.53 0.27 4.472 7.229 2.468 

4 0.39 0.37 5.703 11.38 -12.56 

5 0.53 0.41 -2.658 2.36 -1.536 

Line Length 

(30) 

1 0.21 0.26 24.556   

2 0.18 0.1 13.405   

3 0.29 0.47 -1.426   

4 0.2 0.1 24.292   

5 0.31 0.41 57.852   

6 0.17 0.24 -22.265   

Tone Frequency 

(36) 

1 0.4 0.29 -4.273   

2 0.59 0.31 -0.394   

3 0.2 0.13 27.8   

4 0.21 0.09 24.934   

5 0.19 0.08 22.549   

6 0.22 0.14 0.634   

* Note that difference values are calculated by subtracting the likelihood values for ring  

structures from the likelihood values for chain structures.
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Effect of Practice 

Dodds et al. (2011) noted that participants improved their performance markedly 

given practice at AI for all stimulus sets except for tones varying in intensity. In order to 

examine whether the improvement in performance was associated with a change in 

psychological structure, we also examined the confusion matrices for each participant in 

the small set size experiments separately for early (1:5) and late (6:10) practice sessions 

(See Table 2). We did not examine this split in the data from the large set size 

experiments because the sample size was too small – an average of fewer than two 

observations per entry. 

For those who practiced tone loudness (Table 2) there was no difference in the 

estimated structure between early and late sessions: the data from every participant, for 

both early and late sessions, were always better described by chain structures than rings. 

For those who practiced line length or dot separation (Table 2), the chain structure was 

also dominant for early sessions (10 out of 11 participants). For six participants 

however, the most likely structure changed from a chain to a ring from early to late 

sessions. Three participants demonstrated a chain structure both in the early sessions 

and in the late sessions, and one other demonstrated a ring structure in both early and 

late sessions. No participant demonstrated the reverse switch – from ring to chain 

structure. Consistent with the hypothesis that high performance in AI is only possible 

through more complex psychological representations, the single participant who 

demonstrated a ring structure during early practice also had very high performance in 

early practice, and the three participants who demonstrated a chain structure even late in 

practice were amongst the poorest performers late in practice. 

A repeated theme in the above findings is that more complex (ring) structures are 

associated with better identification and with more improvement with practice. To 
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investigate this more formally, we calculated the correlation between both improvement 

in performance and initial accuracy, and log-likelihood. Both improvement in accuracy 

and initial accuracy demonstrated a strong negative relationship with log-likelihood 

difference values, where smaller log likelihood differences (representing a preference 

for a ring-structure) was associated with greater overall improvement in accuracy (r = -

.70, p < .001) and greater initial performance (r = .65, p < .001; see Figure 2).  

 

 

Figure 2. Accuracy and Improvement in accuracy as a function of difference in Log-

Likelihood values for ring and chain structures (where a negative Log-Likelihood value 

indicates a preference for a ring structure). Note: two outliers were removed from this 

analysis (where log-likelihood difference was < -10 and >30). 
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Discussion 

For more than fifty years, AI with unidimensional stimulus sets has been 

assumed to be subject to a strict performance limit, Miller's (1956) magical number 7+-

2. More recently, Rouder et al. (2004) and Dodds et al. (2011) have shown that some 

stimulus sets support much greater performance than this limit (including line length or 

angle, and tone frequency) while at least one does not (tone intensity). One way to 

reconcile these new findings with previous literature is to hypothesize that some 

stimulus sets, while physically varying on only one dimension, give rise to a more 

complex psychological representation. The data from Dodds et al., and the new 

structural forms algorithm developed by Kemp and Tenenbaum (2008) provide a 

method for investigating this hypothesis in a way that was not previously possible 

because of limitations in analytic tools such as multidimensional scaling. 

Our results provide consistent support for the previously untestable hypothesis 

that improved identification performance is only possible with more complex 

psychological representations. When we examined data from the identification of tones 

varying in intensity (for which identification performance was severely limited) we 

uniformly found strong support for the simplest unidimensional psychological 

representation – a chain, as assumed in all theoretical accounts of identification. This 

result was observed for all participants, and was also confirmed as the most likely 

structure in both the early and late practice data. Data from those stimulus sets for which 

Dodds et al. (2011) found significantly improved performance with practice yielded 

different results. The psychological representations of the stimuli for the more than one 

third of these participants (9 of 23) were better described by the ring structure than the 

chain structure. This figure rose to 8 of 11 participants when only data from the second 

half of practice were considered, in stark contrast to the 1 of 11 participants identified as 
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using a ring structure in the first half of practice. The hypothesized relationship between 

identification performance and structure was further supported by strong correlations 

between performance in practice and the goodness-of-fit of the ring and chain 

structures. 

To check our results with data from another laboratory, we also analysed data 

from two of Rouder et al.’s (2004) participants. Those participants practiced line length 

stimuli in a similar procedure to that described above, using set sizes of 13 line lengths 

in one experiment and then 20 line lengths in another
10

. Both participants in the first 

experiment, and one out of two of the participants in the second experiment were better 

described by the ring structure. The participants that demonstrated a more complex 

structure were also those that demonstrated higher initial accuracy (Mring = .85; Mchain = 

.68). 

A natural question arising from our analyses is why we did not observe uniform 

results. That is, if improved performance in the identification task really is supported by 

more complex psychological representations of the stimuli, why did we not observe 

such representations for every participant? Two explanations seem plausible. First of all, 

in all experiments there was considerable variability amongst the participants in 

identification performance. About half of the participants did not learn to improve their 

performance beyond Miller's (1956) limit of 7±2 stimuli, and so it is consistent with the 

hypothesis that those participants should maintain the simplest (chain) psychological 

representations. Secondly, there is an inherent bias favouring the chain structure over 

the ring structure in noisy data. This bias arises because general noise (such as non-task-

related responses, and random error) bias the confusion matrices towards uniformity, 

and uniform confusion matrices are – according to the structural forms algorithm – 

                                                 
10

 We did not analyse data from Rouder et al.'s 30-length experiment, as the sample sizes 

became prohibitively small. 
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better described by chain than ring structures due to the higher complexity penalty 

attracted by ring structures. 

Our results indicate that better performance through practice in identification is 

associated with more complex psychological representations of stimuli. However, the 

results do not provide insight into exactly how those representations arise, nor what 

extra stimulus information is being represented. For example, it is easy to speculate that 

participants might learn to judge line lengths using information from several sources – 

perhaps the extent of the retinal image, or the magnitude of the saccade needed to 

traverse the line, or even cues gained by comparing the line to external objects such as 

the display monitor. Magnitude estimates obtained from these sources would 

presumably be highly, but not perfectly, correlated, which could result in psychological 

representations more complex than chains. Further studies might examine such 

hypotheses by attempting to limit the information available from such cues, for example 

by presenting visual stimuli using virtual reality goggles. 

In summary, it seems that tone loudness was the only stimulus modality that 

showed consistent evidence for only a single underlying psychological dimension. Line 

length, dot separation and tone frequencies showed evidence for more complex 

psychological representations than simple chain structures - particularly for highly-

performing participants and post-practice data. The implications of these results are 

remarkable for the study of memory in terms of AI – if these stimuli are truly 

represented on multiple dimensions, unidimensional AI does not apply to these stimuli. 

In the extreme, it might be that the long history of study of unidimensional AI should 

have been limited to the study of tones varying in loudness. Or in the very least, that the 

identification of other stimulus types only qualifies as unidimensional as long as 

participants are not well practiced. 
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